水稻籼粳不育基因S5的自然变异、进化模式与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
已经于2008年完成克隆的水稻杂种不育基因S5在对亚洲栽培稻群体的比较测序中发现了籼型、粳型和广亲和型三种等位基因型,其中籼型和粳型等位基因型的编码区段之间仅存在两个碱基的差异(从基因的5’到3’方向,籼型依次为C、C;粳型依次为A、T)。其对应编码的蛋白质水平分别为两个氨基酸的替换,而广亲和品种的S5等位基因型由于编码蛋白N端的缺失导致其功能丧失而被定义为“中性”类型。在本研究中,我们对S5基因对应在亚洲栽培稻O. sativa、一年生尼瓦拉野生稻O. nivara、多年生普通野生稻O. rufipogon三大类群体中共计138个水稻品系的基因组序列进行了测序分析,涵盖S5上游启动子区、编码区及下游旁侧序列4.7kb区域。PCR扩增比较测序的结果表明S5有19种单倍型(编码区的自然变异),并且可以进一步根据籼型、粳型和广亲和型等位基因型的特征将单倍型分为三类。其中籼类和广亲和类各有8种单倍型,而粳类S5等位基因只有3种单倍型的存在。
     对三类S5等位基因进化关系的分析表明,H19和H5分别是籼类和粳类的原始类型,这两种单倍型在对应等位基因类型中频率最高,且H19和H5仅在两个特征SNP,即C819A和C1412T处有区别。H17是广亲和类的原始类型,由其在单倍型网络结构所处位置可以看出该单倍型是由H19发生一次缺失突变后形成的。我们对进化选择压力的计算表明广亲和类的S5等位基因型受到正向选择,推测原因是携带这一类型等位基因的个体在杂种中的高亲和性而导致它们受到选择,频率得以上升。综合上述结果可以推断出,S5籼类、粳类和广亲和类等位基因的形成出现在O.sativa、O. nivara和O. rufipogon的分化之前,而籼类和粳类这两类不亲和的等位基因型存在于更加原始的祖先种中,说明生殖隔离不仅在栽培稻的籼粳两个亚种中存在,而且极有可能发生在更早的物种分化事件之前,即在未被人工驯化的野生稻群体中有可能已经建立起生殖隔离的系统。同样在这一系统内部,近似籼稻和近似粳稻的水稻群体在野生稻中可能已经分化出来,这一结果也支持籼稻和粳稻独立起源的假说。
     进一步研究还发现在所用的水稻自然种群中,区分籼型和粳型的两个特征SNP,即C819A和C1412T都是紧密关联的。这一结果表明,两个位点的同时存在对于行使其功能有关键作用。在已发表的利用籼型S5全长基因转化粳型受体使雌配子和小穗育性显著下降的结果基础上,我们通过构建S5在两个特征SNP发生重组的供体片段且分别由S5籼型和粳型启动子驱动,共计6种片段类型进行遗传转化,考察T0与T1代单拷贝植株小穗育性。转化结果表明只有C819和C1412同时存在才会导致籼粳杂交后的半不育表型,C819和C1412的关联是行使S5功能所必需的。同时我们也对无突变体支持反向遗传学研究的S5基因进行了粳稻受体表达量抑制的转化操作,转化后代与籼稻母本测交后观察是否使杂种育性得到恢复,结果真杂种阳性单株与阴性单株之间并无显著育性差异,表明该基因不存在剂量效应。此外我们也使用S5基因以正义转化和超量表达两种方式转化了拟南芥以探索其物种间的功能保守性,结果表明并未影响拟南芥相关育性指标,但植株出现的矮化表型与该基因所编码的天冬氨酸蛋白酶所属家族成员在拟南芥中已报道的功能相符,并且作为一个新的病原抗性性状改良基因源具有被深入利用的潜在价值。
     水稻籼粳亚种间杂种不育是一种典型的生殖隔离现象。生殖隔离在物种进化、分化和新物种的形成中起着十分重要的作用。水稻杂种不育基因S5在进化中表现出其特有的复杂性,且S5籼类、粳类和广亲和类等位基因在种群和进化的层面上也表现出相当重要的功能,因此对该基因自然变异和功能演化的深入研究将有助于我们更好地理解生殖隔离和物种分化所形成和发展的过程。
Three allelic types, indica-like, japonica-like and WCG (wide compatibility gene)-like were found during the comparative sequencing of a hybrid sterility gene S5recently cloned in2008within Asian cultivated rice population. The indica-like alleles differ from japonica-like alleles by two nucleotides in the coding region (from5'to3', indica-like are C and C, japonica-like are A and T). The protein level can be distinguished by two AA replacements, and the WCG-like S5alleles are defined as "neutral" type due to the deletion in N-terminal and further loss of function. In our study, we analyzed the genomic sequences of S5alleles within138rice accessions including Asian cultivated rice O. sativa, annual wild rice O. nivara and perennial common wild rice O. rufipogon, covering upstream promoter, coding region and downstream flanking sequence totally4.7kb in length. Results from PCR-amplified comparative sequencing showed19haplotypes (natural variation in coding region) and could be further classified into three groups as indica, japonica and WCG-like alleles. There were8haplotypes in indica-like and WCG-like group separately, and only3haplotypes in japonica-like group.
     Analysis on evolutionary relationship among the three allelic groups indicated haplotype H19and H5were primitive to indica-like and japonica-like groups separately, with the highest frequency in each group and could only be distinguished by SNP C819A and C1412T. H17was primitive to WCG-like group resulting from a deletion mutation in H19. Calculation on evolutionary selective force suggested the WCG-like group was favored by positive selection due to the high compatibility in hybrids from individuals carrying correspondant alleles to inflict increased frequency. To conclude all, the formation of indica, japonica and WCG-like alleles were earlier than speciation of O. sativa, O. nivara and O. rufipogon, and the incompatible allelic types indica-like and japonica-like already existed in more ancestral species, suggesting that reproductive isolation exists not only within indica and japonica cultivated rice but also in earlier speciation events. The reproductive isolation might be established within the untamed wild rice populations. Also in this isolation system, the similar indica and japonica rice populations might had already differentiated out and the result also supported the independent origination hypothesis of indica and japonica subspecies.
     Further study found the two characteristic SNPs between indica and japonica in the sampled rice germplasm, C819A and C1412T were tightly associated, suggesting the coexistence of these two sites played an essential role of gene function. On basis of the published data from transformation of indica full length S5into japonica recipient, both female gametic and spikelet fertility were decreased, we constructed6donor-fragments from all recombinations of these two SNPs and driven by S5indica and japonica native promoters for genetic transformation to evaluate the spikelet fertility of single copy positive individuals in To and T1generations. Results indicated only the coexistence of C819and C1412could repeat the semi-sterile phenotype as indica-japonica hybrids, and the association between these two sites was necessary for S5to act functionally. In the same time we commenced expression-repressing transformation of S5into japonica rice recipient due to the lack of allelic mutant, and to observe possible hybrid fertility restoration after test-crossed with indica. The result showed no significant fertility difference between hybrid-positive and hybrid-negative individuals and no dosage effect of S5. We also used complementary and over-expression transformation into Arabidopsis to estimate the functional conservation, and results indicated no fertility-related traits were influenced but the dwarfing phenotype still matched the reported functions of aspartic protease gene family members in Arabidopsis, granting S5the potential to be further utilized as a new pathogen resistance genetic source in trait improvement.
     The intersubspecific hybrid sterility between indica and japonica rice is a typical reproductive isolation which plays an extremely important role in allelic evolution, differentiation and speciation. The hybrid sterility gene S5in rice demonstrated its specific complexity in evolution. The indica, japonica and WCG-like alleles of S5also showed very important functions on speciation and evolution, further study into natural variation and functional evolution of this gene will be helpful for better understanding of reproductive isolation and speciation procedures from formational and developmental level.
引文
1. 王才林,张兆兰,汤述翥,施建达.三系法籼粳亚种间杂种优势利用研究i.籼粳交不育与细胞质雄性不育的区别及其检测.江苏农业学报,1992,8:1-7.
    2. 王以秀,沈圣泉.水稻亚种间杂种一代部分雄性不育的细胞学研究.浙江农业大学学报,1991.17:417-422.
    3. 王建平,孙传清,李自超,王象坤,朱立煌.两套水稻籼粳交DH群体的亲和性及其遗传分析.作物学报,2000,26:825-832.
    4. 卢宝荣.稻种遗传资源多样性的开发利用和保护.生物多样性,6(1):63-72.
    5. 吕川根,王才林,宗寿余,赵凌,邹江石.温度对水稻亚种间杂种育性及结实率的影响.作物学报,2002,28:499-504.
    6. 刘永胜,周开达,阴国大,罗文质.水稻籼粳杂种雌性不育的细胞学初步观察(简报)实验生物学报,1993,26:95-99.
    7. 刘永胜,孙敬三,周开达.水稻亚种间杂种小穗败育的细胞学基础.实验生物学报,1997,30:335-341.
    8. 朱立宏,周毓珍,陶世昌.籼粳稻杂交育种研究.作物学报,1964,3:69-84.
    9. 刘蔼民,李和标,张启发,姜晓红,师素云,杨官品.水稻广亲和基因在RFLP图谱上的初步定位.华中农业大学学报,1992,11:218-219.
    10.李新奇.利用广亲和基因提高籼粳杂种育性研究.杂交水稻,1988,3:31-33.
    11.李任华,徐才国,何予卿,袁隆平,王象坤.水稻亲本遗传分化程度与籼粳杂种优势的关系.作物学报,1998,9:564-576.
    12.曲若竹,侯林,吕红丽,李海燕.群体遗传结构中的基因流.遗传,2004,26:377-382.
    13.何光华,郑家奎,阴国大,杨正林.水稻亚种间杂种配子育性的研究.中国水稻科学,1994,8:177-180.
    14.张桂权,卢永根.栽培稻杂种不育性的遗传研究Ⅱ.F1花粉不育性的基因模式.遗传学报,1993,20:222-228.
    15.郑康乐,沈波,钱惠荣,王建军.应用RFLP标记研究水稻的广亲和基因.中国水稻科学,1992,6:145-150.
    16.徐才国.水稻亚种内及亚种间杂交花粉在柱头上附着和萌发状态的观察.华中农业大学学报,1995,14:421-424.
    17.蒋巨星.水稻广亲和基因S5位点染色体区段物理图谱构建及其部分BAC克隆的DNA序列测定与初步分析.[硕士学位论文].武汉:华中农业大学图书馆,2000.
    18.曾世雄,杨秀青,卢庄文.栽培稻籼粳亚种间杂种一代优势的研究.作物学报,1980,6:193-202.
    19.程侃声,王象坤,卢义宣,罗军,黄乃威,刘光荣.云南稻种资源的综合研究与利用Ⅸ论亚洲栽培稻的籼粳分类.作物品种资源,1988,1:1-5.
    20. Aranzana M J, Kim S, Zhao K, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo Chikako, Tang C, Toomajian C, Traw B, Zheng HG, Bergelson J, Dean C, Marjoram P, Nordborg M. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genetics,2005,1:531-539.
    21. Avise J C. Phylogeography:The History and Formation of Species. Harvard Univ Press, Cambridge, MA,2000.
    22. Ballard, H. E., Jr. Hybrids among three caulescent violets, with special reference to Michigan. Michigan Botanist,1990,29:43-54.
    23. Ballard, H. E., Jr. Violets of Michigan. Michigan Botanist,1994,33:131-199.
    24. Barbash D A, Awadalla P, Tarone A M. Functional divergence caused by ancient positive selection of a Drosophila hybrid incompatibility locus. PLoS Biol,2004,2:e142.
    25. Bautista N S, Solis R, Kamijima O, Ishii T. RAPD, RFLP and SSLP analyses of phylogenetic relationships between cultivated and wild species of rice. Genes Genet Syst,2001,76:71-79.
    26. Beattie, A. J. Floral evolution in Viola. Annals of the Missouri Botanical Garden,1974,61: 781-793.
    27. Begun D J, Aquadro C F. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature,1992,356:519-520.
    28. Borromeo T H, Sanchez P L, Vaughan D A. Wild rices of the Philippines. Philippine Rice Research Institute, Maligaya, Nueva Ecija, Philippines,1994.
    29. Brideau N J, Flores H A, Wang J, Maheshwari S, Wang X, Barbash D A. Two Dobzhansky-Muller genes interact to cause hybrid lethality in Drosophila. Science,2006, 314:1292-1295.
    30. Briggs, D. and S. M. Walters. Plant variation and evolution,3rd ed. Cambridge University Press, Cambridge, United Kingdom,1997.
    31. Caicedo A L, Williamson S H, Hernandez R D, Boyko A, Fledel-Alon A, York T L, Polato N R, Olsen K M, Nielsen R, McCouch S R, Bustamante C D, Purugganan M D. Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLoS Genet,2007,3:1745-1756.
    32. Chang T T. The origin, evolution, cultivation, dissemination and diversification of Asian and African rices. Euphytica,1976,25:425-441.
    33. Chang T T. Origin, domestication and diversification. In:Rice:Origin, History, Technology, and Production, edited by Smith CW and Dilday RH:John Wiley & Sons, Inc.,2003, p. 3-25.
    34. Chang K C. The archaeology of ancient China. New Haven, CT:Yale University Press, 1986.
    35. Chen J J, Ding J H, Ouyang Y D, Du H Y, Yang J Y, Cheng K, Zhao J, Qiu S Q, Zhang X L, Yao J L, Liu K D, Wang L, Xu C G, Li X H, Xue Y B, Xia M, Ji Q, Lu J F, Xu M L, Zhang Q F. A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice. Proc NatlAcad Sci U S A,2008,105:11436-11441.
    36. Cheng C Y, Motohashi R, Tsuchimoto S, Fukuta Y, Ohtsubo H, Ohtsubo E. Polyphyletic origin of cultivated rice:based on the interspersion pattern of SINEs. Mol Biol Evol,2003,20: 67-75.
    37. Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen J L, Zhang Q and Wang S. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev,2006,20:1250-1255.
    38.. Clement M, Posada D, Crandall K A. TCS:a computer program to estimate gene genealogies. Mol Ecol,2000,9:1657-1659.
    39. Coyne J A, Orr H A. Patterns of speciation in Drosophila. Evolution (Lawrence,Kans),1989, 43:362-381.
    40. Coyne J A, Orr H A. Speciation. Sunderland, MA:Sinauer Associates,2004.
    41. Crawford G. The origins of rice agriculture:recent progress in East Asia. Antiquity,2005,46: 309-317.
    42. Dally A M, Second G. Chloroplast DNA diversity in wild and cultivated species of rice (genus Oryza, section Oryza). Cladistic-mutation and genetic-distance analysis. Theor Appl Genet,1990,80:209-222.
    43. Darwin C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London:Murray, J.,1859.
    44. Dobzhansky T. Genetics and the Origin of Species. Columbia Univ Press, NewYork,1937.
    45. Doyle J J, Doyle J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull,1987,19:11-15.
    46. Engle L M, Chang T T, Ramirez D A. The cytogenetics of sterility in F1 hybrids of indica-indica and indica-japonica varieties of rice (Orzya sativa L.). Philippine Agricultural Scientist,1969,53:289-307.
    47. Fu Y X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics,1997,147:915-925.
    48. Fujinaga M, Chernaia M M, Tarasova N I, Mosimann S C, James M N. Crystal structure of human pepsin and its complex with pepstatin. Protein Sci,1995,4:960-972.
    49. Garris A J, McCouch S R, Kresovich S. Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the Xa5 locus of rice(Oryza sativa L.). Genetics,2003,165:759-769.
    50. Garris A J, Tai T H, Coburn J, Kresovich S, McCouch S. Genetic structure and diversity in Oryza sativa L. Genetics,2005,169:1631-1638.
    51. Ge S, Sang T, Lu B R, Hong D Y. Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc Natl Acad Sci USA,1999,96:14400-14405.
    52. Glaszmann J C. Isozymes and classification of Asian rice varieties. Theor Appl Genet,1987, 74:21-30.
    53. Goff S A, Ricke D, Lan T H, Presting G, Wang R, Dunn M. A draft sequence of the rice genome{Oryza sativa L. ssp.japonica). Science,2002,296:92-100.
    54. Grant, V. Plant speciation. Columbia University Press, New York,1971.
    55. Grant, V. The evolutionary process:A critical study of evolutionary theory,2nd ed. Columbia University Press, New York,1991.
    56. Grillo M A, Li C, Fowlkes A M, Briggeman T M, Zhou A, Schemske D W, Sang T. Genetic architecture for the adaptive origin of annual wild rice, Oryza nivara. Evolution,2009,63: 870-883.
    57. Hajdukiewicz P, Svab Z, Maliga P. The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol,1994,25:989-994.
    58. Han B, Xue Y. Genome-wide intraspecific DNA-sequence variations in rice. Curr Opin Plant Biol,2003,6:134-138.
    59. Hill W G, Robertson A. Linkage disequilibrium in finite populations. Theor Appl Genet,1968, 38:226-231.
    60. Ikeda. Research on hybrid rice in Japan, progress and future directions (in Japanese). JAgric Sci,1994,49:478-492.
    61. Ikehashi H, Araki H. Vertical screening of compatibility types revealed in F1 fertility of distant crosses in rice. Japan. J. Breeding,1984,34:304-313.
    62. Ikehashi H, Araki H. Genetics of F1 sterility in remote crosses of rice. In:Rice Genetics edited by IRRI. Manila:Philippines International Rice Research Institute,1986, p.119-130.
    63. JiQ, Lu J F, Chao Q, Gu M H, Xu M L. Delimiting a rice wide-compatibility gene S5" to a 50 kb region. Theor Appl Genet,2005,111:1495-1503.
    64. Jiang L, Liu L. New evidence for the origins of sedentism and rice domestication in the Lower Yangzi River, China. Antiquity,2006,80:355-361.
    65. Jing W, Zhang W W, Jiang L, Chen L M, Zhai H Q, Wan J M. Two novel loci for pollen sterility in hybrids between the weedy strain Ludao and the Japonica variety Akihikari of rice (Oryza sativa L.). Theor Appl Genet,2007,114:915-925.
    66. Johnson N A, Porter A H. Rapid speciation via parallel, directional selection on regulatory genetic pathways. Journal of Theoretical Biology,2000,205:527-542.
    67. Joshi S P, Ranjekar P K, Gupta V S. Molecular markers in plant genome analysis. Curr Sci, 1999,77:230-240.
    68. Kato S, Kosaka H, Hara S. On the affinity of rice varieties as shown by fertility of hybrid plants. Bull Sci Fac Agric Kyushu Univ,1928,3:132-147.
    69. Kervinen J, Wlodawer A, Zdanov A.17. Phytepsin In:Handbook of Proteolytic Enzymes (2nd ed.), edited by Barrett A, Rawlings N and Woessner J. Amsterdam:Academic Press, 2004, p.77-84.
    70. Khush G S. Origin, dispersal, cultivation and variation of rice. Plant Mol Biol,1997,35: 25-34.
    71. Kitamura E. Genetic studies on sterility observed in hybrids between distantly related varieties of rice, Oryza sativa. Rep Chugoku Exp Sta,1962,8:141-205.
    72. Kovach M J, Sweeney M T, McCouch S R. New insights into the history of rice domestication. Trends Genet,2007,23:578-587.
    73. Kubo T, Eguchi M, Yoshimura A. A new gene for F1 pollen sterility on chromosome 12 in japonicalindica cross of rice. Rice Genet Newsl,2001,18:54-55.
    74. Lewontin R C, Krakauer J. Distribution of gene frequency as a test of the theory of selective neutrality of polymorphisms. Genetics,1973,74:175-195.
    75. Liang G H, Yan C J, YI C D, Zhu L H, Gu M H. Re-analysis of wide compatibility in rice. Yi Chuan Xue Bao,2001,28:447-457..
    76. Librado P, Rozas J. DnaSP v5:a software for comprehensive analysis of DNA polymorphism data. Bioinformatics,2009,25:1451-1452.
    77. Lin Y J, Zhang Q F. Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep,2005,23:540-547.
    78. Liu K D, Zhou Z Q, Xu C G, Zhang Q F, Saghai Maroof M A. An analysis of hybrid sterility in rice using a diallel cross of 21 parents involving indica, japonica and wide compatibility varieties. Euphytica,1996,90:275-280.
    79. Liu K D, Yang G P, Zhu S H, Zhang Q F, Wang X M, Saghai Maroof M.A. Extraordinarily polymorphic ribosomal DNA in wild and cultivated rice. Genome,1996,39:1109-1116.
    80. Liu K D, Wang J, Li H B, Xu C G, Liu A M, Li X H, Zhang Q. A genome-wide analysis of wide compatibility in rice and the precise location of the S5 locus in the molecular map. TheorAppl Genet,1997,95:809-814.
    81. Liu Y S, Zhu L H, Sun J S, Chen Y. Mapping QTLs for defective female gametophyte development in an inter-subspecific cross in Oryza sativa L.. Theor Appl Genet,2001,102: 1243-1251.
    82. Liu H Y, Xu C G, Zhang Q F. Male and female gamete abortions, and reduced affinity between the uniting gametes as the causes for sterility in an indicaljaponica hybrid in rice. Sexual Plant Reprod,2004,17:55-62.
    83. Londo J P, Chiang Y C, Hung K H, Chiang T Y, Schaal B A. Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Natl Acad Sci USA,2006,103:9578-9583.
    84. Long Y, Zhao L, Niu B, Su J, Wu H, Chen Y, Zhang Q, Guo J, Zhuang C, Mei M, Xia J, Wang L, Liu YG. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proc Natl Acad Sci USA,2008,105:18871-18876.
    85. Lu C G, Takabatake K, Ikehashi H. Identification of segregation distortion neutral alleles to improve pollen fertility of indica-japonica hybrids in rice. Euphytica,2000,113:101-107.
    86. Lu B R, Zheng K L, Qian H R, Zhuang J Y:Genetic differentiation of wild relatives of rice as assessed by RFLP analysis. Theor Appl Genet,2002,106:101-106.
    87. Ma J, Bennetzen J L. Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA,2004,101:12404-12410.
    88. Maekawa M, Inukai T, Shinbashi N. Japan J Breed,1991,41:359-363.
    89. Mayr E. Systematics and the Origin of Species. Columbia Univ Press, New York,1942.
    90. McCouch S R, Leonid T, Yunbi X, Katarzyna B L, Karen C. Development and mapping of 2240 New SSR markers for Rice (Oryza sativa L.). Theor Appl Genet,2002,109:199-207.
    91. Morishima H, Oka H I. A survey of genetic variations in the populations of wild oryza species and their cultivated relatives. Japan Journal of Genetics,1970,45:371-385.
    92. Muller H J. Isolating mechanisms, evolution and temperature. Biol Symp,1942,6:71-125.
    93. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant,1962,15:473-497.
    94. Nagato Y, Yoshimura A. Report of the committee on gene symbolizationm, nomenclature and linkage groups. Rice Genet Newsl,1998,15:13-74.
    95. Nei M. Molecular evolutionary genetics. New York:Columbia University Press,1987.
    96. Nicholas K B, Nicholas HBJ. GeneDoc:a tool for editing and annotating multiple sequence alignments.1997, Distributed by the author http://wwwpscedu/biomed/genedoc.
    97. Noor MAF, Grams K L, Bertucci L A, Reiland J. Chromosomal inversions and the reproductive isolation of species. Proc Natl Acad Sci USA,2001,98:12084-12088.
    98. Nordborg M, Tavare S. Linkage disequilibrium:What history has to tell us. Trends Genet, 2002,18:83-90.
    99. Oka H I. Consideration on the genetic basis of intervarietal sterility in Oryza saliva. In:IRRI (ed) Rice genetics and cytogenetics. Elsevier, Amsterdam,1964,158-174.
    100. Oka H I. Analysis of genes controlling F1 sterility in rice by the use of isogenic lines. Genetics,1974,77:521-534.
    101. Oka H I. Origin of cultivated rice. Scientific Societies Press, Tokyo, Japan,1988,181-209.
    102. Oliver P L, Goodstadt L, Bayes J J, Birtle Z, Roach K C, Phadnis N, Beatson S A, Lunter G, Malik H S, Ponting C P. Accelerated evolution of the Prdm9 speciation gene across diverse metazoan taxa. PLoS Genet,2009,5:e 1000753.
    103. Oritz-Barrientos D et al. Gene expression divergence and the origin of hybrid dysfunctions. Genetica,2007,129:71-81.
    104. Ouyang Y D, Chen J J, Ding J H, Zhang Q F. Advances in the understanding of inter-subspecific hybrid sterility and wide-compatibility in rice. Chinese Science Bulletin, 2009,54:2332-2341.
    105. Ouyang Y D, Liu Y G, Zhang Q F. Hybrid sterility in plant:stories from rice. Curr Opin Plant Biol,2010,13:186-192.
    106. Palaisa K. A, Morgante M, Williams M, Rafalski A. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell,2003, 15:1795-1806.
    107. Pan X B, Gu M H, Chen Z X. A comparative study on major wide compatibility varieties of rice. In:Current Status of Two Line Hybrid Rice Research, Yuan LP edited, Beijing: Agricultural Press,1992,236-245.
    108. Park K C, Kim N H, Cho Y S, Kang K H, Lee J K, Kim N S. Genetic variations of AA genome Oryza species measured by MITE-AFLP. Theor Appl Genet,2003,107:203-209.
    109. Pe'er I, Bakker P, Mailer J, Yelensky R, Altshuler D, Daly M J. Evaluating and improving power in whole-genome association studies using fixed marker sets. Nature Genetics,2006, 38:663-667.
    110. Presgraves D C, Balagopalan L, Abmayr S M, Orr H A. Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila. Nature,2003,423:715-719.
    111. Qiu S Q, Liu K D, Jiang J X, Song X, Xu C G, Li X H, Zhang Q F. Delimitation of the rice wide compatibility gene S5 to a 40-kb DNA fragment. Theor Appl Genet,2005,111: 1080-1086.
    112. Ramsey J, Bradshaw H D, Schemske D W. Components of reproductive isolation between the monkeyflowers Mimulus lewisii and M. cardinalis (Scrophulariaceae). Evolution (Lawrence, Kans),2003,57:1520-1534.
    113. Remington D L, Thornsberry J M, Matsuoka Y, Wilson L M, Whitt S R, Doebley J, Kresovich S, Goodman M M, Buckler E S IV. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA,2001,20: 11479-11484.
    114. Rieseberg L H. Chromosomal rearrangements and speciation. Trends Ecol Evol,2001,16: 351-358.
    115. Roder M S, Plaschke J, Konig S U, Borner A, Sorrells M E, Tanksley S D, Ganal M W. Abundance, variability and chromosomal location of microsatellites in wheat. Molecular Genetics,1998,246:327-333.
    116. Sambrook J, Fritsch E F, Maniatis T. Molecular cloning:a laboratory manual. Second edition. Cold Spring Harbor Laboratory Press, New York,1989. pp.16.7-16.8.
    117. Sandstrom J. Temporal change in host adaptation in the pea aphid, Acyrthosiphonpisum. Ecol Entomol,1996,21:56-62.
    118. Sang T, Ge S. Genetics and phylogenetics of rice domestication. Curr Opin Genet Dev,2007, 17:533-538.
    119. Second G. Origin of the genetic diversity of cultivated rice (Oryza spp.):study of the polymorphism scored at 40 isozyme loci. Jpn J Genet,1982,57:25-57.
    120. Sharma S D, Tripathy S, Biswal J. Origin of O. sativa and its ecotypes. In:Rice Breeding and Genetics:Research Priorities and Challenges, edited by Nanda JS:Science Publications, 2000, p.349-369.
    121. Singh S P, Sundaram R M, Biradar S K, Ahmed M I, Viraktamath B C, Sidddiq E A. Identification of simple sequence repeat markers for utilizing wide-compatibility genes in inter-subspecific hybrids in rice(Oryza sativa L.). Theor Appl Genet,2006,113:509-517.
    122. Sobrizal Y, Matsuzaki P, Yoshimura A. Mapping of pollen semi-sterility gene S-28(t) on rice chromosome 4. Rice Genet Newsl,2002,19:34-37.
    123. Song X, Qiu S Q, Xu C G, Li X H, Zhang Q F. Genetic dissection of embryo-sac fertility, pollen fertility and their contributions to spikelet fertility of an indica-japonica rice hybrid. Theor Appl Genet,2005,110:205-211.
    124. Song Z, Zhu W, Rong J, Xu X, Chen J, Lu B-R. Evidence of introgression from cultivated rice Oryza rufipogon (Poaceae) populations based on SSR fingerprinting:implications for wild rice differentiation and conservation. Evol Ecol,2006,20:501-522.
    125. Sun C, Wang X, Yoshimura A, Doi K. Genetic differentiation for nuclear, mitochondrial and chloroplast genomes in common wild rice (Oryza rufipogon Griff.) and cultivated rice (Oryza sativa L.). Theor Appl Genet,2002,104:1335-1345.
    126. Sweeney M, McCouch S. The complex history of the domestication of rice. Ann Bot,2007, 100:951-957.
    127. Szalma S J, Buckler E S Ⅳ, Snook M E, McMullen M D. Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theor Appl Genet,2005, 110:1324-1333.
    128. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics,1989,123:585-595.
    129. Terao H, Mizushima U. Some consideration on the classification of Oryza sativa L into two subspecies, so-called "Japonica" and "Indica". Japant J Bot,1939,10:213-258.
    130. Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The CLUSTAL X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res,1997,25:4876-4882.
    131. Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D. Dwarf8 polymorphisms associate with variation in flowering time. Nature Genetics,2001,28: 286-289.
    132. Ting Y. Chronological studies of the cultivation and the distribution of rice varieties, Keng and Sen (in Chinese). Agr Bull ColAgr Sun Yalsen Univ,1949a,6:1-32.
    133. Ting Y. A preliminary report on the cultivation and distribution of hsien and keng rices in ancient China and the classification of current cultivars (in Chinese). Memoir Coll Agr Sun Yatsen Univ,1949b,6:1-32.
    134. Ting C T, Tsaur S C, Wu M L, Wu C I. A rapidly evolving homeobox at the site of a hybrid sterility gene. Science,1998,282:1501-1504.
    135. Vaughan D A, Morishima H, Kadowaki K. Diversity in the Oryza genus. Current Opinion in Plant Molecular Biology,2003,6:139-146.
    136. Vitte C, Ishii T, Lamy F, Brar D, Panaud O. Genomic paleontology provides evidence for two distinct origins of Asian rice(Oryza sativa L.). Mol Genet Genomics,2004,272:504-511.
    137. Wang Z, Second G, Tanksley S. Polymorphism and phylogenetic relationship among species in the genus Oryza as determined by analysis of nuclear RFLPs. Theor Appl Genet,1992,113: 885-894.
    138. Wang J, Liu K D, Xu C G, Li X H, Zhang Q F. The high level of wide-compatibility of variety "Dular" has a complex genetic basis. Theor Appl Genet,1998,97:407-412.
    139. Wang L, Xie W B, Chen Y, Tang W J, Yang J Y, Ye R J, Liu L, Lin Y J, Xu C G, Xiao J H, Zhang Q F. A dynamic gene expression atlas covering the entire life cycle of rice. The Plant Journal,2009,61:752-766.
    140. Watterson G A. On the number of segregating sites in genetical models without recombination. Theor Popul Biol,1975,7:256-276.
    141. Xia Y J, Suzuki H, Borevitz J, Blount J, Guo Z J, Patel K, Dixon R A, Lamb C. An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. The EMBO Journal,2004,23:980-988.
    142. Yamagata Y, Yamamoto E, Aya K, Win K T, Doi K, Sobrizal, Ito T, Kanamori H, Wu J, Matsumoto T, Matsuoka M, Ashikari M, Yoshimura A. Mitochondrial gene in the nuclear genome induces reproductive barrier in rice. Proc Natl Acad Sci U S A,2010,107: 1494-1499.
    143. Yan C J, Liang G H, Gu S L, Lu J F, Tang S Z, Gu M H. Characteristic and classification for sterility of hybrids from typical Indica crossed with Japonica varieties (Oryza sativa L.). Acta Agro Sin,2003,7:574-580.
    144. Yanagihara S, McCouch S R, Ishikawa K, Ogi Y, Maruyama K, Ikehashi H. Molecular analysis of the inheritance of the S-5 locus, conferring wide compatibility in indicaljaponica hybrids of rice(Oryza sativa L.). Theor Appl Genet,1995,90:182-188.
    145. Yang H Y. The use of a whole stain-clearing technique for observations on embryo sac, embryo, endosperm and embryoid. Acta Bot Sin,1986,28:575-581.
    146. Yao S Y, Henderson M T, Jodon N E. Cryptic structural hybridity as a possible cause of sterility in intervariatal hybrids of cultivated rice(Oryza sativa L.). Cytologia,1958,23: 46-55.
    147. Yokoo M. Female sterility in an indica-japonica cross of rice. Jpn J Breed,1984,34: 219-227.
    148. Yu J, Hu S, Wang J, Wong G K, Li S, Liu B et al. A draft sequence of the rice genome (Oryza saliva L. ssp. indica). Science,2002,296:79-92.
    149. Zeng K, Fu Y X, Shi S H, Wu C I. Statistical tests for detecting positive selection by utilizing high-frequency variants. Genetics,2006,174:1431-1439.
    150. Zhang Q F, Saghai Maroof MA, Lu T Y, Shen B Z. Genetic diversity and differentiation of indica and japonica rice detected by RFLP analysis. Theor Appl Genet,1992,83:495-499.
    151. Zhang Q F, Liu K D, Yang G P, Saghai Maroof MA, Xu C G, Zhou Z Q. Molecular marker diversity and hybrid sterility in indica-japonica rice crosses. Theor Appl Genet,1997,95: 112-118.
    152. Zhao Z G, Jiang L, Liu L L, Yu C Y, Zhang W W, Xie K, Wan J M. Fine mapping of S-31 for hybrid sterility gene in ric(Oryza sativa L.). Rice Genet Newsl,2006,23:16-19.
    153. Zhou H F, Zheng X M, Wei R X, Second G, Vaughan D A, Ge S. Contrasting population genetic structure and gene flow between Oryza rufipogon and Oryza nivara. Theor Appl Genet,2008,117:1181-1189.
    154. Zhu Q, Ge S. Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes. New Phytologist,2005,167:249-265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700