电力系统运行可靠性分析与评价理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
科技的进步、人们生活水平的提高及电力系统本身的特点,使得电网规模日益扩大,电网事故的后果也越来越严重,导致电力系统的可靠性和风险问题受到了越来越多的关注。
     用户负荷需求的波动和系统中设备的随机故障,使得电力系统的运行具有较强的随机特性,而电力市场的引入和可再生能源发电容量的快速提高,带来了更多的随机性影响因素,仅靠确定性的方法已无法满足现代电力系统运行决策的需求。进行某项决策时,必须要考虑尽可能多的运行情况,综合各个事件发生的概率及其后果,在保证整个电力系统处于可接受的风险水平下,审慎做出决断。
     经过数十年的研究与实践,通过将可靠性工程原理与电力系统的实际问题及电力系统数学模型、计算方法相结合,在基于事件发生概率的可靠性概念和评价指标的定义、计算模型及其参数的累计和统计等方面的研究与应用已经相当成熟。但是,受计算方法和系统复杂度的影响,目前的电力系统可靠性分析和风险评估研究在模拟的精确度和速度上还存在冲突,在可靠性灵敏度的概念和工程实用方法上还有待于进一步完善,尤其是在运行环境下,需要一种快速电力系统可靠性分析与评估方法,使得在有限的计算时间内,可以足够的精度获得电力系统当前的可靠性状态,并预测未来一段时间内的发展变化。
     在此背景下,论文对运行环境下电力系统可靠性分析与风险评价的模型和方法展开研究,其主要工作和创新成果体现在如下几个方面:
     (1)针对厂站主接线可靠性分析中,尚未有机考虑元件故障切除及故障恢复的问题,以非序贯Monte Carlo模拟为基础,提出将元件故障的切除和恢复有机衔接的厂站接线可靠性分析方法。该方法基于拓扑分析理论,首先获得距离故障元件最近的断路器割集,模拟故障切除的操作,并在此过程中考虑保护失灵和开关拒动的影响;然后,闭合所有非故障开关,并利用距离故障元件最近的开关割集,来模拟故障恢复的操作,分别统计两个过程中无法满足的功率需求,可以获得更合理的故障后果。该方法的特点在于提高可靠性分析精度前提下,既可避开模型复杂度的处理,又能使主接线可靠性分析贴近实际。通过算例的分析与比较,验证了方法的正确性,以及研究的必要性和算法的有效性。
     (2)提出广义电网(将输电线路、变压器等有阻抗元件和断路器、隔离开关等无阻抗元件一体化考虑)可靠性分析的蒙特卡罗模拟方法。首先通过厂站拓扑分析,得到等值节点及与有阻抗元件的连通性,然后,再进行网络拓扑分析,获得等值电网,由此计算并统计系统可靠性测度指标。在广义电网模拟过程中,依据邻接矩阵传递闭包阵不变的思想,采取快速局部拓扑技术,以减少计算量。算例分析表明,该方法获得的结果更加符合实际。
     (3)针对电力系统可靠性分析中蒙特卡罗模拟法需要大量计算资源和收敛速度较慢的缺点,从运行角度出发,在设备具备故障率指数分布特性前提下,基于马尔科夫链,建立可快速对电力系统运行可靠性解析分析的模型。其核心体现在:首先,提出便于工程实现的电力系统运行状态划分为3类的准则,及其对应的状态空间转移表达;然后,基于电力系统运行历史数据样本(或模拟数据样本)得到电力系统运行等值的马尔科夫状态转移概率矩阵。在此基础上,利用状态转移概率矩阵和电力系统当前的运行状态,可快速解析未来一段时间内电力系统运行状态变化概率、平稳状态概率及首次故障平均时间等可靠性指标,实现电力系统运行可靠性的快速评估。相关算例验证了电力系统状态转移的马尔科夫特性,表明了本研究的有效性。
     (4)对电力系统进行可靠性灵敏度分析可以辨识系统中的薄弱环节,对改善系统可靠性具有重要意义。针对传统可靠性灵敏度方法在理论与实践中的不足之处,通过分析可靠性灵敏度的图形表达和电力系统工程实际需求,提出了潜在提高灵敏度的改进分析方法,使之更加符合实际需要的同时,有效降低了可靠性指标计算误差对元件灵敏度评价结果的影响。同时,该方法与广义电网可靠性分析方法有机配合,可直接评价和比较电力系统中常用的一次设备的灵敏度,可更好地满足检修决策等工程实际决策的需要。
With the development of science and technology, improvement of the living standards of the people and the characteristics of the power system, power network has been expanding. This enlarges the range of the power system accidents, which has been catching more and more spotlights about the reliability of the power system.
     The operation of power system has random characteristics for the volatile of user's load demand and random failures of the element in the system, and power industry deregulation and fast-growing renewable generating capacity results in more highly stressed and unpredictable operating conditions. Deterministic approach can not satisfy the needs of modern power system. To make a decision must be taken into account operation scenes as much as possible, integrated all of the probability of occurrence of each scene and its consequences, and in ensure the risk of whole power system can be managed to an acceptable level.
     After decades of research and practice, it is already quite mature that the application and study of the reliability concepts and evaluation indices based on probabilities, reliability computational model, accumulation and statistic of component reliability parameters, through combination of basic reliability engineering principles and practical situation, mathematical model of power system. Because of calculation methods and complexity of power system, there have some conflict between the calculation speed and accuracy of the Power System Reliability Analysis and Risk Assessment, and there are many matters in the concept and engineering practice of element's importance, it must be more develop and completed. Especially in operation environment, a quick approach for power system reliability analysis and risk assessment was required, to obtain the current reliability state and forecast the developing trend of the power system with enough accuracy, in a finite time.
     In this thesis, a theoretical study of power system reliability analysis and risk assessment in operation environment is carried out. The main works and innovative achievements of the thesis are as follows:
     (1) In traditional substation scheme reliability analysis, the effects of fault clearance and fault restoration are not elaborately investigated. In this thesis, a novel methodology for the substation scheme reliability analysis is proposed. In which, the effects of both fault clearance and fault restoration are considered. The proposed method is on the basis of non-sequential Monte Carlo simulation and topology analysis. First, cut set of breakers surrounding the failed elements is found to simulate fault clearance, meanwhile the influence of protection and breaker failure is considered. Then, all non-failed switchgears are closed and cut set of switchgears surrounding the failed elements is found to simulate fault restoration. Unsatisfied load demand of two processes is calculated respectively, which can get more reasonable result. Compared with the traditional model considered before, the computation complexity is reduced and the accuracy is enhanced in the proposed method. The proposed method is applied for a study case and the necessity and effectiveness is demonstrated.
     (2) This thesis presents a Monte Carlo simulation method for reliability analysis of generalized power network which integrates impedance components, such as transmission lines and transformers, and non-impedance components, such as breakers and switches. First, topology analysis for sub station was carried out to get equivalent nodes and the connectedness between these nodes and impedance components. Second, system topology analysis was carried out to get the equivalent network which is used to calculate the measure indicatrix on reliability of power network. During the simulation procedure for generalized power network, a quickly local topology analysis technology based on same transitive closure of incidence matrix was proposed to save computation resources. Test system shows that the proposed method was more practical.
     (3) The Monte Carlo Simulation Approach used in reliability analysis of the power system requires vast computing resource due to low convergence speed. Aiming to solve this problem, a fast power system reliability analyzing model based on Markov chain is founded from view of operation, by assuming that equipments'fault rate has exponential distribution characteristics. first, a criterion to sort the power system running state into3states which can be easy implemented, as well as corresponding state space transition expression, are proposed; second, based on the historical running data or simulation data, the Markov transition probability matrix of the power system is formed. By using the transition probability matrix and initial distribution, power system reliability indices including state transition probability, steady state probability and the mean time to first failure can be fast analyzed, thus quick reliability assessment of power system can be realized. The example testified the Markov property of the power system state transition and the effectiveness of this research.
     (4) Weak parts of a power system can be recognized using sensitivity analysis, which has been an important technique for system reliability assessment and enhancement. Aiming at inadequacy of conventional sensitivity analysis, an improved algorithm of improvement potential component importance analysis is founded to make it be fit for actual demands better, and efficiently avoid calculating error of reliability indices affecting results of component importance analysis. Using this algorithm in the generalized power network reliability analysis, this thesis evaluates and compares importance of primary equipments directly to satisfy the need for maintenance strategy better.
引文
[1]李文沅,周家启,卢继平,胡小正.电力系统风险评估:模型,方法和应用[M].北京:科学出版社,2006.
    [2]郭永基.电力系统可靠性原理和应用[M].北京:清华大学出版社,1986.
    [3]Billinton R, Bollinger K E. Transmission system reliability evaluation using Markov processes [J]. Power Apparatus and Systems, IEEE Transactions on,1968,87(2):538-547.
    [4]Billinton R. Composite system reliability evaluation [J]. Power Apparatus and Systems, IEEE Transactions on,1969,88(4):276-281.
    [5]Billinton R, Allan R N. Reliability evaluation of power systems [M]. New York and London:Plenum Press,1996.
    [6]Billinton R, Li W. Reliability assessment of electric power systems using Monte Carlo methods [M]. New York and London:Plenum Press,1994.
    [7]郭永基.电力系统可靠性分析[M].北京:清华大学出版社,2003.
    [8]曹晋华,程侃.可靠性数学引论[M].北京:高等教育出版社.2006.
    [9]熊信银,朱永利等.发电厂电气部分(第四版) [M].北京:中国电力出版社,2009.
    [10]Rei A M, Leite da Silva A, Jardim J L, Mello J. Static and dynamic aspects in bulk power system reliability evaluations [J]. Power Systems, IEEE Transactions on,2000,15(1):189-195.
    [11]Vaahedi E, Li W, Chia T, Dommel H. Large scale probabilistic transient stability assessment using BC Hydro's on-line tool [J]. Power Systems, IEEE Transactions on,2000,15(2):661-667.
    [12]易武.发输电组合系统充裕度等值模型研究[D]:重庆大学,2007.
    [13]程林,孙元章,郑望其,晁剑.超大规模发输电系统可靠性充裕度评估及其应用[J].电力系统自动化,2004,28(11):75-78.
    [14]张硕,李庚银,周明.基于序贯蒙特卡罗仿真的发输电系统充裕度评估算法[J].中国电力,2009,42(07):10-14.
    [15]孙荣富,程林,孙元章.基于恶劣气候条件的停运率建模及电网充裕度评估[J].电力系统自动化,2009,33(13):7-12.
    [16]Billinton R, Fotuhi-Firuzabad M. Generating system operating health analysis considering stand-by units, interruptible load and postponable outages [J]. Power Systems, IEEE Transactions on,1994,9(3):1618-1625.
    [17]Billinton R, Karki R. Application of Monte Carlo simulation to generating system well-being analysis [J]. Power Systems, IEEE Transactions on, 1999,14(3):1172-1177.
    [18]Billinton R, Karki R. Capacity reserve assessment using system well-being analysis [J]. Power Systems, IEEE Transactions on,1999,14(2):433-438.
    [19]da Silva A M L, de Resende L C, da Fonseca Manso L A, Billinton R. Well-being analysis for composite generation and transmission systems [J]. Power Systems, IEEE Transactions on,2004,19(4):1763-1770.
    [20]Billinton R, Aboreshaid S, Fotuhi-Firuzabad M. Well-being analysis for HVDC transmission systems [J]. Power Systems, IEEE Transactions on, 1997,12(2):913-918.
    [21]Wangdee W, Billinton R. Bulk electric system well-being analysis using sequential Monte Carlo simulation [J]. Power Systems, IEEE Transactions on,2006,21(1):188-193.
    [22]Billinton R. Incorporating well-being considerations in generating systems using energy storage [J]. Energy Conversion, IEEE Transactions on,2005, 20(1):225-230.
    [23]Billinton R, Kuruganty P R S. A probabilistic index for transient stability [J]. Power Apparatus and Systems, IEEE Transactions on,1980, PAS-99(1): 195-206.
    [24]Billinton R, Kuruganty P R S. Probabilistic assessment of transient stability in a practical multimachine system [J]. Power Apparatus and Systems, IEEE Transactions on,1981, PAS-100(7):3634-3641.
    [25]程林,郭永基.暂态能量函数法用于可靠性安全性评估[J].清华大学学报:自然科学版,2001,41(3):5-8.
    [26]McCalley J, Asgarpoor S, Bertling L, Billinion R, et al. Probabilistic security assessment for power system operations [C]. proceedings of the Power Engineering Society General Meeting,2004 IEEE,2004.
    [27]Ni M, McCalley J D, Vittal V, Tayyib T. Online risk-based security assessment [J]. Power Systems, IEEE Transactions on,2003,18(1): 258-265.
    [28]Kim H, Singh C. Power system probabilistic security assessment using Bayes classifier [J]. Electric Power Systems Research,2005,74(1): 157-165.
    [29]王震,鲁宗相,段晓波,李晓明.分布式光伏发电系统的可靠性模型及指标体系[J].电力系统自动化,2011,35(15):18-24.
    [30]张宏宇,印永华,申洪,梁双.基于序贯蒙特卡洛方法的风电并网系统调峰裕度评估[J].电力系统自动化,2012,36(01):32-37.
    [31]王韶,卢继平,周家启.基于PC机群的发输电系统可靠性评估[J].中国电机工程学报,2007,27(07):34-39.
    [32]谢绍宇,王秀丽,王锡凡,孙羽.自适应重要抽样技术在发输电系统可靠性评估中的应用[J].电力系统自动化,2010,34(05):13-17+52.
    [33]赵渊,沈智健,周念成,周家启.大电网可靠性蒙特卡洛仿真的概率不确定性分析[J].中国电机工程学报,2008,28(28):61-67.
    [34]赵渊,沈智健,周念成,周家启.基于序贯仿真和非参数核密度估计的大电网可靠性评估[J].电力系统自动化,2008,32(06):14-19.
    [35]赵渊,周念成,谢开贵,况军.大电力系统可靠性评估的灵敏度分析[J].电网技术,2005,29(24):25-30+53.
    [36]胡博,谢开贵,赵渊,曹侃.电力系统可靠性评估的动态任务分配并行算法[J].电力系统自动化,2011,35(10):35-41.
    [37]Billinton R, Wangdee W. Predicting bulk electricity system reliability performance indices using sequential Monte Carlo simulation [J]. Power Delivery, IEEE Transactions on,2006,21(2):909-917.
    [38]Billinton R, Dange H. Effects of Load Forecast Uncertainty on Bulk Electric System Reliability Evaluation [J]. Power Systems, IEEE Transactions on,2008,23(2):418-425.
    [39]Dange H, Billinton R. Effects of Wind Power on Bulk System Adequacy Evaluation Using the Well-Being Analysis Framework [J]. Power Systems, IEEE Transactions on,2009,24(3):1232-1240.
    [40]Billinton R, Yi G, Karki R. Application of a Joint Deterministic-Probabilistic Criterion to Wind Integrated Bulk Power System Planning [J]. Power Systems, IEEE Transactions on,2010,25(3): 1384-1392.
    [41]Billinton R, Peng W. Teaching distribution system reliability evaluation using Monte Carlo simulation [J]. Power Systems, IEEE Transactions on, 1999,14(2):397-403.
    [42]Teng-Fa T, Hong-Chan C. Composite reliability evaluation model for different types of distribution systems [J]. Power Systems, IEEE Transactions on,2003,18(2):924-930.
    [43]王成山,谢莹华,崔坤台.基于区域非序贯仿真的配电系统可靠性评估[J].电力系统自动化,2005,29(14):39-43.
    [44]董雷,李佳.考虑时变因素的配电系统可靠性分析[J].电力系统保护与控制,2009,37(12):6-10.
    [45]Balijepalli N, Venkata S S, Richter C W, Jr., Christie R D, et al. Distribution system reliability assessment due to lightning storms [J]. Power Delivery, IEEE Transactions on,2005,20(3):2153-2159.
    [46]段东立,武小悦,邓宏钟.基于时变故障率与服务恢复时间模型的配电系统可靠性评估[J].中国电机工程学报,2011,31(28):57-64.
    [47]梁惠施,程林,刘思革.基于蒙特卡罗模拟的含微网配电网可靠性评估[J].电网技术,2011,35(10):76-81.
    [48]Wenyuan L, Jiping L. Risk evaluation of combinative transmission network and substation configurations and its application in substation planning [J]. Power Systems, IEEE Transactions on,2005,20(2): 1144-1150.
    [49]Braun D, Granata F, Delfanti M, Palazzo M, et al. Reliability and economic analysis of different power station layouts [C]. proceedings of the Power Tech Conference Proceedings,2003 IEEE Bologna,23-26 June 2003, 2003.
    [50]Billinton R, Hua Y. Incorporating maintenance outage effects in substation and switching station reliability studies [C]. proceedings of the Electrical and Computer Engineering,2005 Canadian Conference on,1-4 May 2005, 2005.
    [51]Sidiropoulos M. Determination of Substation Models for Composite System Reliability Evaluation [C]. proceedings of the Power Engineering Society General Meeting,2007 IEEE,24-28 June 2007,2007.
    [52]束洪春,胡泽江,张静芳,胡毳.±800 kV换流站主接线可靠性评估[J].电力系统自动化,2008,32(19):35-39+91.
    [53]Cheng-Chien K, Fu-Hsien C. Evaluation of substation bus schemes considering reliability [C]. proceedings of the Machine Learning and Cybernetics (ICMLC),2010 International Conference on,11-14 July 2010, 2010.
    [54]Zadkhast S, Fotuhi-Firuzabad M, Aminifar F, Billinton R, et al. Reliability Evaluation of an HVDC Transmission System Tapped by a VSC Station [J]. Power Delivery, IEEE Transactions on,2010,25(3):1962-1970.
    [55]Dong-Li D, Xiao-Yue W, Hong-Zhong D. Reliability Evaluation in Substations Considering Operating Conditions and Failure Modes [J]. Power Delivery, IEEE Transactions on,2012,27(1):309-316.
    [56]别朝红,王锡凡.抽水蓄能电站主接线的可靠性综合评估[J].电力系统自动化,2006,30(9):9-14.
    [57]Allan R, Billinton R, Lee S. Bibliography on the application of probability methods in power system reliability evaluation 1977-1982 [J]. Power Apparatus and Systems, IEEE Transactions on,1984, PAS-103(2): 275-282.
    [58]Allan R, Billinton R, Breipohl A, Grigg C. Bibliography on the application of probability methods in power system reliability evaluation:1987-1991 [J]. Power Systems, IEEE Transactions on,1994,9(1):41-49.
    [59]Allan R, Billinton R, Breipohl A, Grigg C. Bibliography on the application of probability methods in power system reliability evaluation 1992-1996 [J]. Power Systems, IEEE Transactions on,1999,14(1):51-57.
    [60]Billinton R, Fotuhi-Firuzabad M, Bertling L. Bibliography on the application of probability methods in power system reliability evaluation 1996-1999 [J]. Power Systems, IEEE Transactions on,2001,16(4): 595-602.
    [61]宋云亭,郭永基.改进的概率稳定评估方法及其应用[J].电网技术,2003,27(3):23-27.
    [62]赵渊,谢开贵.电网可靠性指标概率密度分布的解析计算模型[J].中国电机工程学报,2011,31(4):31-38.
    [63]赵渊,周家启,谢开贵.基于网流规划的发输电组合系统可靠性评估模型研究[J].电网技术,2003,27(10):21-24.
    [64]Billinton R, Wenyuan L. Hybrid approach for reliability evaluation of composite generation and transmission systems using Monte-Carlo simulation and enumeration technique [J]. Generation, Transmission and Distribution, IEE Proceedings,1991,138(3):233-241.
    [65]Doucet A, De Freitas N, Gordon N. Sequential Monte Carlo methods in practice [M]. Springer Verlag,2001.
    [66]Billinton R, Wangdee W. Delivery point reliability indices of a bulk electric system using sequential Monte Carlo simulation [J]. Power Delivery, IEEE Transactions on,2006,21(1):345-352.
    [67]Billinton R, Li W. A system state transition sampling method for composite system reliability evaluation [J]. Power Systems, IEEE Transactions on, 1993,8(3):761-770.
    [68]Mello J C O, Leite da Silva A M, Pereira M V F. Efficient loss-of-load cost evaluation by combined pseudo-sequential and state transition simulation [J]. Generation, Transmission and Distribution, IEE Proceedings-,1997, 144(2):147-154.
    [69]Mello J, Pereira M, Leite da Silva A. Evaluation of reliability worth in composite systems based on pseudo-sequential Monte Carlo simulation [J]. Power Systems, IEEE Transactions on,1994,9(3):1318-1326.
    [70]Ding Y, Wang P, Goel L, Billinton R, et al. Reliability assessment of restructured power systems using reliability network equivalent and pseudo-sequential simulation techniques [J]. Electric Power Systems Research,2007,77(12):1665-1671.
    [71]宋晓通,谭震宇.基于最优抽样与选择性解析的电力系统可靠性评估[J].电力系统自动化,2009,33(05):29-33+60.
    [72]何国锋,谭震宇.采用等分散抽样法的电力系统概率仿真[J].电力自动化设备,2004,24(7):57-59.
    [73]姚李孝,伍利,赵兵,柯丽芳.基于改进状态转移模型的配电系统可靠性评估[J].电力系统自动化,2006,30(15):15-20.
    [74]刘洋,周家启,谢开贵,胡小正.基于Beowulf集群的大电力系统可靠性评估蒙特卡罗并行仿真[J].中国电机工程学报,2006,26(20):9-14.
    [75]Borges C M L T, Falcao D M, Mello J C O, Melo A C G. Composite reliability evaluation by sequential Monte Carlo simulation on parallel and distributed processing environments [J]. Power Systems, IEEE Transactions on,2001,16(2):203-209.
    [76]Emjedi M R, Awodele K, Chowdhury S, Chowdhury S P. Reliability evaluation of distribution networks using fuzzy logic [C]. proceedings of the Power and Energy Society General Meeting,2010 IEEE,25-29 July 2010,2010.
    [77]谢开贵,周家启.基于ANN削减负荷的发输电组合系统可靠性评估[J].电力系统自动化,2002,26(22):31-33.
    [78]张粒子,王茜.计及负荷损失费用的含风电场发输电系统可靠性评估[J].电力系统保护与控制,2010,38(20):39-44.
    [79]张硕,李庚银,周明.含风电场的发输电系统可靠性评估[J].中国电机工程学报,2010,30(07):8-14.
    [80]王健,文福拴,杨仁刚.基于发电容量充裕度估计的发电公司检修策略[J].电力系统自动化,2005,29(6):45-50.
    [81]Patton A. Short-term reliability calculation [J]. Power Apparatus and Systems, IEEE Transactions on,1970, PAS-89(4):509-513.
    [82]Singh C, Billinton R. A frequency and duration approach to short term reliability evaluation [J]. Power Apparatus and Systems, IEEE Transactions on,1973, PAS-92(6):2073-2083.
    [83]冯永青,张伯明,吴文传.基于可信性理论的电力系统运行风险评估(一)运行风险的提出与发展[J].电力系统自动化,2006,30(01):17-23.
    [84]冯永青,吴文传,张伯明,孙宏斌.基于可信性理论的电力系统运行风险评估(二)理论基础[J].电力系统自动化,2006,30(02):11-15.
    [85]冯永青,吴文传,张伯明,孙宏斌.基于可信性理论的电力系统运行风险评估(三)应用与工程实践[J].电力系统自动化,2006,30(03):11-16.
    [86]冯永青,吴文传,孙宏斌,张伯明.现代能量控制中心的运行风险评估研究初探[J].中国电机工程学报,2005,25(13):73-79.
    [87]孙元章,程林,刘海涛.基于实时运行状态的电力系统运行可靠性评估[J].电网技术,2005,29(15):6-12.
    [88]孙元章,刘海涛,程林,王鹏.运行可靠性在线短期评估方案[J].电力系统自动化,2008,32(3):4-8.
    [89]程林,何剑,孙元章.线路实时可靠性模型参数对电网运行可靠性评估的影响[J].电网技术,2006,30(13):8-13.
    [90]何剑,孙元章,程林,刘海涛.电力系统运行可靠性在线控制[J].中国电机工程学报,2008,28(22):8-14.
    [91]何剑,程林,孙元章,王鹏.条件相依的输变电设备短期可靠性模型[J].中国电机工程学报,2009,29(7):39-46.
    [92]何剑,程林,孙元章.电力系统运行可靠性最优控制[J].中国电机工 程学报,2010,30(7):15-21.
    [93]何剑,程林,孙元章.电力系统运行可靠性成本价值评估[J].电力系统自动化,2009,33(02):5-9.
    [94]邹欣,程林,孙元章.基于线路运行可靠性模型的电力系统连锁故障概率评估[J].电力系统自动化,2011,35(13):7-11.
    [95]刘海涛,程林,孙元章,王鹏.采用瞬时概率的运行可靠性短期评估[J].中国电机工程学报,2008,28(13):20-25.
    [96]孙荣富,程林,孙元章.瞬时状态概率和方差减少技术在短期可靠性评估中的应用[J].中国电机工程学报,2009,29(28):
    [97]刘海涛,程林,孙元章,王鹏.基于实时运行条件的元件停运因素分析与停运率建模[J].电力系统自动化,2007,31(007):6-11.
    [98]杨方,孙荣富,程林,孙元章.基于恶劣气候条件的抗灾型电力系统规划[J].电力系统自动化,2009,33(21):12-18.
    [99]邹欣,孙元章,程林.基于模糊专家系统的输电线路非解析可靠性模型[J].电力系统保护与控制,2011,39(19):1-7.
    [100]何剑,程林,孙元章,王鹏.计及天气预测的电力系统运行可靠性短期评估[J].电力系统保护与控制,2010,38(10):31-38.
    [101]Bin S, Koval D, Wilsun X, Salmon J, et al. An analysis of extreme-weather-related transmission line outages [C]. proceedings of the Electrical and Computer Engineering,1998 IEEE Canadian Conference on, 24-28 May 1998.
    [102]Shen B, Koval D, Shen S. Modelling extreme-weather-related transmission line outages [C]. proceedings of the Electrical and Computer Engineering, 1999 IEEE Canadian Conference on,1999,1999.
    [103]Bhuiyan M, Allan R. Inclusion of weather effects in composite system reliability evaluation using sequential simulation [C]. proceedings of the Generation, Transmission and Distribution, IEE Proceedings-1994.
    [104]陈永进,任震,黄雯莹.考虑天气变化的可靠性评估模型与分析[J].电力系统自动化,2004,28(21):17-21.
    [105]朱清清,严正,贾燕冰,王亮.输电线路运行可靠性预测[J].电力系统自动化,2011,35(24):18-22.
    [106]Endrenyi J. Three-State Models in Power System Reliability Evaluations [J]. Power Apparatus and Systems, IEEE Transactions on,1971, PAS-90(4): 1909-1916.
    [107]Billinton R, Medicherla T. Station originated multiple outages in the reliability analysis of a composite generation and transmission system [J]. Power Apparatus and Systems, IEEE Transactions on,1981, PAS-100(8): 3870-3878.
    [108]Billinton R, Lian G. Station reliability evaluation using a Monte Carlo approach [J]. Power Delivery, IEEE Transactions on,1993,8(3): 1239-1245.
    [109]Medicherla T, Chau M, Zigmund R, Chan K. Transmission station reliability evaluation [J]. Power Systems, IEEE Transactions on,1994,9(1): 295-304.
    [110]Billinton R, Chen H, Zhou J. Generalized n+2 state system Markov model for station-oriented reliability evaluation [J]. Power Systems, IEEE Transactions on,1997,12(4):1511-1517.
    [111]Billinton R, Chen H, Zhou J. Individual generating station reliability assessment [J]. Power Systems, IEEE Transactions on,1999,14(4): 1238-1244.
    [112]谢开贵,董百强,赵霞,周家启.大型(变)电站电气主接线可靠性综合分析系统[J].电力系统自动化,2006,30(15):89-92.
    [113]丁雪成,胡海涛,何正友,于敏.计及维修因素的牵引变电站电气主接线可靠性分析[J].电网技术,2011,35(10):117-123.
    [114]王世香,高仕斌.蒙特卡罗方法在变电站综合自动化可靠性评估中的应用[J].电网技术,2006,30(5):96-100.
    [115]查申森,郑建勇,胡继军.基于全寿命周期理念的500 kV变电站初期主接线选择[J].电网技术,2010,34(3):117-121.
    [116]梅念,石东源,段献忠.基于图论的电网拓扑快速形成与局部修正新方法[J].电网技术,2008,32(13):35-39.
    [117]华健,韩学山,王锦旗,陈芳.改进高斯消元算法在电力系统拓扑结构分析中的应用[J].电网技术,2007,31(23):57-61.
    [118]陈云峰,张焰.计及变电站主接线影响的输电网供电可靠性分析[J].继电器,2007,35(02):60-63.
    [119]Meteopolis N, Ulam S. The monte carlo method [J]. Journal of the American Statistical Association,1949,44(247):335-341.
    [120]Billinton R, Kumar S, Chowdhury N, Chu K, et al. A Reliability Test System for Educational Purposes-Basic Data [J]. Power Engineering Review, IEEE,1989,9(8):67-68.
    [121]石文辉,别朝红,王锡凡.大型电力系统可靠性评估中的马尔可夫链蒙特卡洛方法[J].中国电机工程学报,2008,28(4):9-15.
    [122]Halilcevic S S, Gubina F, Gubina A F. Prediction of power system security levels [J]. Power Systems, IEEE Transactions on,2009,24(1):368-377.
    [123]廖瑞金,肖中男,巩晶,杨丽君.应用马尔科夫模型评估电力变压器可靠性[J].高电压技术,2010,36(2):322-328.
    [124]谢开贵,马怀冬,胡博,曹侃.基于马尔可夫状态空间图法的换流变系统可靠性评估[J].电网技术,2011,35(9):71-77.
    [125]张雪松,王超,程晓东.基于马尔可夫状态空间法的超高压电网继电保护系统可靠性分析模型[J].电网技术,2008,32(13):94-99.
    [126]刘耀,王明新,曾南超.高压直流输电保护装置冗余配置可靠性的接续分析[J].电网技术,2010,34(11):93-99.
    [127]刘文茂,杨昆,刘达,胡光宇.基于隐马尔科夫误差校正的日前电价预测[J].电力系统自动化,2009,33(10):34-37.
    [128]丁明,徐宁舟.基于马尔可夫链的光伏发电系统输出功率短期预测方法[J].电网技术,2011,35(1):152-157.
    [129]Billinton R, Fotuhi-Firuzabad M. A basic framework for generating system operating health analysis [J]. Power Systems, IEEE Transactions on,1994, 9(3):1610-1617.
    [130]任震,梁振升,黄雯莹.交直流混合输电系统可靠性指标的灵敏度分析[J].电力系统自动化,2004,28(14):33-40.
    [131]周家启,陈炜骏,谢开贵,刘洋.高压直流输电系统可靠性灵敏度分析模型[J].电网技术,2007,31(19):18-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700