基于MEMS的阵列式扫描探针显微镜测头理论与技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扫描探针显微镜(SPM)凭借其原子级的分辨力迅速在表面科学、材料科学、生命科学等研究领域中得到广泛的应用,但是随着科学研究和工业应用对成像范围、扫描速度等需求的提高,迫切希望SPM性能也随之提高。本文研究了一种基于微机电系统(MEMS)技术的阵列式SPM测头,借助静电梳齿结构的大行程、高线性度、易集成性和阵列式探针的特点,结合大范围纳米定位平台,搭建了大范围阵列式探针SPM。在提高SPM的扫描效率、扩大测量范围等方面进行了较深入的研究工作。主要工作包括:
     1.研究了测头的力学等效模型,推导了测头三个维度上的弹性系数计算公式,并结合有限元方法进行仿真,优化测头结构的设计参数。设计了MEMS阵列式探针SPM测头。并合理配置测头整体结构三个维度上的弹性系数,使测头更稳定的工作。
     2.构建了测头的电学模型,并研究了其电学特性,分析了测头针尖所连接的主梁在受力发生平移和偏转时,给测头电容模型带来的非线性影响。分析测头在加载静电场时的侧向吸合力和悬浮力等。确定了测头的扫描模式、极限扫描行程和极限施加电压。
     3.提出了阵列式静电梳齿结构测头的三种工作模式:恒高模式、恒力模式和动态模式。分析三种工作模式的特点。并对恒高模式和恒力模式进行了实验研究
     4.提出了一种利用纳米测量机和超精密电磁天平快速可溯源的探针弹性系数标定方法。保证了测头恒力工作模式的稳定性和测量准确性。
     5.将测头与大范围精密定位测量平台—纳米测量机结合,设计了阵列式探针SPM。实验标定了测头的灵敏度、迟滞性、重复性、分辨力、低频振动性能等各项参数。在恒力工作模式下,实现了多个探针同时独立地对一维栅格样板、二维栅格样板进行扫描成像,证明了测头的二维扫描成像能力。通过对一维栅格样品600μm行程的线扫描,验证了测头具有一定的大范围扫描能力。
Almost soon after the invention of the scanning probe microscopy (SPM), itattracted widespread attentions and quickly found its applications invarious scientificdisciplines and industrial fields with its sub-nanometer resolution andmicro-nanoscale manipulation. In spite of their achived successes regardingmeasurement resolution and accuracy, traditional SPMs embody such unsurmountabledisadvantages like relatively low imaging speed and narrow scan range. To improvethe imaging efficiency, novel probe-array SPM head based on MEMS comb structureis developed. Meanwhile, probe-array SPM including probe-array SPM head andNano Measuring Machine is developed to complish multi-probe imaging. Mainachievements of this research work are the following:
     1. The theoretical model of mechanical structure of a novel MEMS basedprobe-array SPM head is analyzed. Based on material theory, the equation of3Dspring constant is deduced. According to the influence degree of structure andparameters of beam, optimum structure and parameters are chosen. Finite elementsimulated data of optimum structure are compared and validated with the conclusionof theoretical analysis.3D spring constants of the structure are optimum configured toensure the stability of the probe-array SPM head.
     2. Based on electinics features and electrical model, the nonlinearity influence oftranslation and rotation of the main shaft, which is induced by friction and shear forceapplied on the probe along Y and Z axis in the scanning process, is analyzed. Pull-inand levitation force generated by electrostatic field is analyzed. With above twoanalyses, the scanning routine direction, scanning travel limit and applied voltagelimit is determined.
     3. As the first time application of this kind of structure, the operating mode of theSPM head is analyzed. According to the traditional AFM operating mode, three kindsof operating mode is proposed as height constant mode, force constant mode anddynamic mode. After comparing three kinds of operating mode, force constant modeis chosen as main operating mode in our experiment.
     4. Spring constant along the measurement axis is to be calibrated to keep forceconstant mode stable. A quick and traceable method including Nano MeasuringMachine and ultra-precision balace is proposed and complished.
     5. Through the combination of probe-array SPM head and Nano MeasuringMachine positioning platform, probe-array SPM is constructed. The measurementdata is traceable though three embedded laser interferometers. Experiments are carriedout to calibrate the sensitivity, hysteresis, repeatability, resolution and dynamiccharacteristics of the SPM probe. A series of standard samples are measured. Theresults demonstrated the system’s nanometer magnitude resolution and lare rangemeasurement capability.
引文
[1] Binnig G, Rohrer H, Scanning tunneling microscopy, IBM Journal of Researchand Development,1986,30:4
    [2]白春礼,纳米科技现在与未来,四川:四川教育出版社,2006
    [3]马小艺,陈海斌,纳米材料在生物医学领域的应用与前景展望,中国医药导报,2006,Vol.3, No.32,13-15.
    [4] Wang Z L, New family of nanostructures bright future for ZnO at the frontier oftransparent oxides, Materialstoday,2004,26~33
    [5]Saito R, Dresselhaus G, Dresselhaus M S, Physical Properties of CarbonNanotubes, London:Imperial College Press,1998
    [6] Thostenson E T, Ren Z, Chou T-W, Advances in the science and technology ofcarbon nanotubes and their composites: a review, Composites Science andTechnology,2001,61:1899~1912
    [7] Kong X Y, Wang Z L, Spontaneous polarization-induced nanohelixes,nanosprings, and nanorings of piezoelectric nanobelts, Nano Lett.,2003,3(12):1625~1631
    [8]崔铮,微纳米加工技术及其应用(第2版),北京:高等教育出版社,2009
    [9]Bell D J, Lu T J, Fleck N A, et al, MEMS actuators and sensors: observations ontheir performance and selection for purpose, J. Micromech.Microeng.,2005,15S153-S164
    [10] Bogue R, MEMS sensors: past, present and future, Sensor Review,2007,27(1):7-13
    [11] Lyth S M, Henley S J, Silva S R P, Improved field emission via laser processingof carbon nanotubes on paper substrates, J. Vac. Sci. Technol. B2009,27(3):1068-1071
    [12] Ruffini G, Dunne S, Fuentemilla L, et al, First human trials of a dryelectrophysiology sensor using a carbon nanotube array interface [J]. Sensor andActuators A: Physical,2008,144:275-279
    [13] Wang Z L, Song J, Piezoelectric nanogenerators based on zinc oxide nanowirearrays, Science,2006,312:242~246
    [14]胡小唐,傅星,刘庆纲等,微纳检测技术,天津:天津大学出版社,2009.
    [15]李成贵,李行善,强锡富,三维表面微观形貌的测量方法,宇航计测技术,2000,20(4):2-10。
    [16]Erlandsson R., McClelland G. M., Mate C. M., et al., Atomic force microscopyusing optical interferometry, Journal of Vacuum Science&Technology A: Vacuum,Surfaces, and Films,1988,6(2):266~270
    [17] Liu J, Tan J, Zhao C, et al, phase-shift resolving confocal microscopy with highaxial resolution, wide range and reflectance disturbance resistibility, Optics Express,2009,Vol.17, Issue18, pp.16281-16290.
    [18] Kwon K H, Kim B S, Cho K, A new scanning heterodyne interferometer schemefor maping both surface structure and effective local reflection coefficient, OpticsExpress,2008,16(17):13456-13464
    [19]Wechenmann A, Peggs G, Hoffmann J, Probing systems for dimensional micro-and nano-metrology, Measurement Science and Technology,2006,17(3):504-509
    [20]Multimode SPM instruction Manual, Digital Instruments Veeco Metrology Group
    [21]陈耀文,林月娟,张海丹等,扫描电子显微镜与原子力显微镜技术值比较,中国体视学与图像分析,2006,11(1):53-58。
    [22] www.sios.de/ENGLISCH/PRODUKTE/NMM_E.HTM.
    [23戴高良,Schulz M, Ehret G等,支撑光学制造的几何量计量技术,纳米技术与精密工程,2011,9(5):377-391.
    [24] Furukawa E., Mizuno M., Doi T., et al., Development of a flexure-hingedtranslation mechanism driven by two piezoelectric stacks, JSME International JournalSeries C: Dynamics Control Robotics Design&Manufacturing,1995,38(4):743~748
    [25] Anwav U H, Tawancy H M, Mohammed A R I, et al, Quantitative WDS analysisusing electron probe microanalyzer, Mater. Charact.,2006,56(3):192-199.
    [26]Binnig G, Rohrer H, Scanning tunneling microscopy,IBM Journal of Researchand Development,1986,30:4.
    [27] Binnig G., Quate C. F., Gerber C., Atomic force microscope, Physical ReviewLetters,1986,56(9):930~933
    [28] Freitag M, Radosavljevic M, Clauss W, et al, Local electronic properties ofsingle-wall nanotube circuits measured by conducting-tip AFM, Phys. Rev. B,2000,62(4):R2307~R2310
    [29] Tombler T W, Zhou C, Alexseyev L, et al, Reversible electromechanicalcharacteristics of carbon nanotubes under local-probe manipulation, Science,2000,405:769~772
    [30] Wang J, Stampfer C, Roman C, et al, Piezoresponse force microscopy on doublyclamped KNbO3nanowires, Applied Physics Letters,2008,93,223101.
    [31] Gao S, Li Z, Herrmann K, Development of a micro-minature nanoindentationindentation instrument with a force resolution of1nN, Optoelectronics,Instrumentation and Data Processing,2010, Volume46, Issue4, PP347-352.
    [32]Wu S, Feng J, Fu X, et al, Manipulation of individual double-walled carbonnanotube packed in a casing shell, Nanotechnology,2011,22:285308(6pp)
    [33]黄德欢,王庆康,庞乾骏等,扫描隧道显微镜单原子操纵技术及其物理机理,上海交通大学学报,2001, Vol.35,No.2:157-167。
    [34] Chou M C, Pan C T, Shen S C, et al, A novel method to fabricate gaplesshexagonal micro-lens array, Sensor and Actuator A: Physical,2005,118(2):298-306
    [35] Gao W, Araki T, Kiyono S Y, et al, Precision nano-fabrication and evaluation ofa large area sinusoidal grid surface for a surface encoder, Precision Engineering,2003,27(3):289-298
    [36] Dai G, Pohlenz F, Danzebrink H, et al, Metrological large range scanning probemicroscope, Review of Scienticfic Instrments,2004,75(4):962-969
    [37] Guo T, Ma L, Zhao J, et al, A nanomeasuring machine based white light tiltscanning interferometer for large scale optical array structure measurement, Opticaand Lasers in Engineering,2011,49(9):1124-1130.
    [38]李源,栗大超,胡小唐等,应用于纳米测量机的MEMS微接触式测头的结构设计和优化,传感技术学报2006,19(5):1512-1515.
    [39] Kramar J A, Nanometre resolution metrology with the Molecular MeasuringMachine, Measurement Science and Technology,2005,16(11):2121~2128
    [40] J ger G., Hausotte T., Manske E., et al., Nanomeasuring and nanopositioningengineering, Measurement,2010,43(9):1099~1105
    [41] Holmes M, Hocken R, Trumper D. The long range scanning stage:a novelplatform for scanned-probe microscope, Precision Engineering,2000,24:191-209.
    [42] Eves B J, Design of a large measurement-volume metrological atomic forcemicroscope (AFM), Meas. Sci. Technol.,2009,20,084003(5pp)
    [43] Ando T, Kodera N, Takai E, et al, A high-speed atomic force microscope forstudying biological macromolecules, Proc. Natl. Acad. Sci.,2001,98,12468
    [44] Rost M J, In situ real-time observation of thin film deposition: roughening, zenoeffect, grain boundary crossing barrier, and steering, Phys. Rev. Lett.,2007,99,266101.
    [45] Wilder K, Quate C F, Singh B, et al, Electron beam and scanning probelithography: A comparison, J. Vac. Sci. Technol. B,1998,16,3864.
    [46] Chui B W, Stowe T D, Yongho S J, et al, Low-stiffness silicon cantilevers withintegrated heaters and piezoresistive sensors for high-density AFM thermomechanicaldata storage, J. Microelectromech. Syst.,1998,7(1):69-78.
    [47] Schitter G, Rost M J, Scanning probe microscopy at video-rate, Materialstoday,2008,11:40-48.
    [48] Rost M J, Crama L, Schakel P,Scanning probe microscopes go video rate andbeyond, Review of Scientific Instruments,2005,76(5),053710.
    [49] Kindt J H, Fantner G E, Cutroni J A, et al, Rigid design of fast scanning probemicroscopes using element analysis, Ultrmicroscopy,2004,100:259-265.
    [50] Viani M B, Sch ffer T E, Paloczi G T, et al, Fast imaging and fast forcespectroscopy of single biopolymers with a new atomic force microscope designed forsmall cantilevers, Rev. Sci. Instrum.1999,70:4300-4303.
    [51] Hansma P K, Schitter G, Fantner G E et al, High-speed atomic force microscopy,Science,2006,314:601-602.
    [52] Schitter G, Stemmer A, Identification and open-loop tracking control of apiezoelectric tube scanner for high-speed scanning-probe microscopy, IEEE Trans.Control. Syst. Technol.,2004,12,449.
    [53] Sebastian A, Salapaka S M, Design methodologies for robust nano-positioning,IEEE Trans. Control. Syst. Technol.,2005,13,868.
    [54] Schitter G, Menold P, Knapp H F, et al, High performance feedback for fastscanning atomic force microscopes, Rev. Sci. Instrum.,2001,72,3320.
    [55] Schitter G, Allgoewer F and Stemmer A, A new control strategy for high-speedatomic force microscopy, Nanotechnolgy,2004,15:108-114
    [56] Viani M B, Schaeffer T E, Paloczi G T, et al, Fast imaging and fast forcespectroscopy of single biopolymers with a new atomic force microscope designed forsmall cantilevers, Review of scientific instruments,1999,70:4300-4303.
    [57] Ando T, Uchihashi T and Fukuma T, High-speed atomic force microscopy fornano-visualization of dynamic biomolecular processes, Progress in Surface Science,2008,7(9):337-437
    [58] Kodera N, Yamamoto D, Ishikawa R, et al, Video imaging of walking myosin byhigh-speed atomic force microscopy, NATURE,2010,468:72-77
    [59] Ando T, Kodera N, Takai E, et al, A high-speed atomic force microscope forstudying biological macromolecules, Proc. Natl Acad. Sci.2001,98(22):12468-12472.
    [60] Kitazawa M, Shiotani K and Toda A, Batch fabrication of sharpened siliconnitride tips, Jpn J Appl Phys,2003,42:4844-4847.
    [61] Kodera N, Yamashita H and Ando T, Active damping of the scanner forhigh-speed atomic force microscopy, Review of scientific instruments,2005,76:053708-053712.
    [62] Kodera N, Sakashita M, Ando T, Dynamic proportional-interal-differentialcontroller for high-speed atomic force microscopy, Rev. Sci. Instru.,2006,77:083704-083710.
    [63] Minne S C, Manalis S R, Quate C F, Parallel atomic force microscopy usingcantilevers with integrates piezoresistive sensors and integrated piezoelectric actuators,Appl. Phys. Lett.,1995,67(26):3918-3920.
    [64] Manalis S R, Minne S C, Quate C F, Atomic force microscopy for high speedimaging using cantilevers with an integrated actuators and sensor, Appl. Phys. Lett.,1996,68(6):871-879.
    [65] Minne S C, Yaralioglu G, Manalis S R, et al, Automated parallel high-speedatomic force microscopy, Applied Physics Letters,1998,72(18):2340-2342.
    [66] Kim Y, Nam H, Cho S, et al, PZT cantilever array integrated with piezoresistorsensor for high speed parallel operation of AFM, Sensors and Actuators A2003,103:122-129.
    [67] Nam H, Kim Y, Cho S, et al, Piezoelectric PZT cantilever array integrated withpiezoresistor for high speed operation and calibration of atomic force microscopy,Journal of semiconductor technology and science,2002,2(4):246-252.
    [68] Hafizovic S, Barrettino D, Volden T, et al, Single-chip mechatronic microsystemfor surface imaging and force response studies, PNAS,2004,101(49):17011-17015.
    [69] Lutwyche M, Andreoli C, Binnig G, et al,552D AFM cantilever arrays a firststep towards a Terabit storage device, Sensor and Actuators,1999,73:89-94.
    [70] Despont M, Brugger J, Drechsler U, et al, VLSI-NEMS chip for parallel AFMdata storage, Sensors and Actuators,2000,80:100-107.
    [71] Vettiger P, Despont M, Drechsler U, et al, The “Millipede”-More than onethousand tips for future AFM data storage, IBM J. RES.DEVELOP.,2000,44:323-340.
    [72] Sahoo D R, Haeberle W, Baechtold P, et al, High-speed intermittent-contactmode scanning probe microscopy using cantilevers with integrated electrostaticactuator and thermoelectric sensor, American Control Conference, Th09.6,2009,2278-2283pp.
    [73] Otsuka K and Wayman C M, Shape memory materials, Cambridge UniversityPress,1998.
    [74] Leary M, Schiavone F and Subic A, Lagging for control of shape memory alloyactuator response time, Materials&Design,2010,31(4):2124-2128.
    [75] Robinson S, Driving Piezoelectric Actuators, Power Electronics Technology,2006,4:4-7
    [76] Karpelson M, Wei G and Wood R, Driving high voltage piezoelectric actuatorsin microrobotic applications, Sensors and Actuators, A: Physical,2012,176:78-89
    [77] Judy J W, Muller R S and Zappe H H, Magnetic Microactuation of PolysiliconFlexure Structures, Journal of microelectromechanical systems,1995,4:162-169
    [78] Niarchos D, Magnetic MEMS: key issues and some applications, Sensors andActuators A,2003,109:166-173
    [79] Baker M S, Plass R A, Headly T J, et al, Compliant Thermomechanical MEMSactuators, Sandia National Laboratories.
    [80] Que L, Park J and Gianchandani B, Bent-Beam Electrothermal Actuatos-Part I:Single Beam and Cascaded Devices, Journal of microelectromechanical systems,2001,10:247-254.
    [81] Tang W C, Nguyen T H and Howe R T, Laterally driven polysilicon resonantmicrostructures,1989,20:25-32
    [82] Liu X, Kim K and Sun Y, A MEMS stage for3-axis nanopositioning, J.Micromech. Microeng.,2007,17:1796-1802.
    [83] Zhou G and Dowd P, Tilted folded-beam suspension for extending the stabletravel range of comb-drive actuators.
    [84] Liu Y, Wen Z, Wen Z, et al, Design and fabrication of high-sensitive capacitivebiaxial microaccelerometer, J. Micromech. Microeng.,2007,17:36-41.
    [85] Su J, Yang H, Fay P, et al, A surface micromachined offset-drive method toextend the electrostatic travel range, J. Micromech. Microeng.,2010,20:15004(10pp).
    [86] Rollier A, Legrand B, Collard D, et al, The stability and pull-in voltage ofelectrostatic parallel-plate actuators in liquid solutions, J. Micromech. Microeng.,2006,16:794-801.
    [87] Tang W C, Electrostatic comb drive for resonant sensor and actuator applicationPhD Dissertation, Department of Electrical Engineering and Computer SciencesUniverstiy of California, Berkeley, CA
    [88]王喆垚,微系统设计与制造,北京:清华大学出版社,2008,
    [89]北京科技大学,东北大学,工程力学,北京:高等教育出版社,1997.
    [90] Legtenberg R, Groeneveld A W and M Elwenspoek, Comb-drive actuators forlarge displacements, J. Micromech. Microeng.,1996,6:320-329.
    [91] Spengen W M V and Oosterkamp T H, A sensitive electronic capacitancemeasurement system to measure the comb drive motion of surface micromachinedMEMS devices, J. Micromech. Microeng.,2007,17:828-834.
    [92] Cheung P, Horowitz R and Howe R T, Design, Fabrication, Position Sensing,and Control of an Electrostatically-driven Polysilicon Microactuator, IEEETransactions on magnetic,1996,32(1):122-128.
    [93] Grade J D, Jerman H and Kenny T W, Design of Large Deflection ElectrostaticActuators, JOURNAL OF MICROELECTROMECHNICAL SYSTEMS,2003,12(3):335-343.
    [94] Tang W C, Lim M G and Howe R T, Electrostatic Comb Drive Levitation andControl Method, Journal of microelectrostaticmechnical systems,1992,1(4):170-178.
    [95] http://en.wikipedia.org/wiki/Paschen%27s_law.
    [96] Chen C H, Yeh J A and Wang P J, Electrical breakdown phenomena for deviceswith micron separations, J. Micromech. Microeng.,2006,16:1366-1373.
    [97] Sun Y, Piyabongkarn D, Sezen A, et al, A high-aspect-ration two-axiselectrostatic microactuator with extended travel range, Sensors and Actuators A,2002,102:49-60.
    [98] Ashrafi A and Golnabi H, A high precision method for measuring very smallcapacitance changes, Review of Scientific Instruments,1999,70(8):3483-3487.
    [99] Preethichandra D M G and Shida K, A simple interface circuit to measure verysmall capacitance changes in capacitive sensors, IEEE Transactions oninstrumentation and measurement,2001,50(6):1583-1586.
    [100] Yang W Q, Modeling of capacitance tomography sensors, IEEE Proc. Sci. Meas.Technol.1997,144(5):200-214.
    [101] Yang W Q, Further developments in an ac-based capacitance tomographysystem, Review of scientific instruments,2001,72(10):3902-3907
    [102] Yang W Q, Hardware design of electrical capacitance tomography systems,Meas. Sci. Technol.,1996,7:225-232
    [103] Kondo K and Wantanabe K, A switched-capacitor interface for capacitivesensors with wide dynamic range. IEEE transactions on instrumentation andmeasurement,1989,38(3):736-739.
    [104] Suster M, Guo J, Ko W, A high-performance MEMS capacitive strain sensingsystem,IEEE J. Microelectromech.Syst.,2006,15:1069-1077.
    [105] Abbas K, Leseman Z C and Mackin T J, A traceable calibration procedure forMEMS-based load cells, Int J Mech Mater Des,2008,4:383-389.
    [106] Naraghi M and Chasiotis I, Optimization of comb-driven devices formechanical testing of polymeric nanofibers subjected to large deformations, Journalof microelectromechanical systems,2009,18(5):1023-1046.
    [107] Naraghi M, Chasiotis I, Dzenis Y, et al, Novel method for mechanicalcharacterization of polymeric nanofibers, Rev. Sci. Instrum.,2007,78(8),p085108(1-7).
    [108] Naraghi M, Chasiotis I, Dzenis Y, et al, Mechanical deformation and failure ofelectrospun polyacrylonitrile nanofibers as a function of strain rate, Appl. Phys. Lett.,2007,91(15),p151901(1-3).
    [109] Sun Y, Nelson B J, Potasek D P, et al, A bulk microfabricated multi-axiscapacitive celluar force sensor using transverse comb drives, Journal ofMicromechanics and Microengeering,2002,12:832-840.
    [110] Sun Y, Fry S N, Potasek D P, et al, Characterizing fruit fly flight behaviorusing a microforce sensor with a new comb-drive configuration, Journal ofmicroelectromechanical systems,2005,14(1):4-11
    [111] Operating instructions for Sartorius ME and SE series,2006, Sartorius AG,Goettingen, Germany
    [112]吴森,基于AFM的一维纳米材料操纵及力学特性测试技术:[博士学位论文],天津;天津大学,2011.
    [113]赵健,面向复合式测量的自感应AFM测头开发与系统研究:[博士学位论文],天津;天津大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700