基于选区激光熔化的功能件数字化设计与直接制造研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
选区激光熔化(SelectiveLaserMelting,SLM)成型技术是当前主要的可以直接制造金属功能件的快速成型(RapidPrototyping,RP)技术之一。SLM可以获得冶金结合、致密组织、高尺寸精度和良好力学性能的功能件,是近年来RP的研究热点和发展趋势。目前对SLM的研究主要集中在材料工艺、设备和应用,对成型件设计的研究相对较少,并且多用于单零件的直接制造,鲜有涉及机构件的直接制造。
     据此,本文研究基于选区激光熔化的功能件数字化设计与直接制造,主要内容及结果如下:
     (1)研究了功能件的自由结构设计。构建了功能件的结构设计框架,在此基础上分析了结构元素之间的设计时序关系。从激光深穿透、模型分层和光斑尺寸三个方面研究了自由结构设计的原理约束,进而建立了功能件自由结构设计的规则,规则包括原理约束和基本自由结构。在规则指导下,功能件可进行具有非标准原材料形状、无刀具特征、无装夹结构、自由孔结构或自由表面等特点的结构设计。
     (2)根据热力学原理和粉末堆积体的几何特性,推导了SLM成型过程的能量利用率公式及其修正系数;根据层间互错扫描方式下熔道之间的几何关系,提出了层内搭接机制、层间搭接机制和混合搭接机制三种熔道搭接机制。研究了扫描间距和扫描速度对成型件致密度的影响,并测试了SLM成型件的力学性能,结果表明,SLM成型件的抗拉强度和屈服强度均高于铸造件。通过改进铺粉装置,改善了成型设备的铺粉效果。
     (3)提出了免装配机构的数字化设计与选区激光熔化直接制造理念。通过引入间隙特征,建立了免装配机构的设计技巧,利用设计技巧优化了免装配机构的形状和结构,提高了其可加工性。分析选区激光熔化直接制造免装配机构的关键问题并提出了解决方法,包括:采用鼓形销和鼓形孔的形式优化间隙特征;通过装配角度的调整和摆放方式的合理选择改善机构的表面成型质量;采用倾斜摆放方式减少间隙特征的支撑数量;提高扫描速度以改善间隙特征的成型质量。通过若干机构样品的设计与直接制造,验证了免装配机构的数字化设计与直接制造方法是可行的。
     (4)研究了个性化零件的数字化设计。通过将个性化零件的结构元素分解为常规结构和个性化几何形状,提高了个性化零件的设计效率。在此基础上,提出了个性化托槽的组装式设计方法,采用结构特征组装的方式实现个性化托槽的快速设计。采用Typodont模拟矫治试验测试所设计和SLM直接制造的个性化托槽,结果表明,托槽能正确表达出预期的矫正力。
     (5)通过将复杂内腔零件的结构分解为基体结构和内腔结构,建立了复杂内腔零件的两个结构优化准则,即内腔结构中的粉末可以清除和内腔结构中的支撑不能影响功能实现。在此基础上,针对目前孔式喷嘴的冷却效果不明显和密封效果不好的缺点,基于SLM,对喷嘴结构进行了优化。
Selective Laser Melting (SLM) is one of the major Rapid Prototyping (RP) technologiesthat can directly fabricate metal functional parts. SLM is the research focus and thedevelopment trend of RP since the SLM part is metallurgical bonded and has high relativedensity, high dimensional accuracy and good mechanical properties. The current research onSLM has been focused on material, process, equipment, application and fabrication of singlepart. The design of SLM part and the direct fabrication of mechanisms have been seldomstudied.
     Due to the research status, this paper investigates the digital design and direct fabricationof functional parts based on SLM. The main contents and results are as follows:
     (1) Freeform design of functional parts was studied. The design frame for functional partswas established, then the timing relationship between structure elements was analyzed. Theprinciple constraints of freeform design were studied, considering the aspects of laser deeppenetration, slic ing of model and focus diameter. The design guidelines for functional partswith freeform structure were proposed, which included the principle constraints and thegeneric freeform structures. Functional parts could be designed according to the genericfreeform structures, which had the advantages of nonstandard form of raw materials, nonetool feature, none fixture feature, freeform hole and freeform surface.
     (2) The expression of utilization rate of energy during SLM process and its correctionfactor were obtained according to the principle of themodynamics and the geometry ofpowder packing. Three types of overlapping mechanism, intra-layer overlapping mechanism,inter-layer overlapping mechanism and mix overlapping mechanism, were introducedaccording to the geometrical relationship between tracks under interlayer-staggered scanningstrategy. Some experiments have been carried out to study the relationships between scanningspace, scanning speed and relative density and to test the mechanical properties of parts.Result showed that the tensile strength and the yield strength of part by SLM werecomparable to the counterparts from casting. The powder laying device of the SLMequipment was also improved to obtain better powder laying effect.
     (3) A new concept was proposed that non-assembly mechanisms was digitally assembledand subsequently directly fabricated by SLM as assembled. After introduction of clearancefeature, the design skills for non-assembly mechanisms were proposed that the mechanismcomplexity could be reduced by reducing the part count and simplifying the part shape andthe processability could be improved by adjusting the clearance feature. The major factors in direct fabrication of non-assembly mechanism were studied and some solutions werepresented: (a) Using drum shaped pin and drum shaped hole to optimiz e the clearance feature;(b) Adjusting the assembly angle and display to improve the surface quality of mechanism; (c)Using tilting display to reduce the number of supports within the clearance feature; (d)Increasing scanning speed to improve the fabrication quality of clearance feature. Forexperimental verification, a number of mechanisms have been designed and directlyfabricated.
     (4) The digital design of customized parts was studied. The design efficiency wasimproved by classifying the structure elements of customized part as common structure andcustomized geometry. Then, a method was proposed to quickly design customized bracket,which was assembled using structure features. For experimental verification, a mouth ofcustomized brackets has been designed and directly fabricated by SLM, then been testedusing Typodont simulative experiment. Result showed that the brackets could express theexpected orthodontic force accurately.
     (5) Two design guidelines for optimization of parts with complicated cavity was proposedthat the powders within the cavity could be cleared and the supports within the cavity couldnot affect the performance by classifying the structure elements as base structure and cavitystructure. Then, the Hole coaxial nozzle has been optimized using the design guidelines basedon SLM since the current one had several defects such as unwell cooling effect and unwellseal.
引文
[1] Freitag D, Wohlers T, Philippi T. Rapid Prototyping:State of theArt[DB/OL] .http://mtiac.alion science.com/technical_files/Rapid.doc, 2005-10-10
    [2]颜永年,林峰,张人佶等.快速制造技术的最新进展及其发展趋势[J].电加工与模具,2006, (增刊): 12-16, 21
    [3]李涤尘,卢秉恒,赵万华.快速成型的未来发展-快速产品制造[J].航空制造技术,2004, 5: 48-49
    [4]冯涛,李志刚.快速成型与快速制模技术的最新发展-EuroMold’2003考察报告[J].模具工业, 2004, 278(4): 3-5
    [5]张永忠,石力开,章萍芝等.基于金属粉末的激光快速成型技术新进展[J].稀有金属材料与工程, 2000, 29(6): 361-365
    [6] http://www.astm.org/COMMIT/COMMITTEE/F42.htm
    [7] Kusiak, Andrew Salustri, Filippo A. Computational intelligence in product designengineering: review and trends[J]. IEEE Transactions on Systems, Man and CyberneticsPart C: Applications and Reviews,2007,37(5):766-778
    [8]熊光愣.并行工程的理论与实践[M].北京:清华大学出版社, 2001
    [9] Bazant Z P, Le J L, Bazant M Z. Scaling of strength and lifetime probability distridutionsof quasibrittle structures based on atomistic fracture mechanics[J]. Proceedings of theNational Academy of Sciences (USA), 2009, 106(28): 11484-11489
    [10] I Gibson, D W Rosen, B Stucker. Additive Manufacturing Technologies[M]. SpringerNew York Herdelberg Dordrecht London, 2009
    [11]黄树槐,肖跃加.快速成型技术的展望[J].中国机械工程, 2000, 11(1-2): 195-200
    [12] Sanjay K. Selective laser sintering:a qualitative and objective approach[J]. JOM, 2003,55(10): 43-47
    [13]颜永年;齐海波;林峰等.三维金属零件的电子束选区熔化成形[J].机械工程学报,2007,43(6):87-92
    [14]钟敏霖,宁国庆,刘文今.激光熔覆快速制造金属零件研究与发展[J].激光技术,2002, 26(5): 388-391
    [15]北京隆源自动成型系统有限公司.北京隆源自动成型系统有限公司[DB/OL].http://www.lyafs.com.cn/js_yl.htm, 2005-10
    [16] Matsumoto M., Shiomi M., Osakada K, et al. Finite element analysis of single layerforming on metallic powder bed in rapid prototyping by selective laser processing[J].Internatioanl journal of machine tools & manufacture, 2002, 42: 61-67
    [17] Trumpf and EOS to develop direct metal laser melting technology [DB/OL].http://www.azom.com, 2005-10-10
    [18]北京幸福曼德智能工程技术有限公司.采用电子束熔融技术(EBM)的快速制造技术[R].中国生物医学工程学会生物材料分会(CSBME-BMB)第十二届全国学术年会,广州,2009-12-08
    [19]张凯,刘伟军,尚晓峰等.金属零件激光直接快速成型技术的研究(上)—国外篇.工具技术[J], 2005, 39(5): 3-9
    [20]席明哲,张永忠,石力开等.激光快速成型致密金属零件的研究[J].北京科技大学学报, 2002, 24(4): 441-444
    [21]张凯,刘伟军,尚晓峰等.金属零件激光直接快速成型技术的研究(下)—国内篇[J].工具技术, 2005, 39(6): 3-4
    [22] Over C, Meiners W, Wissenbach K, Lindemann M, et al. Selective laser meltin g: a newapproach for the direct manufacturing of metal parts and tools[R]. 1ST InternationalConference on Laser Assisted Net Shape Engineering, Germany: Frankfurt, 2001
    [23]沈显峰.多组元金属粉末直接激光烧结过程数值模拟及烧结区域预测[D].成都:四川大学, 2005
    [24]杨永强,黄常帅.金属构件选区激光熔化成型技术[J].航空制造技术, 2004年增刊:89-92
    [25] Rehme O, Emmelmann C. Reproducibility for properties of selective laser melting[R].Proceedings of the Third International WLT-Conference on Lasers in Manufacturing,2005-6
    [26] Kozo Osakada, Masanori Shiomi. Flexible manufacturing of metallic products byselective laser melting of powder [J]. International Journal of Machine Tools &Manufacture, 2006, 46 (11) 1188–1193
    [27] M. Rombouts, J.P. Kruth, L. Froyen, P. Mercelis. Fundamentals of selective laser meltingof alloyed steel powders[J]. Annals of the CIRP ,2006,55 (1):187-192
    [28] I. Shishkovsky, I. Yadroitsev, Ph. Bertrand, I. Smurov.Alumina–zirconium ceramicssynthesis by selective laser sintering/melting [J]. Applied Surface Science2007, 254 (4)966–970
    [29] M Badrossamay, T H C Childs. Further studies in selective laser melting of stainless andtool steel powders [J]. International Journal of Machine Tools & Manufacture, 2007, 47(5):779–784
    [30] I. Yadroitsev, L. Thivillon, Ph. Bertrand, et al.. Strategy of manufacturing componentswith designed internal structure by selective laser melting of metallic powder[J]. Appliedsurface science, 2007, 254 (4): 980–983
    [31] A.V. Gusarov, I. Yadroitsev, Ph. Bertrand, et al.. Heat transfer modelling and stabilityanalysis of selective laser melting [J]. Applied surface science, 2007, 254: 975–979
    [32] Kamran Aamir Mumtaz, Poonjolai Erasenthiran, Neil Hopkinson.High density selectivelaser melting of Waspaloy [J]. Journal of materials processing technology,2008(195):77–87
    [33] J. Benavides and S. Kumpaty.Performance testing of a thermally gradient tetralatticeTMheat fin built via solid freeform fabrication[R]. National Conference on UndergraduateResearch, Indianapolis, IN, April 2004
    [34] Ed. Igor Drstvnsek, Branko Kataliniae.Selective laser melting of customized implantswith cellular surface structures for optimized elasticity and improved osseointegration[R]. In: The 1st DAAAM International Specialized Conference on AdditiveTechnologies, DAAAM International, ISBN: 3-901509-61-5 , 4952
    [35] S. McKowna, Y. Shena, W.K. Brookes, et al.The quasi-static and blast loading responseof lattice structures[J]. International Journal of Impact Engineering 2008, 35 (8):795–810
    [36]吴伟辉.选区激光熔化快速成型系统设计及工艺研究[D].广州:华南理工大学,2007
    [37]吴伟辉,杨永强.选区激光熔化快速成形系统的关键技术[J].机械工程学报,2007,43(8):175-180
    [38]付立定,史玉升,章文献等.316L不锈钢粉末选择性激光熔化快速成形的工艺研究[J].应用激光,2008,28(2):108-111
    [39] Dongdong Gu, Zhiyang Wang, Yifu Shen et al..In-situ TiC particle reinforced Ti–Almatrix composites: powder preparation by mechanical alloying and selective lasermelting behavior [J]. Applied Surface Science,2009,255 (22):9230–9240
    [40] Qilin Deng,Anning Xie,Zhijun Ge,et al..Experimental researches on rapid forming fullcompacted metal parts by selective laser melting [J]. Materials Science Forum, 2007,523-533:428-31
    [41] MCP. MCP Group [DB/OL].http://www.realizer-gmbh.de/.2009-12-22
    [42] http://www.tomex-d-sign.de/_domain/conceptlaser/content/start.php?lan=de.2005-10-10
    [43] http://www.phenixtech.com/
    [44] http://www.trumpf.com/
    [45] http://www.matsuura.co.jp/
    [46]杨永强,江泽文,冯涛.一种金属零件选区激光熔化快速成型方法及其装置[P].中国:200410052075,2005年4月6日
    [47]杨永强,江泽文,冯涛.一种金属零件选区激光熔化快速成型装置[P].中国:200420094739.5,2005年12月7日
    [48] Yang Yongqiang, He Xingrong, Wang Di, et al. Selective Laser Melting for RapidPrototyping of Medical Devices[R],4th Pacific International Conference on Applicationsof Lasers and Optics,Picalo2010, March23-25,2010,Wuhan, China
    [49] Daniel Thomas. The development of design rules for selective laser melting[D]. Cardiff:University of Wales Institute, 2009
    [50] Daniel Thomas, Richard Bibb. An investigation into the geomertic constraints ofselective laser melting for the development of design rules[R]. The ninth nationalconference on rapid design, prototyping and manufacturing, 2008
    [51] Daniel Thomas, Richard Bibb. Baseline build-style development of selective lasermelting high density functional parts[R]. The eighth national conference on rapid design,prototyping and manufacturing, 2007
    [52] Mariana Dotcheva, Daniel Thomas, Huw Millward. An evaluation of rapid manufacturedcellular structures to enhance injection moulding tool performance[J]. InternationalJournal of Materials Engineering and Technology, 2009, 1 (2): 105-128
    [53] Geoffrey Boothroyd, Peter Dewhurst, Winston Knigh .面向制造与装配的产品设计[M].王知珩翻译,北京:机械工业出版社,1999
    [54]余隋怀,苟秉宸,李晓玲.三维数字化定制设计[M].北京:北京理工大学出版社,2006:73
    [55]赵有珍,李健,邓家提.产品功能结构建模研究[J].计算机应用研究,2003(11):32-38
    [56] Benjamin William Caldwell. An evaluation of function-based representations andinformation archival in engineering design[D]. South carolina: Clemson University, 2009
    [57] Chiradeep Sen. A study in the information content, consistency, and expressive power offunction structures in mechanical design[D]. South carolina: Clemson University, 2009
    [58] Bo Yang. Function modeling based on interactions of mass, energy and information[D].Ontario: University of Windsor, the year of 2000
    [59] Michael Gerhard Luchs. The unity of form and function: make sense of product designfrom a consumer's point of view[D]. Austin: University of Texas, the year of 2008
    [60] Nam Pyo Suh.公理设计[M].谢友柏,袁小阳,徐华等翻译.北京:机械工业出版社,2004:56-57
    [61] Mokhtar, Alireza. Introducing a roadmap to implement the universal manufacturingplatform using axiomatic design theory[J]. International Journal of ManufacturingResearch, 2010, 5 (2): 252-269
    [62]王崴,唐一平,洪军.基于遗传算法的快速成型零件制作方向优化问题的研究.[DB/OL].http://www.easp.cn/crpm/root/lunwen/APDF/A11.pdf,2007-3-5
    [63]王雷,钦兰云,佟明,等.快速成型制造台阶效应及误差评价方法[J].沈阳工业大学学报,2008,30(2):318-321
    [64] http://www.qast.com/product/develop/ptc/index.htm
    [65] http://uni-graphics.net/
    [66] http://www.solidedge.com/
    [67] http://www.3ds.com/cn/
    [68] http://www.solidworks.com.cn/
    [69] Jarek Rossignac. CSG-BRep Duality and Compression[J]. Proceedings of theSymposium on Solid Modeling and Applications, 2002: 59-63
    [70] http://baike.baidu.com/view/1122310.htm
    [71] Chung-Shing Wang,Wei-Hua A. Wa,Man-Ching Lin。STL rapid prototyping bio-CADmodel for CT medical image segmentation[J]。Computers in Industry,2010,61(3):187-197
    [72] Kang-Soo Lee,Sung-Hwan Kim。Non-uniform deformation of an STL model satisfyingerror criteria[J]。Computer-Aided Design,2010,42(3):238-247
    [73] Wang, Chung-Shing,Chang, Teng-Ruey。Re-triangulation in STL meshes for rapidprototyping and manufacture[J]. International Journal of Advanced ManufacturingTechnology,2008,37(7-8):770-781
    [74] Krutha J P, Froyenb L, Vaerenbergha J Van, et al. Selective Laser Melting of iron-basedpowder. Journal of Materials Processing Technology, 2004, 149: 616-622
    [75] F Abe, E Costa Santos, Y Kitamura, et al. Influence of forming conditions on thetitanium model in rapid prototyping with the selective laser melting process. MechanicalEngineering Science, 2003, 217: 120-126
    [76]张庆茂,刘喜明,钟敏霖等.送粉式激光熔覆过程激光有效能量的表征方法[J].稀有金属材料与工程,2003, 32(7): 550-553
    [77]刘喜明,连建设,张庆茂.送粉激光熔覆界面特性及熔覆层稀释率[J].机械工程学报,2001,37(4):38-43
    [78]王迪,杨永强,黄延禄等.选区激光熔化直接成型金属零件致密度的改善[J].华南理工大学学报,2010,38(6):107-111
    [79] I.Yadroitsev, Ph.Bertrand,I.Smurov. Parametric analysis of the selective laser meltingprocess[J]. Applied surface science. 2007, 2:88-93
    [80] M. Badrossamay, T. H. C. Childs.Further studies in selective laser melting of stainlessand tool steel powders [J]. International Journal of Machine Tools &Manufacture,2007,47:779–784
    [81]朱中平.不锈钢钢号中外对照手册[M].北京:化学工业出版社,2004:90-91
    [82]卢柯,刘学东,胡壮麟.纳米晶体材料的Hall-Petch关系[J].材料研究学报,1994,8(5):385-391
    [83]师文庆,杨永强,黄延禄等.选区激光熔化快速成型过程温度场数值模拟[J].激光技术,2008,32(4):410-412
    [84]杨永强,程大伟,黄延禄.用于选区激光熔化的金属粉末铺粉装置[P].中国:200720061554.8,2008年9月3日
    [85]胡乾午,陈光霞,王泽敏等.一种金属零件选区激光熔化快速成型设备[P].中国:200820192071.6,2009年9月2日
    [86]李湘生,黄树槐,黎建军.激光选区烧结中铺粉过程分析[J].现代制造工程,2008,2:99-101
    [87] Markus Lindemann, Daniel Graf. Process and device for producing a shaped body bySelective Laser Melting[P]. United States: US 7047098 B2, May 16, 2006
    [88] Mavroidis, C., DeLaurentis, K.J., and Won, J. Fabrication of non-assembly mechanismsand robotic system using rapid prototyping[J]. Transaction of the ASME, 2001, 123,516-524
    [89] Lipson, H., Moon, F. C., and Hai, J. 3-D printing the history of mechanisms[J]. Journalof Mechanical Design, 2005, 127, 1029-1033
    [90] Park, K., Kim, Y. S., and Kim, C. S. Integrated application of CAD/CAM/CAE and RPfor rapid development of humanoid biped robot[J]. Journal of Materials ProcessingTechnology, 2007, 187, 609-613
    [91] Rajagopalan, S. and Cutkosky, M. Error analysis for the in-situ fabrication ofmechanisms [J]. Journal of Mechanical Design, 2003, 125, 809-822
    [92] Chen, Y. H. and Chen, Z.Z. Major Factors in rapid prototyping of mechanisms [J]. Journalof Key Engineering materials, 2010, 443, 516-521
    [93] Horng T. A numerical algorithm for determining the contact stress of circular crownedroller compressed between two flat plates[J]. Journal of Solid Mechanics and MaterialsEngineering, 2007, 1(1): 58~68
    [94] Liu C, Zhang K, Yang R. The FEM analysis and approximate model for cylindrical jointswith clearance[J]. Journal of Mechanism and Machine Theory, 2007, 42(2): 183~197
    [95]郭克红.浅析现代产品设计理念[J].机械管理开发,2009,24(5):135-139
    [96]刘国余,沈杰.产品基础形态设计[M].北京:中国轻工业出版社,2001:1,73-77
    [97] Wu Jianhuang, Xu Jinting, Xia Renbo. Surface mesh denoising via diffusing gradientfield[J]. Optics and Laser in Engineering, 2011, 49 (1): 104-109
    [98] Arietta Sean, Lawrence Jason. Building and using a database of one trillion natural-imagepatches[J]. IEEE Computer Graphics and Applications, 2011, 31 (1): 9-19
    [99]徐宝华.舌侧正畸矫治技术[J].口腔正畸学,1999,6(2):80-82
    [100]徐佳瑛.舌侧正畸的进展[J].口腔材料器械杂志,2007,16(2):86-90
    [101] Wiechmann D, Rummel V, Thalheim A, et al. Customized Brackets and Archwires forLingual Orthodontic Treatment[J]. Am J Orthod Dentofacial Orthop, 2003, 124:593-593
    [102]张文健.个体化直丝弓托槽及新型定位托盘的计算机辅助设计与制造[D].南京:南京医科大学, 2007
    [103]杨海新.正常颌中国人牙齿形态和位置及直丝弓矫治器的研究[D].北京:北京医科大学,1998
    [104]杨新海,曾祥龙.中国人牙齿临床冠中心高度的研究[J].口腔正畸学,1998,5(4):147
    [105]陈琳,高雪梅,曾详龙.基于正常颌中国人牙齿特征的直丝弓矫治器的设计开发[J].实用口腔医学杂志,2007,23(6):826-830
    [106] Ozbolat Ibrahim, Marchany Michelle, Gardella Jr, et al. Feature-based design ofbio-degradable micro-patterned structures[J]. Computer-Aided Design and Applications,2009, 6 (5): 661-671
    [107] Browning T R. Applying the Design Structure Matrix to System Decomposition andIntegration Problems: a Review and New Directions[J]. IEEE Transactions onEngineering Management, 2001, 48(3): 292-306
    [108]唐敦兵,钱晓明,刘建刚.基于设计结构矩阵DSM的产品设计与开发[M].北京:科学出版社,2009:1-3
    [109] Chen Li, Ding Zhendong, Simon Li. A Formal Two-Phase Method for Decompositionof Complex Design Problems[J]. Journal of Mechanical Design, 2005, 127(3): 184-195
    [110] Chen Li, Ding Zhendong, Simon Li. Tree-Based Dependency Analysis inDecomposition and Re-decomposition of Complex Design Problems[J]. Journal ofMechanical Design, 2005, 127(1): 12-23
    [111] Chen Li, Simon Li. Analysis of Decomposability and Complexity for Design Problemsin the Context of Decomposition[J]. Journal of Mechanical Design, 2005, 127(7):545-557
    [112]盛海涛,魏法杰.设计结构矩阵优化算法的研究与比较[J].计算机集成制造系统,2007,13(7):1255-1260
    [113]许正蓉.基于改进DSM方法的多技术系统设计过程模型研究[D].杭州:浙江大学,2007
    [114]王玉,邢渊,阮雪榆.设计过程信息建模及重组[J].计算机集成制造,2002,8(2):111-114
    [115] Dunbing Tang, Guangjun Zhang, Sheng Dai. Design as integration of axiomatic designand design structure matrix[J]. Robotics and Computer-Integrated Manufacturing, 2009,25: 610-619
    [116]柳大为,李小彤,张丁.常用国内、进口正畸托槽的槽沟宽度精度及表面光洁度的比较[J].口腔正畸学,2007,14(2):81-83
    [117]张春香,冯云霞,武红梅等. Typodont模拟颌架在口腔正畸学本科教学中的应用[J].山西医科大学学报,2008,10(5):604-605
    [118]马轩祥,赵铱民.口腔修复学第五版[M] .北京:人民卫生出版社,2005
    [119]姜睿智,岳秀艳,史廷春等.面向RP的CT图像处理技术综述[J] . CT理论与应用研究,2008,17(1)::14-20
    [120] Huang J, Bumann A, Mah J. Three-dimensional radiographic analysis in orthodontics[J].Clin Orthod, 2005, 39(7): 421-428
    [121] Jang S H, Kim W Y. Defining a new annotation object for DICOM image:a practicalapproach[J]. Computer Medical Imaging Graph,2004,28(7):371-375
    [122]任国成,王广春.面向RP骨骼CT图象的轮廓提取与精简[J] .山东大学学报(工学版),2004,6:2
    [123] http://laserdentaincusa.com/
    [124] http://www.dentalcadcam.com.hk/
    [125]李慧,南欣荣,令狐清溪,等.应用选区激光烧结制作头颅骨快速模型[J].北京口腔医学,2006,14(4):269-271
    [126] C.C. Chang, M.Y. Lee, Y.C. Ku. Gigital Custom Denture Design with New AbrasiveComputer Tomography and Rapid Prototyping Technologies [J]. Biomedical EngineeringApplications, Basis & Communication, 2003, 15(3): 115-123
    [127]高曙明,何发智.分布式协同设计技术综述[J].计算机辅助设计与图形学学报,2004,16(2):149-157
    [128]张萍,刘弘,岳凤.基于HOOPS的园林协同设计系统的研究与实现[J].计算机工程与设计,2008,29(18):4862-4865.
    [129]高佐人,吴炜煜,房轻舟.建筑设计协同工作模型设计与实践[J].清华大学学报(自然科学版),2004,44(9):1244-1248
    [130]董庆伟,商建东,李保义.基于Agent分布式仪表产品造型协同设计应用研究[J].计算机工程与设计,2007,28(12):2962-2964
    [131]哈进兵,张友良,李舟洲.异地企业协同工作的Web模型及其实现[J].计算机集成制造系统,2005,5:106-110
    [132] Li Y, Shao X, Li P, et al. Design and Implementation of A Process-oriented IntelligentCollaborative Product Design System[J]. Computers In Industry, 2004, 53(1): 205-229
    [133]刘恒毅,朱世和,史津平.应用CSCW技术的PDM流程管理研究[J].天津理工大学学报,2005,4:19-21
    [134] http://baike.baidu.com/view/23396.htm
    [135] http://baike.baidu.com/view/4067488.htm
    [136]高淑英,杨洗陈.用于激光熔敷的同轴送粉喷嘴的设计[J].天津工业大学学报,2003,22(5):42-45
    [137]黄勇.激光熔覆同轴送粉喷嘴的设计制造及工艺实验[D].广州:华南理工大学,2004
    [138]周余.新型激光熔覆喷嘴设计及实验研究[D].广州:华南理工大学,2010
    [139]张三川,姚建拴,梁二军.激光熔覆进展与熔覆合金设计[J].激光技术,2002,26(3):204-207
    [140]杨永强,黄勇.孔式同轴激光熔覆喷嘴[P].中国:200420046953.3,2005年7月6日
    [141] Cao Yan, Bai Yu, Wang Yan, et al. Three-simensional standard part library developmentbased on Pro/TOOLKIT and database[J]. Proceedings-2009 International Conference onNetworking and Digital Society, 2009, 1: 158-161
    [142] Griffiths C A, Dimov S S, Brousseau E B, et al. The finite element analysis of me lt flowbehaviour in micro-injection moulding[J]. Journal of Engineering Manufacture, 2008,222 (9): 1107-1118

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700