利用聚合物整体型模板制备大孔无机功能材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用环氧树脂和二亚乙基三胺在聚乙二醇介质中反应,制备了聚合物整体型模板,用此模板制备了大尺寸的三维二氧化硅大孔材料,并利用高频超声波研究了环氧树脂在聚乙二醇介质中的固化反应,分析相分离过程中微相结构的变化过程,具体内容如下:
     1.利用高频超声波对多相体系的界面Rayleigh散射作用,首次实现反应诱导相分离过程的在线跟踪。新技术用来跟踪环氧树脂在聚乙二醇介质中的固化反应,研究体系在不同浓度、不同反应介质、不同固化剂用量以及不同反应温度下的相分离过程。在对旋节线相分离模式深入分析的基础上,提出了双函数模型来描述相分离过程。将超声波散射强度与相分离速率函数以及相离散速率函数相结合,所得到的数学模型合理解释了超声波跟踪数据。
     2.双酚A型环氧树脂和二亚乙基三胺在PEG1000/PEG2000介质中固化反应,制得带有低交联密度和高亲水性的三维骨架聚合物(三维整体型聚合物模板)。PEG1000/PEG2000的比率控制着这个体系的反应诱导相分离。观察最终聚合物的形貌得出环氧相的连通性主要取决于PEG2000的含量而且也受固化温度的影响。通过使用PEG1000/PEG2000重量比为7/1混合物作为反应介质和致孔剂制得了带有良好可控性大孔连通通道的三维骨架聚合物。在三维骨架聚合物中充满了高折射率的液体时,发现一种独特的光过滤现象,这种效果很可能是由在三维大孔连通通道中光的全反射机理产生的。
     3.利用上述聚合物模板制备了三维二氧化硅大孔材料。将正硅酸四乙酯浸润此骨架聚合物表面,然后在40℃将此模板在NH3?H2O气氛中熏12小时,即形成三维二氧化硅超薄膜。通过改变正硅酸四乙酯的水解程度,膜的厚度在20-80nm可控。在820℃焙烧SiO2/聚合物形成的复合物可除去聚合物模板。三维SiO2超薄膜浸入某些高折射率的液体可形成光的全反射,通过测试此种液体折射率得到大孔二氧化硅的折射率为1.445。
Three dimensional monolithic polymer template has been prepared via Bisphenol A epoxy cured with diethylenetriamine in the PEG1000/PEG2000 mixing medium, using template method we have prepared three dimensional SiO2 macroporous materials in large sizes, and high frequent ultrasonic wave was employed to track the curing reaction of epoxy resin in PEG medium,the experimental results and conclusions are summarized as follows:
     1. On-line tracking of reaction-induced phase separation has been realized for the first time by using high frequent ultrasonic wave, which is based on the Rayleigh scattering of ultrasonic wave on the interface of a multiphasic system. The new technology was employed to track the curing reaction of epoxy resin in PEG medium. The investigation involved the effects of concentration, reaction medium, amount of curing agent and temperature on the reaction-induced phase separation. Based on an intensive analysis of spinodal demixing in this curing system, a physical model has been put forward, in which two processes have been abstracted to describe the reaction-induced phase separation. One is the process of phase separation, and the other is phase isolation. In the related mathematical model the scattering intensity of ultrasonic wave is expressed as a function of the rates of both phase separation and phase isolation, by which the experimental data from ultasonic tracking have been explained reasonably.
     2. In order to prepare three dimensional skeletal polymer(3D monolithic polymer template) with low cross-linking density and high hydrophilicity Bisphenol A epoxy was cured with diethylenetriamine in the PEG1000/PEG2000 mixing medium. The reaction-induced phase separation of this system was controlled by changing the weight ratio of PEG1000 and PEG2000. The morphology observation of the resulted polymers showed that the connectivity of epoxy phase strongly depended on the content of PEG2000 and was also influenced by the curing temperature. The role of PEG2000 in the reaction system was found to be similar to that of the dispersing agent in dispersion polymerzation. A 3D skeletal polymer with well-controlled macro-through-pores was prepared by using a mixture of PEG1000 and PEG2000 in 8/1 weight ratio. A unique light-filtrating effect was first time found in the prepared 3D skeletal polymer with divinylbenzene filled in the uniform macro-through-pores. The effect most likely resulted from a total reflection mechanism of light in 3D macro-through-pores.
     3. Three Dimensional SiO2 macroporous materials have been prepared in large sizes via templating method. The 3D skeletal polymer used as a proper template was prepared by curing epoxy resin in polyethylene glycol mediums using diethylenetriamine as a curing agent. The formation of ultrathin silica film was accomplished on the polymer surface through the insitu hydrolysis of infiltrated ethyl silicate by exposing samples in NH3?H2O atmosphere at 40°C for 12 h. The thickness of silica ultrathin film was controlled in a range of 20~80nm by changing the amount of ethyl silicate participated in the hydrolysis. The polymer templates were removed by calcinations of silica/polymer composites at 820°C. The refractive index of ultrathin silica film was measured to be 1.445 by matching the refractive indexes of filled liquids and the fixed solid films to reach a maximum of light transmittance.
引文
[1]李海青,闫卫东,聚合物孔材料的合成与应用,高分子通报,2005,1:25-30
    [2]鲁德平,管蓉,刘剑洪,微孔发泡高分子材料,高分子材料科学与工程,2002,18(4):30-33
    [3]罗炫,张林,杜凯,刘宁,低密度微孔聚合物泡沫的制备,强激光与粒子束,2004,16(2):181-184
    [4]陆蓉,李世善,闫玉华,组织工程用聚合物多孔支架的制备技术,生物骨科材料与临床研究,2005,2(3):37-41
    [5] Y.X.Wang, S.H.Tan, D.L.Jiang, X.Y.Zhang, Preparation of porous carbon derived from mixtures of furfuryl resin and glycol with controlled pore size distribution,Carbon,2003,4:2065-2072
    [6] Thomas, J.M.Angew, Design, Synthesis, and In Situ Characterization of New Solid CatalystsChem, Int.Ed., 1999, 38: 3588–3628
    [7] H.Ghobarkar, O.Schaf, U.Prog.Guth, Zeolites—from kitchen to space, Solid St.Chem., 1999,27: 29–73
    [8] A.Corma, H.Eur.Garcia, Supramolecular host-guest systems in zeolites prepared by ship-in-a-bottle synthesis, J.Inorg.Chem., 2004, 29: 1143–1164
    [9]徐如人,纳米自组装技术应用,科学, 1998, 50,1: 12-15
    [10] V.B.Alfons, Opals in a new light, Science, 1998, 282:887-888
    [11] C.T.Kresage, M.Leonowicz, W.J.Roth, et al., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992, 359: 710-712
    [12] J.S.Beck, J.C.Vartuli, W. J.Roth, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates, J.Am.Chem.Soc., 1992, 114(27): 10834- 10843
    [13] K.E.Davis, W.B.Russel, W.J.Glantschnig, Disorder-to-order transition in settling suspensions of colloidal silica-X-ray measurements, Science, 1989, 245: 507-510
    [14] O.Kay, Macroporous copolymer networks, Prog Polym Sci, 2000, 25: 711-779
    [15] V.A.Davankov, M.P.Tsyurupa, Structure and properties of hypercrosslinked polystyrene-the first representative of a new class of polymer networks, React Polym, 1990, 13: 27-42
    [16] V.A.Davankov, M.P.Tsyurupa, Structure and Properties of Porous Hypercrosslinked Polystyrene Sorbents“Styrosorb”, Pure Appl Chem, 1989,61(11),1881-1888
    [17] E.B.Bradfoed, J.W.Vanderhoff, Electron Microscopy of Monodisperse LatexesJ Appl Phys, 1955, 26: 864-871
    [18] J.Ugelstad, K.H.Kaggeru, F.K.Hansen, et al., Absorption of low molecular weight compounds in aqueous dispersions of polymer-oligomer particles, 2. A two step swelling process of polymer particles giving an enormous increase in absorption capacity, Makromol Chem, 1979, 180: 737-744
    [19] M.H.Stenzel-Rosenbaum, T.P.Davis, A.G.Fane, et al., Porous Polymer Films and Honeycomb Structures Made by the Self-Organization of Well-Defined Macromolecular Structures Created by Living Radical Polymerization Techniques, Angew Chem Int Ed Engl, 2001, 40: 3428-3432
    [20] A.I.Cooper, Porous Materials and Supercritical Fluids Adv Mater, 2003, 15: 1049-1059
    [21]王进,程兴国,袁明君,何嘉松,用超临界CO2制备微孔聚苯乙烯/热致液晶聚合物原位复合材料,高分子学报,2001,4: 541-544
    [22] A.K.Nyhus, S.Hagen, A.Berge, Formation of the porous structure during the polymerization of meta-divinylbenzene and para-divinylbenzene with toluene and 2-ethylhexanoic acid (2-EHA) as porogens J Polym Sci, Part A: Polym Chem, 1999, 37: 3973-3990
    [23] V.Kumar, Microcellular polymers: novel materials for the 21st century, Cell Polym, 1993, 12 (3): 207-223
    [24]闫卫东,李丹,容建华等,二氧化硅胶体晶模板技术制备间规聚苯乙烯有序孔材料,高等学校化学学报,2002, 23 (2) : 330-332
    [25] H.T.Bu, J.H.Rong, Z.Z.Yang, Waterborne dispersions of polymer-encapsulated inorganic particles nanocomposite by phase inversion emulsification, Macromol Rapid Commun, 2002, 23(8): 460-464
    [26] P.Jiang, K.S.Hwang, D.M.Mittleman, et al., Template-directed preparation of macroporous polymers with oriented and crystalline arrays of voids, J Am Chem Soc, 1999, 121: 11630-11637
    [27] P.N.Bartlett, T.Dunford, M.A.Ghanem, Templated electrochemical deposition of nanostructured macroporous PbO2,J Mater Chem, 2002, 12: 3130-3135
    [28] A.Stein, R.C.Schroden, Colloidal crystal templating of three-dimensionally ordered macroporous solids-materials for photonics and beyond, Current Opinion in Solid State & Materials Science, 2001, 5: 553-564
    [29] D.Wang, F.Caruso, Fabrication of polyaniline inverse opals via templating method. Adv Mater, 2001, 13(5): 350-354
    [30] T.Cassagneau, F.Caruso, Semiconducting polymer inverse opals prepared by electropolymerization, Adv Mater, 2002, 14 (1): 34-38
    [31] P.N.Bartlett, P.R.Birkin, M.A.Ghanem, et al., Electrochemical synthesis of highly ordered macroporous conducting polymer films using self-assembled colloidal templates, J Mater Chem, 2001, 11: 849-853
    [32] K.E.Davis, W.B.Russel, W.J.Glantschnig, Disorder-to-Order transition in settling suspensions of colloidal silica-X-ray measurements, Science, 1989, 245:507-510
    [33] A.VanBlaaderen, R.Ruel, P.Wiltzius, Template-directed colloidal crystallization, Nature, 1997, 385:321-324
    [34] B.T.Holland, C.F.Blanford, A.Stein, Synthisis of macroporous minerals with highly ordered three-dimen-sional arrays of spheroidal voids, Science, 1998, 281:538-540
    [35] O.D.Velev, T.A.Jede, R.F.Lobo, et al., Porous silica via colloidal crystallization, Nature, 1997, 389:447-448
    [36] Caruso F, Caruso R A, Mohwald H.Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating, Science. 1998, 245:507-510
    [37] Velev O D, Jede T A, Lobo RF et al.Microstructured porous silica obtained via colloidal crystal templates, Chem Mater. 1998, 10:3597-3602
    [38] Imhof A, Pine D J. Ordered macroporous materials by emulsion templating, Nature. 1007, 389: 948-951
    [39] Davis S A, Burkett S L, Mendelson N H, et al., Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases..Nature, 1997, 385: 420-423
    [40] Ogasawara W, Shenton W, Davis SA et al.Template mineralization of ordered macroporous chitin-silica composites using a cuttlebone-derived organic matrix, Chem Mater. 2000, 12: 2835
    [41] De Vos R M,Verweij H, High-selectivity, high-flux silica membranes for gas separation, Science. 1998, 279: 1710-1711
    [42]王亚军,胡建华,唐颐等,层叠层技术组装纳米沸石——沸石涂饰纤维和沸石空心纤维,化学学报,2001, 59: 1084-1088
    [43]苛琛,杨五利,倪铮等,用电泳沉积技术制备空心Silicalite-1沸石纤维,化学学报,2001, 59: 1961-1965
    [44] Morris C A, Anderson M L, Stroud R M. Silica sol as a nanoglue: flexible synthesis of composite aerogles. Science, 1999, 284: 622-624
    [45] Hattori M, Sudol E D, El-Aasser M S. Highly cross-linked polymer particles by dispersion polymerization, J. Appl. Polym. Sci., 1993, 50, 2027
    [46] Armes S P, Miller J F, Vincent B J,Preparation and characterization of polypyrrole nanoparticles by dispersion polymerization.Colloid Interf. Sci., 1987, 118: 410-416
    [47] Y.X. Wang, S.H. Tan, D.L. Jiang, X.Y. Zhang, Preparation of porous carbon derived from mixtures of furfuryl resin and glycol with controlled pore size distribution,Carbon,2003,4:2065-2072
    [48] Williams R J J, Rozenberg B A, Pascault J P. Reaction-induced phase separation in modified thermosetting polymers. Adv Polym Sci, 1997, 128:95-156
    [49] Glotzer S C, Dimarzio E A, Muthukumar M. reaction-controlled morphology of phase-separating mixtures. Physical Review Letters, 1995, 74(11): 2034-2037
    [50] Kim B S, Chiba T, Inoue T. A new time-temperature transformation cure diagram forthermoset thermoplastic blend-tetrafunctional epoxy poly(ether sulfone). Polymer, 1993, 34: 2809-2815
    [51] Inoue T. Reaction-induced phase-decomposition in polymer blends. Prog Polym Sci, 1995, 20: 119-153
    [52] Araki T, Tran-Cong Q, Shibayama M. Structure and properties of multi-phase polymeric materials, Dekker, 1998, 155-169
    [53] Girard-Reydet E, Sautereau H, Pascault J P, Keates P, Navard P, Thollet G, Vigier G. Reaction-induced phase separationmechanisms in modified thermosets. Polymer, 1998, 39:2269-2274
    [54] Vinh-Tung C, Boiteux G, Seytre G, Lachenal G, Chabert B. Dielectric studies of phase separation induced by chemical reaction in thermoplastic modified epoxy. Polym Composites, 1996, 17:761-765
    [55] Alig I, Jenninger W, Junker M, De Graaf L A.Dielectric.Relaxation spectroscopy during othermal curing of semi-interpenetrating polymer networks. J Macromol Sci B, 1996, 35(3-4):563-577
    [56] Van Assche G, Van Hemelrijck A, Rahier H, Van Mele B. Scanning Calorimetry: Isothermal cure and vitrification of thermosetting systems thermochim acta, 1997,305:317-334
    [57] Swier S, Van Assche G, Van Hemelrijck A, Rahier H, Verdonck E, Van Mele B.Characterization of reacting polymer systems by temperature-modulated differential scanning calorimetryJ Thermal Anal, 1998, 54:585-593
    [58] Swier S, Van Mele B. Reaction-induced phase separation in polyethersulfone-modified epoxy-amine systems studied by temperature modulated differential scanning calorimetry .Thermochim Acta, 1999, 330: 175-187
    [59] Malika Toubal, Bertrand Nongaillard, Edouard Radziszewski, Patrick boulenguer and virginie langendorff,ultrasonic monitoring of sol–gel transition of natural hydrocolloids,Journal of Food Engineering, 2003, 58(1):1-4
    [60] V. A. M. Luprano, G. Montagna, B. Molinas and A. Maffezzoli,Glass–rubber phase transformation detected in polymers by means of ultrasonic waves Journal of Alloys and Compounds,2000,310(1-2):382-387
    [61]应崇福,超声学(第一版),北京,科学出版社,1990:249-253
    [62] Tsujioka N, Hira N, Aoki S, Tanaka N, Hosoya K. A New Preparation Method for Well-Controlled 3D Skeletal Epoxy Resin-Based Polymer MonolithsMacromolecules, 2005, 38: 9901-9903
    [63] Meng F, Zheng S, Li H, Liang Q, Liu T. Formation of Ordered Nanostructures in Epoxy Thermosets: A Mechanism of Reaction-Induced Microphase Separation.Macromolecules 2006, 39:5072-5079
    [64] Kim B S, Chiba T, Inoue T. Morphology de-velopment via reaction-induced phase-separation in epoxy poly (ether sulfone) blends—Morphology control using poly (ether sulfone) with functional end-groups Polymer, 1995, 36:43-47
    [65] Jaehyung L, Gregory R Y, Thein K. Reaction induced phase separation in mixtures of multifunctional polybutadiene and epoxy. Polymer, 2005, 46: 12511-12522
    [66] Blitz, J. In fundamentals of ultrasonics, 2nd edn. Butterworths, London, 1967, 35-68
    [67] (1) Alfarraj A A, Nauman, E B, Spinodal decomposition in ternary systems with significantly different component diffusivities. Macromol Theory Simul, 2007, 16, 627?631
    [68] S.C.Glotzer, E.A.Dimarzio, M.Muthukumar. Dimarzio and M. Muthukumar, Reaction-controlled morphology of phase-separating mixtures. Physics Review Letters1995, 74: 2034-2037
    [69] Y.H.Lin, H.Ren, Y.-H. Wu, X. Liang, S.T. Wu. Pinning effect on the phase separation dynamics of thin polymer-dispersed liquid crystals.Optics Express. 2005, 13: 468-474
    [70] I.A.Zucchi, M.J.Galante, J.Borrajo, R.J.J.Williams. Thermodynamic analysis of the phase separation in solutions of monodisperse polystyrene in anepoxy/Amine solvent undergoing a linear stepwise polymerization macromolecular. Chemistry and Physics, 2004 .205:676-683
    [71] P.K.Chen, A.D.Rey, Polymerization-Induced Phase Separation. 1. Droplet Size Selection Mechanism, Macromolecules, 1996, Macromolecules29:8934-8941
    [72] P.K.Chen, A.D.Rey, Polymerization-Induced phase separation. 2. Morphological Analysis Macromolecules, 1997, 30: 2135-2143
    [73] K.W.D.Lee, P.K.Chen, X.S.Feng, A computational study of the polymerization-induced phase separation phenomenon in polymer solutions under a temperature gradient, Macromolecular Theory and Simulation2003,12:413-424
    [74] J. Oh , A.D. Rey, Computational simulation of polymerization-induced phase separation under a temperature gradient, Computational and Theoretical Polymer Science 11, 2001, 3: 205–217
    [75] J.M.Stubbs, Y.G..Durant, D.C.Sundberg. Polymer phase separation in composite latex particles. Comptes Rendus Chimie. 2003. 6:1217-1232
    [76] D.Sutton, J.L.Stanford, A.J.Ryant.Reaction-induced phase-separation in polyoxyethylene/polystyrene blends.II.Structure development,Journal of Macromolecular Science Physics B. 2004. 43: 233-251
    [77] S.Swier, B.Van Mele. The heat capacity signal from modulated temperature DSC in non-isothermal conditions as a tool to obtain morphological information during reaction-induced phase separation . Polymer. 2003. 44: 6789-6806
    [78] B.S.Kim, T.Chiba, T.Inoue. Morphology development via reaction-induced phase separation in epoxy/poly(ether sulfone) with funcrional end-groups .Polymer. 1995. 36: 43-47
    [79] E.Girard-Reydet, H.Sautereau, J.P.Pascault, P.Keates, P.Navard . Reaction-induced phase separation mechanisms in modified thermosets. Polymer 1998. 39: 2269-2279
    [80] J.T. Mayer, R.F. Lin, E. Garfunkel, Surface and bulk diffusion of adsorbed nickel on ultrathin thermally grown silicon dioxide Surf. Sci. 1992. 265: 102-110
    [81] J.B. Zhou, T. Gustafsson, E. Garfunkel, The structure and thermal behavior of Cu on ultrathin films of SiO2 on Si(111) Surf. Sci. 1997. 372:21-27
    [82] J. Wang, C.E.J. Mitchell, R.G. Egdell, J.S. Foord, Modification of nanocomposites by melting intercalation of polypropylene in montmorillonite.Surf Sci. 2002, 506 :66-68
    [83] H. Ikeda, Y. Nakagawa, K. Sato, M. Higashi, S. Zaima, Y. Yasuda, Influences of deuterium atoms on local bonding structures of SiO2 studied by HREELS. Thin Solid Films, 1999. 343-344: 408-411
    [84] Y.Nakagawa, M. Higashi, H. Ikeda, S. Zaima, Yasuda, Local bonding structures of SiO2 films on H-terminated Si(100) surfaces studied by using high-resolution electron energy loss spectroscopy, Appl. Surf. Sci. 1998. 130: 192-196
    [85] X.P. Xu, S.M. Vesecky, D.W. Goodman, infrared reflection-absorption spectroscopy and stm studies of model silica-supported copper-catalysts, Science 1992. 258: 788-791
    [86] X. Xu, D.W.Goodman, The preparation and characterization of ultra-thin silicon dioxide films on a molybdenum(110) surface. Surf. Sci. 1993. 282: 323-332
    [87] X. Xu, D.W. Goodman, New approach to the preparation of ultrathin silicon dioxide films at low temperatures .Appl. Phys. Lett. 1992. 61: 774-776
    [88] J.W. He, X. Xu, J.S. Corneille, D.W. X-ray photoelectron spectroscopic characterization of ultra-thin silicon oxide films on a Mo(100) surface. Goodman, Surf. Sci. 1992. 279:119-126
    [89] M.S. Chen, A.K. Santra, D.W. Goodman, The structure of thin SiO2 films grown on Mo(112), Phys. Rev. B., 2004. 69:155
    [90] M. kundu, Y. murata, Growth of single-crystal SiO2 film on Ni(111) surface Appl. Phys. Lett. 2002. 80: 1921-1922
    [91] A. Stein, R.C. Schroden, Current opinion in solid state and materials science. Colloid Interface Sci. 2001. 6:553-564
    [92] O.D. Velev, A.M.Lenhof, Colloidal crystals as templates for porous materials Colloid Interface Sci. 2000. 5 :56-63
    [93] M.A. Carreon, V.V. Guliants, Eur. J. Inorg. Ordered meso and macroporous binary and mixed metal oxidesChem. 2005. 1: 27-43
    [94] R.H. Jin, J.J.Yuan, Fabrication of silver porous frameworks using poly(ethyleneimine) hydrogel as a soft sacrificial templatet.J. Mater. Chem. 2005. 15: 4513-4517
    [95] R. Ravikrishna, R. Green, K. J. Valsaraj, Polyaphrons as templates for the sol–gel synthesis of macroporous silica. Sol. Gel. Sci. Technol. 2005. 34: 111-122
    [96] A. Imhof, D. J. Pine,Preparation of titania foams. Adv. Mater. 1999. 11: 311-314
    [97] H. R. Chen, J.L. Gu, J.L.Shi, Z.C.Liu, J.H. Gao, M.L. Ruan, D.S. Yan, A composite surfactant route for the synthesis of thermally stable and hierarchically porous zirconia with a nanocrystallized framework.Adv. Mater. 2005. 17: 2010-2014
    [98] R. Gonzalez-McQuire, D. Green, D. Walsh, S.R. Hall, J.Y. Chane-Ching, R.O.C. Oreffo, S. Mann, Fabrication of hydroxyapatite sponges by dextran sulphate/amino acid templating. Biomaterials. 2005, 26: 6652-6656

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700