电力系统安全风险评估与应急体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,中国经济的持续发展给电力行业的发展注入了新的活力,用电需求不断增加,电网结构和规模日益加大,电力系统的复杂特性也表现得日趋明显。这给现代电力系统的安全稳定控制提出了更高的要求和挑战。在大力发展智能电网的大好前景下,人们对保障电力系统的安全稳定运行更有信心。然而人们不得不面对一个事实——电力系统大面积停电风险是始终存在的。通过对近年来的一系列大面积停电事件的分析,可以看出传统的安全评估方法(包括确定性的稳定分析和概率性的评估方法)都存在不足之处。因此,除了继续完善现有各种安全与风险分析方法外,还必须从实用化的角度寻求更为完备的电力系统安全风险评估体系。同时,建立以政府为主导、电力企业为主体和全社会共同参与的应急体系,从而尽可能地降低突发事件的影响、减少人民的生命财产损失。
     本文从反映大面积停电风险的角度,建立了一套基于政府监管的电力系统安全风险评估体系。该体系充分考虑到可能引起大面积停电的根本因素,并结合实际对这些根本因素层层展开,从而建立了一套递阶的四级评估指标体系。该指标体系是联系风险评估理论和风险评估实践的纽带,它给政府监管部门和电力企业联合开展电力系统安全风险评估工作提供了重要依据,更重要的是给电力系统的日常风险管理提供了指导意义。将该安全风险评估体系纳入到电力系统的日常风险管理中,有利于及时地从宏观上把握系统的风险水平、从微观上了解系统的薄弱环节,从而通过完善薄弱环节等可以很好地防范大面积停电的发生。
     本文利用所建立的安全风险评估指标体系对广东省电力系统进行安全风险评估论证。首先,结合广东省电力系统的特点,对第四级指标进行了构建和解释,利用层次分析法得出了广东省大面积停电风险。然后,通过对风险评估结果的进一步分析,挖掘出广东省电力系统的薄弱环节,并提出了相应的改善对策。通过与广东省电力系统实际情况相比较,验证了风险评估结果的正确性,从而体现了本文所构建的风险评估体系的合理性和实用性。
     电力系统安全风险评估通常是在系统正常运行时进行的。而电力系统的突发事件也是时有发生,而且可能造成较大的影响,这时就必须通过应急处理来降低突发事件的影响。应急体系是否合理和完善,直接关系到应急处理的效率和结果。加强应急体系建设是应急管理的核心,而科学和完善的应急管理机制可以对应急体系建设提供指导。目前国内对电力系统的应急体系研究还不成熟,本文在借鉴国内外现有应急管理经验的基础上,提出了一套完整的电力系统应急体系。该体系包含了应急法律法规体系、应急预案体系、应急组织体系和应急保障体系,从而给应急处理提供了法律保障、预案保障、领导指挥保障和物资队伍保障。在具体的内容方面,重点强调要构建以政府应急指挥中心和电网调度中心为“双核心”的应急指挥模式,以及加强应急通信的建设和提高应急队伍的救援技能。该应急体系将在完善电力系统的应急管理方面发挥了积极的作用。
     最后,本文对所取得的成果进行了分析和归纳,并对今后进一步深入研究的工作作了展望。
In recent years, the consistent development of national economy infuses new vitality to the development of electric power industry. As a result, the requirement of electric power has been increasing greatly, and the scale of the power system is becoming larger and larger, all of which make the complex characteristics of power system more and more obvious. The power system in China has become a complex and huge system of which the voltage level is the highest and the scale is the largest in the world with the AC-DC hybrid operation. As a result it leads to higher demands and challenges for the security and stability control of modern power system. People have more confidence in guaranteeing power system to be secure and stable with the promising prospect of smart grid. However they have to face the reality that the large-area-blackout risk always exists. And it can be concluded that the traditional methods for security assessment, including the deterministic stability analysis and probabilistic assessment method, have some shortages by analyzing the recent series of large-area-blackout incidents so that it can not fulfill the development requirements of modern power system. So except for continuing developing the present methods, more comprehensive risk assessment system should be established from the application point of view. At the same time the emergency system in which the government is dominant, power enterprises play the main role and the whole society take part commonly should be made up so that the influence of sudden incidents and the loss of people's life and wealth can be decreased as much as possible.
     A government-supervisor-based power system security risk assessment system is established from the large-area-blackout risk point of view in this thesis. In this system the fundmental factors that can cause large-area-blackout are considered fully. And the fundmental factors are divided into several layers based on the practical situations so that a hierarchical assessment index system with four levels is established. The index system is the bridge connecting risk assessment theory and practice. It provides an important basis for the government supervisory departments and electric power enterprises to carry out the work of power system security risk assessment together. More importantly, it can give guidance to the daily risk management of power system. What's more, it is good to master the risk level of the whole system in time from the macroscopic point and find out the weak places of the system from the microscopic point if taking this security risk assessment system into the daily risk management of power system. As a result that the large-area-blackout risk can be decreased greatly by eliminating the weak places.
     The proposed security risk assessment index system has been checked and verified by the risk assessment work of Guangdong power system. Firstly, based on the characteristics of Guangdong power system, the fourth-level indeices is constructed and explained, and the total large-area-blackout risk of Guangdong power system is calculated out with the hierarchical analysis method. And then, by further analysis of the results of risk assessment, the weak places of Guangdong power system are found out and some countermeasures to eliminating the weak places are put forward. By comparing with the real situations of Guangdong power system, it proves that the results of risk assessment are right, and the reasonability and practicality of the proposed assessment system are also verfificated.
     Generally the work of power system security risk assessment is carried out during the system's normal operation period. As we know that the sudden incidents in power system may occur momentarily and have great and bad influences on power system and society. So in this situation, only by emergency disposal can the bad influences be reduced. And it has a direct impact on the efficiency and result of emergency disposal whether the emergency system is reasonable and comprehensive or not. Emphasizing the construction of emergency system is the key part of emergencey management. At the same time, a scientific and comprehensive emergency management mechanism can guide the construction of emergency system. Now the domestic research on power system emergency system is not mature. So great efford on the study of emergency system of power system has been made and a comprehensive emergency system is brought up based on the existing emergency management experiences in chapter 5 of this thesis. The proposed emergency system is made up by emergency laws and regulations system, emergency prediction scheme system, emergency organization system and emergency indemnification system. So it provides laws indemnification, prediction scheme indemnification, conduct indemnification goods and people indemnification. And it is emphasized most importantly that not only the "double-core" emergency conduct mode which includes the government emergency conduct center and power grid dispatch center should be established, but also the constructiong of emergency communication and the improvement of rescue technology for emergency groups should be strengthen. Above all the proposed emergency system will play an important role in the development of power system emergency management.
     Finally the whole works of this thesis are summarized and the future prospect on the development of power system security risk assessment and emergency system is highlighted.
引文
[1]李文沅.电力系统风险评估模型、方法和应用.北京:科学出版社,2006
    [2]McCalley, J.D.,Vittal, V.,Abi-Samra, N. An overview of risk based security assessment, in:Proceeding of IEEE Power Engineering Society Summer Meeting, 1999.Edmonton, Canada,1999
    [3]Sermanson V., Maruejouls N., Lee S, et al. Probalilistic reliability assessment of the North American Eastern Interconnection Transmission Grid, in Proceeding of CIGRE Conf. Paris, France,2002
    [4]CIGRE Task Force 38.03.12. Power system security assessment, a position paper, Electra,1997,175:49-77
    [5]冯永青,张伯明,吴文传等.基于可信性理论的电力系统运行风险评估(一)运行风险的提出与发展.电力系统自动化.2006,30(1):17-23
    [6]Hua Wan,McCalley, J.D.,Vittal, V.Risk based voltage security assessment, IEEE Transactions on Power Systems,2000,15(4):1247-1254
    [7]U.S. Department of Energy Office of Energy Assurance. Vulnerability assessment methodology electric power infrustructure,2002
    [8]Qiming Chen,McCalley, J.D.Identifying high risk N-k contingencies for online security assessment,IEEE Transactions on Power Systems,2005,20(2):823-834
    [9]Qiming Chen,Chuanwen Jiang,Wenzheng Qiu, et al. Probability models for estimating the probabilities of cascading outages in high-voltage transmission network, IEEE Transactions on Power Systems,2006,21(3):1423-1431
    [10]Fei Xiao, McCalley, J.D.Power system risk assessment and control in a multiobjective framework, IEEE Transactions on Power Systems,2009,24(1): 78-85
    [11]张沛.基于概率的可靠性评估方法.电力系统自动化.2005,29(4):92-96
    [12]国家电网公司.电网冰害减灾关键技术研究框架.2008
    [13]郭永基.加强电力系统可靠性的研究和应用--北美东部大停电的思考.电力系统 自动化,2003,27(19):1-5
    [14]http://www.nerc.com/. U.S.-Canada Power System Outage Task Force. Final Report on the August 14th Blackout in the United States and Canada:Causes and Recommendations. April 2004
    [15]Union for the Coordination of Electricity Transmission (UCTE).Interim report-system disturbance on 4 November 2006.http://www.ucte.org/,2006-11-30
    [16]李春艳,孙元章,陈向宜等.西欧“11.4”大停电事故的初步分析及防止我国大面积停电事故的措施.电网技术,2006,30(24):16-21
    [17]陈向宜,陈允平,李春艳等.构建大电网安全防御体系--欧洲大停电事故的分析及思考.电力系统自动化,2007,31(1):4-8
    [18]电监安全[2006]39号文,关于华中(河南)电网“7.1”事故情况通报,2006
    [19]唐斯庆,张弥,李建设.海南电网“9.26”大面积停电事故的分析与总结.电力系统自动化,2006,30(1):1-7
    [20]侯慧,尹项根,陈庆前等.中国南方地区500kV主网架2008年雪灾受损的分析与思考.电力系统自动化,2008,32(11):12-15
    [21]新华网.美电力系统网络遭黑客袭击事件大幅增加,2002.http://news.xinhuanet.com/it/2002-07/09/content_475269.htm
    [22]中国电力新闻网.电力信息系统安全风险和威胁行为分析,2008.http://dlrj.tede.cn/2008/07/121625664786007.html
    [23]何大愚.对于美国西部电力系统1996年7月2日大停电事故的初步认识.电网技术,1996,20(9):35-39
    [24]卢卫星,舒印彪,史连军.美国西部电力系统1996年8月10日大停电事故.电网技术,1996,20(9):40-42
    [25]新浪新闻中心.暴风雨再袭美俄亥俄州造成大面积停电,2007.http://news.2008.sina.com.cn/w/2007-08-27/142612457661 s.shtml
    [26]袁季修.防御大停电的广域保护和紧急控制(第一版).中国电力出版社.2007,3
    [27]牛东晓,刘达等.应对灾害电网危机管理.北京:中国电力出版社.2010,6
    [28]曹晋华,程侃.可靠性数学引论(修订版).北京:高等教育出版社.2006,7
    [29]George Anders, Alfredo Vaccaro. Innovations in Power Systems Reliability. Springer,2011
    [30]柏文洁,汪秉宏,周涛.从复杂网络的观点看大停电事故.复杂系统与复杂性科学.2005,2(3):29-37
    [31]史进.基于复杂网络理论的电力系统网络模型及网络性能分析的研究.华中科技大学[博士学位论文].2008,6
    [32]鲁宗相.电网复杂性及大停电事故的可靠性研究.电力系统自动化.2005,29(12):93-97
    [33]Li Wenyuan, Billinton R. A minimum cost assessment method for composite generation and transmission system expansion planning. IEEE Trans on Power Systems,1993,8(2):628-635
    [34]Fei Xiao, McCalley, J.D. Risk-Based Security and Economy Tradeoff Analysis for Real-Time Operation, IEEE Trans on Power Systems,2007,22(4):2287-2288
    [35]张保会,王立永,谭伦农,于广亮,谢欢.计及风险的市场环境下电力系统安全可靠性研究.电网技术.2005,29(3):44-49
    [36]张保会,王立永,谭伦农,任晋峰,等.基于经济当量的市场环境下电网公司安全性的经济化实现.中国电机工程学报.2006,26(7):107-112
    [37]曹一家,江全元,丁理杰.电力系统大停电的自组织临界现象.电网技术,2005,29(15):1-5
    [38]孙可,韩祯祥,曹一家.复杂电网连锁故障模型评述.电网技术,2005,29(13):1-9
    [39]Dobson I, Chen J. Thorp J S, et al. Examining criticality of blackouts in power system models with cascading events. In proc. of 35th international conference on system sciences. Maui, Hawaii:2002:7-10
    [40]曹一家,陈晓刚,孙可.基于复杂网络理论的大型电力系统脆弱线路辨别.电力自动化设备.2006,26(12):1-5
    [41]孙晓刚,孙可,曹一家.基于复杂网络理论的大电网结构脆弱性分析.电工技术学报,2007,22(10):138-143
    [42]陈庆前,尹项根,侯慧等.从2008年中国南方地区雪灾看电力系统结构缺陷.中 国电力.2008,41(12):1-5
    [43]Ming Ni, McCalley, J.D., Vittal, et al.Online risk-based security assessment,IEEE Trans on Power Systems,2003,18(1):258-265
    [44]Ming Ni, McCalley, J.D., Vittal, V., et al. Software implementation of online risk-based security assessment,IEEE Trans on Power Systems,2003,18(3):1165-1172
    [45]郭永基.电力系统可靠性分析.北京:清华大学出版社.2003
    [46]DL/T 861—2004,电力可靠性基本名词术语(中华人民共和国电力行业标准)北京:中国电力出版社,2004
    [47]郭仲伟.风险分析与决策.北京:机械工业出版社,1986
    [48]宋明哲.现代风险管理.中国纺织工业出版社,2003
    [49]McCalley, J.D.,Vittal, V., Wan, et al. Voltage risk assessment, in:Proceeding of IEEE Power Engineering Society Summer Meeting,1999.Edmonton, Canada,1999: 179-184
    [50]侯慧.应对灾变的电力安全风险评估与应急处置体系.华中科技大学[博士学位论文].2009,5
    [51]王博.复杂电力系统安全风险及脆弱性评估方法研究.华中科技大学[博士学位论文].2011,5
    [52]Wenyuan Li, J. K. Korczynski. Risk evaluation of transmission system operation modes:concepts, method and application. In Proc. of IEEE Power Engineering Society Winter Meeting, Vol 2.New York (NY, USA):2002.1124-1129
    [53]Billinton R, Li Wenyuan. A Hybrid Approach for Reliability Evaluation of Composite Generating and Transmission Systems Using Monte Carlo Simulation and Enumeration Technique. IEE Proceedings C, May 1991,138(3):233-241
    [54]Dai, Y., McCalley, J.D., Abi-Samra, et al. Annual risk assessment for overload security. IEEE Trans. on Power Systems,2001,16(4):616-623
    [55]汪隆君.电网可靠性评估方法及可靠性基础理论研究.华南理工大学[博士学位论文].2010,12
    [56]赵渊,周家启,周念成,谢开贵,等.大电力系统可靠性评估的解析计算模型. 中国电机工程学报.2006,26(5):19-25
    [57]赵渊,周念成,谢开贵,况军.大电力系统可靠性评估的灵敏度分析.电网技术,2005,29(24):25-30
    [58]吴开贵,吴中福.基于敏感度分析的电网可靠性算法.中国电机工程学报.2003,23(4):53-56
    [59]Billinton R,Wenyuan L. Reliability assessment of electric power systems using monte carlo methods. New York:Plenum Press,1994
    [60]别朝红,王锡凡.蒙特卡洛法在评估电力系统可靠性中的应用.电力系统自动化.1997,21(6):68-75
    [61]丁明,张瑞华.发输电组合系统可靠性评估的蒙特卡罗模拟.电网技术.2000,24(3):9-12
    [62]程林,郭永基.发输电系统充裕度和安全性算法研究.电力系统自动化,2001,25(20):23-26
    [63]宋云亭,郭永基,程林.大规模发输电系统充裕度评估的蒙特卡罗仿真.电网技术,2003,27(8):24-28
    [64]丁明,李生虎,吴红斌.电力系统概率充分性和概率稳定性的综合评估.中国电机工程学报.2003,23(3):20-25
    [65]程林,孙元章,郑望其等.超大规模发输电系统可靠性充裕度评估及其应用.电力系统自动化.2004,28(11):75-78
    [66]Hurdle EE, Bartlett LM, Andrews JD. Fault diagnostics of dynamic system operation using a fault tree based method. Reliability Engineering & System Safety, 2009,94(9):1371-1380
    [67]Majdara A, Wakabayashi T. Component-based modeling of systems for automated fault tree generation. Reliability Engineering & System Safety,2009,94(6): 1076-1086
    [68]Chatzimouratidis AI, Pilavachi PA. Technological, economic and sustainability evaluation of power plants using the Analytic Hierarchy Process. Energy Policy, 2009,37(3):778-787
    [69]张吉军.模糊层次分析法(FAHP)模糊系统与数学,2000,14(2):80-88
    [70]宋保维,潘光,胡欲立,等.基于熵权的鱼雷系统模糊层次分析与评判.系统工程理论与实践,2001,10(4):129-136
    [71]王金根,刘贺普.基于熵权的模糊层次分析法在雷达情报质量评估系统中的应用.系统工程与电子技术,1996,18(6):9-14
    [72]杨宇.多指标综合评价中赋权方法评析.理论新探,2006,第7期:17-19
    [73]杨纶标,高英议.模糊数学原理及应用(第四版).广州:华南理工大学出版社,2005
    [74]邓聚龙.灰色系统理论.武汉:华中科技大学出版社,2002
    [75]陈为化,江全元,曹一家.基于模糊神经网络的电力系统连锁故障风险评估.浙江大学学报(工学版),2007,41(06):973-979
    [76]任惠.电力系统连锁故障风险分析.华北电力大学[博士学位论文].2009,4
    [77]侯慧,尹项根,游大海等.国外经验对我国应急减灾机制的启示.电力系统自动化,2008,32(12):89-93
    [78]国家电力监管委员会.国内外电力应急演练状况综合分析报告.2009,3
    [79]谢存伟,唐志芳等.典型发达国家电网灾难事故应急管理综述.电网技术.2008,32(增刊2):46-49
    [80]谢迎军,马晓明等.国内外应急管理发展综述.电信科学.2010,(S3):28-32
    [81]中国政府门户网站www.gov.cn,国家处置电网大面积停电事件应急预案,2006.http://www.gov.cn/yjgl/2006-01/24/content_168998.htm
    [82]国家电力监管委员会.《电网安全情况监督检查报告》(国家电力监管委员会专项监管报告第3号),2006
    [83]国家电力监管委员会,电网运行规则(试行),北京:中国电力出版社.2007
    [84]国家电力监管委员会,《电力可靠性监督管理办法》,2007
    [85]国家电力监管委员会南方监管局.广东省电网大面积停电事件应急指挥中心项目建议书.2007
    [86]钟守熙,杨成龙.地震灾害给电力应急管理的启示.电力安全技术,2008,10(12):31-33
    [87]广东电网公司.广东电网2003-2007年一次设备故障情况统计表.2008
    [88]国家电监会南方监管局.2006年南方区域电力安全报告.2007,8
    [89]宋福龙,罗毅,涂光瑜等.基于事故树分析法的电力系统事故链监控研究.继电器,2006,34(2):23-27
    [90]国家电监会南方监管局.广东电力安全风险评估与对策研究技术报告,2010
    [91]广东电网公司.广东电网“十一五”规划.2006
    [92]田世明,陈希等.电力应急管理理论与技术对策.电网技术,2007,31(24):22-26
    [93]朱朝阳,于振等.电力应急管理理论与技术体系研究.电网技术,2011,35(2):178-182
    [94]徐瑞卿,周渝慧.中国管理科学.电力系统应急管理探讨.2006,14(专辑:841-845)
    [95]蒋振洁.从抗击雪凝灾害看电力应急管理.2008年抗冰保电优秀论文集,p286-288
    [96]钟守熙,杨成龙.地震灾害给电力应急管理的启示.电力安全技术.2008,10(12):31-33
    [97]程正刚,房鑫炎等.电力应急体系的脆弱性评价研究.电力系统保护与控制.2010,38(19):51-54
    [98]赵炜炜.电网大停电模型及预防应急体系研究.华北电力大学[博士学位论文].2009,6
    [99]尚敬福.大面积停电应急关键理论及技术研究.华北电力大学[博士学位论文].2009,5
    [100]国家电力监管委员会.电力突发安全事件应急演练通用规范.2009
    [101]侯慧,周建中等.国内外电力应急演练现状分析及对中国的启示.电力系统保护与控制.2010,38(24):236-241
    [102]张建华,尚敬福等.中国区域电网应急管理机制建设的建议.电力系统自动化,2009,33(4):40-44
    [103]苏杨,陈家桐.电力二次系统应急响应工作体系构建及研究,计算机安全.2010,(10):62-67
    [104]刘献伟.电力系统应对灾害的应急通信网络研究.华北电力大学[硕士学位论文].2009,5
    [105]田超,沈沉等.电力应急管理中的综合预测预警技术.清华大学学报(自然科学版).2009,49(4):481-484
    [106]程正刚.电力应急体系的脆弱性研究.上海交通大学[硕士学位论文].2010,2
    [107]于雷,张建华.大面积停电应急监控与启动机制设计的探讨.能源技术经济.2010,22(6):21-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700