面向特定QoS需求的无线传感器网络优化设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线传感器网络(Wireless Sensor Network,以下简称为WSN)的广泛应用,针对WSN的优化设计方法也得到了越来越多的关注。WSN由于其传感器节点自身能力以及无线传输方式的限制,在设计中很难使每个技术指标都达到最优。鉴于此,服务质量(Quality of Service,以下简称为QoS)被引入WSN的设计中,使得WSN的设计目标从技术指标最优化转向用户满意度最大化,但是,目前现有的研究大多只针对单个或少数几个QoS进行WSN的优化设计,并且这些设计主要集中在单个网络层上,而对于多个QoS,从网络整体进行设计的研究还比较少。在此背景下,本文提出了一种将用户的多个QoS需求进行分解,转换为底层技术指标并加以实现的WSN优化设计方法。
     首先,从用户的特定QoS需求出发,引入质量功能展开思想,对QoS需求进行层次分解,将QoS需求映射到具体的技术指标上,得到了各技术指标的重要度,在此基础上对用户满意度进行量化,建立了技术指标最优配置模型。通过求解技术指标最优配置模型便可得到各技术指标的量化值,从而指导整个WSN的设计。
     其次,在获得具体技术指标之后,着重针对WSN设计中的一个重要阶段——网络部署阶段进行了详细研究,提出一套满足覆盖度、可靠性以及连通度指标的部署方案。对于覆盖度指标,分别对同构传感器和异构传感器、确定性覆盖和随机覆盖进行了研究;对于可靠性指标,研究了同时考虑节点可靠性和传输线路可靠性时网络的可靠性;对于连通度指标,分别对确定性覆盖和随机覆盖下的连通度进行了研究。上述研究均通过理论推导或仿真实验获得了节点密度和各技术指标之间的关系曲线,从而对如何部署网络提供指导。
     最后,设计实现了一个WSN优化设计工具,该工具对本文的QoS分解优化方法提供了可视化支持,能够在网络部署阶段提出满足需求的详细部署方案。此外,该工具还实现了一个仿真平台,利用此平台可以对本文研究的可行性提供一系列验证。
With the extensive application of Wireless Sensor Network (hereafter referred to as WSN), more and more attention are being focused on the optimization design of it. Limited by self-capability of sensor nodes in WSN and the wireless transmission mode, it is hardly possible to reach the optimal level on each technical target at the same time. Thus, the concept of Quality of Service (hereafter referred to as QoS) has been brought into the design of WSN, which transform the design objective from optimization of technical target to maximization of customer satisfaction. Unfortunately, existing studies from this angle mainly concentrate on single or a minority of QoS needs and focus on a single network layer. Only few of them try to integrate multiple QoS needs in the global design of the network. This study proposes an optimized design which first dismantles multiple QoS needs of customer and then transfers them into technical targets.
     Firstly, based on certain QoS needs of customers, this study brings the concept of Quality Function Deployment, dismantles customer QoS needs levels, maps them into specific technical targets and acquire the importance degrees of each technical targets. Customer satisfactions are quantified and a model of optimization of technical targets is built on this basis. By determining the model of optimization of technical targets, the quantized values of different technical targets are acquired, thus to guide the global design of WSN.
     Secondly, after acquiring the specific technical targets, the study put an emphasis on one stage----the stage of sensor placement, and then proposes a disposition plan which meets the targets of coverage, reliability as well as connectivity. On coverage target, the study researches on homogeneous sensor network, heterogeneous sensor network, deterministic coverage and random coverage respectively; on reliable target, it researches on the reliability of the network in consideration of the reliability of both sensor nodes and transmission link; on connectivity target, it studies the connectivity in deterministic coverage and random coverage situation respectively.
     Lastly, a tool in the optimization design of WSN is provided in this study and it offers a visualization support for a dismantling and optimization method of QoS proposed in this thesis so that a detailed disposition plan which meets the needs is put forward in the stage of sensor placement. Moreover, the tool also provides a simulation platform through which the feasibility of the study proposed in this thesis can be tested.
引文
[1] Sameer Tilak, Nael B. Abu-Ghazaleh, Wendi Heinzelman. A Taxonomy of Wireless Micro-sensor Network Models[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2002, 6(2):l-8.
    [2]丁飞.无线传感器网络的应用概述[J]经营管理者2010, 8:297-297.
    [3] Shi Yongjie, Sun Guiling. Design of Wireless Sensor Network Node Based on C8051F020 and CC1100 Fiber Bragg Grating[C]. The IET Communications Conference on Wireless, Mobile and Sensor Networks(CCWMSN07), Shanghai, China, December 12-14, 2007, 430-433.
    [4] R. Lacoss,R.Walton. Strawman Design of a DSN (Distributed Sensors Networks) to Detect and Track Low Flying Aircraft[C]. Proceeding of Distributed Sensor Nets Conf. Carnegie-Mellon Univ., Pittsburgh, PA, December 1978, 41-52.
    [5] Pottie GJ, Kaiser WJ. Wireless Integrated Network Sensors[J]. Communications of the ACM, 2000, 43(5):51-58.
    [6] MIT.μAMPS:μ-Adaptive Multi-domain Power aware Sensors[EB/OL]. (1999)[2011-5-28]. http//www-mtl.mit.edu/researchgroups/icsystems/uamps/.
    [7] S. Kumar, D. Shepherd. Sensit:Sensor Information Technology for the Warfighter[C]. Proceedings of the 4th International Conference on Information Fusion. Montreal, Canada, 2001, 3-9.
    [8] J. Rabaey, J. Ammer, J. L. da Silva Jr., D. Patel. PicoRadio:Ad-hoc Wireless Networking of Ubiquitous Low-Energy Sensor/Monitor Nodes[C]. IEEE Computer Society Workshop on VLSI 2000, Orlando, FL, USA, April 27-28, 2000, 9-12.
    [9] B. Warneke, M. Last; B. Liebowitz, K. S. J. Pister. Smart Dust: Communicating with a Cubic-millimeter Computer[J]. Computer, 2002, 34(1):44-51.
    [10] Levis P, Madden S, Polastre J, et al. Tinyos: An operating system for sensor networks[J]. Ambient Intelligence, 2005, 35:115-148.
    [11]刘大臣,徐军涛.狼群攻击系统研究[J].飞航导弹, 2008, 10:39-44.
    [12] Mainwaring, J.Polastre, R.Szewczyk, et al. Wireless Sensor Networks for Habitat Monitoring[C]. Proceedings of the Workshop on Wireless Sensor Networks and Applications. Atlanta, USA, 2002, 88–97.
    [13]沈大伟,李长征,贾中宁.基于ZigBee技术的无线传感器网络设计研究[J].江苏技术师范学院学报, 2007, 13(4):21-25.
    [14] Schwiebert L, Gupta S K S, Weinmann J, etc. Research challenges in wireless networks of biomedical sensors[C]. Proc. of the 7th Annual International Conference on Mobile Computing and Networking(MOBICOM), Rome, Italy, July 2001,151-165.
    [15]国家中长期科学和技术发展规划纲要(2006-2020)[EB/OL]. (2006-2-9)[2011-5-28]. http://www.gov.cn/jrzg/2006-02/09/content_183787.htm.
    [16]无线传感网络的基础理论及关键技术研究[EB/OL]. (2006-11)[2011-5-28]. http://www.973.gov.cn/ReadItem.aspx?itemid=590.
    [17] Chen D, Varshney P K. QoS Support in Wireless Sensor Networks: a Survey[C]. Proc of Int Con On Wireless Networks(ICWN), Las Vegas, 2004, 227-233.
    [18] Crawley E, et al. RFC2386: A Framework for QoS-Based Routing in the Internet[EB/OL]. (Aug. 1998)[2011-5-28]. http://www.ietf.org/rfc/rfc.2386.txt.
    [19] Tian Jing, Yi Shengwei, Yu Bing, Ma Shilong. Study On Wireless Sensor Networks[C]. Intelligent System Design and Engineering Application (ISDEA), Changsha, Oct 13-14, 2010, 510-521.
    [20]杨少军,史浩山,陈敏.无线传感器网络QoS路由的研究与仿真[J].传感技术学报, 2005, 18(3):455-459.
    [21]刘巍,崔莉,黄长城. EasiFCCT:一种保证连通性的传感器网络局部覆盖算法[J].计算机研究与发展, 2008, 45(1):196-204.
    [22]蒋丽萍,王良民,熊书明,詹永照.基于感知概率的无线传感器网络k重覆盖算法[J].计算机应用研究, 2009, 26(9):3484-3486.
    [23]田莹,张淑芳,王莹.无线传感器网络分布式概率覆盖保持协议[J].通信学报, 2009, 30(1):70-75.
    [24]余荣,孙智,周海军,梅顺良.保证服务质量的最小能量无线传感器网络路由算法[J].清华大学学报(自然科学版), 2007, 47(10):1634-1637.
    [25]吴震东,李善平.传感器网络中一种基于链路稳定性和多路径的拓扑控制算法[J].计算机研究与发展, 2007, 44(2):216-222.
    [26]刘少伟,罗丹彦,向琳,左德承.能量均衡的无线传感器网络拓扑控制算法[J].电子科技大学学报, 2010, 39(Sl):89-93.
    [27]秦大力,唐颖.无线传感器网络的安全性研究[J].网络应用与安全, 2006(6):54-56.
    [28]叶青,周鸣争.无线传感器网络中基于行为可信安全认证机制[J].现代计算机, 2010(4):10-15.
    [29]程大伟,赵海,孙佩刚,张希元,朱剑.基于联合优化的无线传感器网络传输可靠性研究[J].传感技术学报, 2007, 20(12):2701-2708.
    [30]黄菲,高随祥.无线传感器网络传输可靠性计算[J].应用数学学报, 2008, 31(5):884-893.
    [31]徐冉,高随祥,董萍,黄菲.无线传感器网络的可靠性计算[J].计算机应用研究,2009, 26(3):987-990.
    [32]雷鸣,李德识,陈健,孙涛.无线传感器网络的自组织可靠性研究[J].复杂系统与复杂性科学, 2005, 2(2):20-23.
    [33]郑杰,郭淑杰,屈玉贵,张英堂,赵保华.无线传感器网络能效时延平衡数据收集机制[J].中国科技大学学报, 2008, 38(12):1414-1421.
    [34] Iyer R., Kleinrock L. QoS Control for Sensor Networks[C]. Proceedings of 2003 IEEE International Conference on Communications(ICC 2003), Anchorage Alaska, May 11-15, 2003, 1:517-521.
    [35] Saxena N, Roy A, Shin J, et al. Dynamic duty cycle and adaptive contention window based QoS-MAC protocol for wireless multimedia sensor networks[J]. Computer Networks, 2008, 52(13):2532-2542.
    [36] Yu Ming, Malvankar A, Su Wei, et al. A link availability-based QoS-aware routing protocol for mobile ad hoc sensor networks[J]. Computer Communications, 2007, 30(18):3823-3831.
    [37] SOHRABIK, GAO J. AILAWADHIV Protocols for Self-Organization of a Wireless Sensor Network[J]. IEEE Personal Communications, 2000, 7(5):16-27.
    [38]史浩山,侯蓉晖,杨少军.无线传感器网络QoS机制研究[J].信息与控制, 2006, 35(2):246-251.
    [39] Akkaya K., Younis M.. An Energy-aware QoS Routing Protocol for Wireless Sensor Networks[C]. Proceedings of the 23rd International Conference on Distributed Computing Systems Workshops, Providence, Rhode Island USA, May 19-22, 2003, 710-715.
    [40] Tian H, Stankovic J. A., Lu C. Y., et al. SPEED: A Stateless Protocol for Realtime Communication in Sensor Networks[C]. Proceedings of the 23rd International Conference on Distributed Computing Systems Workshops, Providence, Rhode Island USA, May 19-22, 2003, 46-55.
    [41] Tai S, Benkoczi R R, Hassanein H, et al. QoS and data relaying for wireless sensor networks[J]. Journal of Parallel and Distributed Computing, 2007, 67(6):715-726.
    [42] Alex H, Kumar M, Shirazi B. MidFusion: An adaptive middle-ware for information fusion in sensor network applications[J]. Information Fusion, 2008, 9(3):332-343.
    [43] Yuan Yong, Yang Zongkai, He Zhihai, et al. An integrated energy aware wireless transmission system for QoS provisioning in wireless sensor network[J]. Computer Communications, 2006, 29(2):162-172.
    [44] Mahapatra A, Anand K, Agrawal D P. QoS and energy aware routing for real-time traffic in wireless sensor networks[J]. Computer Communications, 2006, 29(4):437-445.
    [45] He Zhen, Lee Byung Suk, Wang X S. Aggregation in sensor networks with auser-provided quality of service goal[J]. Information Sciences, 2008, 178(1):2128-2149.
    [46]尹凤敏,金文锋.无线传感器网络的研究、设计与实现[J].通信管理与技术, 2010(2):46-49, 52-52.
    [47]韩鸿泉,朱红松,孟军.无线传感器网络技术[J].计算机系统应用, 2005(2):38-41.
    [48]黄丽,白宝光. QFD技术及其应用局限性的改进研究[J].内蒙古工业大学学报2008, 27(1):76-80.
    [49]管虹翔,张鹏,李萍,陈丽琼,高健.二次相关QFD设计方法的应用研究[J].机电产品开发与创新, 2006, 19(2):1-4.
    [50] Thomas L. Saaty. A scaling method for priorities in hierarchical structures[J]. Journal of Mathematical Psychology, 1977, 15(3):234-281.
    [51]焦树锋. AHP法中平均随机一致性指标的算法及MATLAB实现[J].太原师范学院学报(自然科学版), 2006, 5(4):45-47.
    [52] Jason Lester Hill. System Architecture for Wireless Sensor Networks[D]. Berkeley, California, USA: University of California at Berkeley, Ph.D Thesis, 2003.
    [53] Huang Zhi,Liu San-Yang,Qi Xiao-Gang. Overview of Routing in Dynamic Wireless Sensor Networks[J]. International Journal of Digital Content Technology and its Applications, 2010, 4(4):199-206.
    [54]汪学清.无线传感器网络中连通与覆盖问题研究[D].哈尔滨:哈尔滨工程大学学位论文, 2006:28-34.
    [55]温俊,蹇强,蒋杰,窦文华.保证覆盖的无线传感器网络梯度部署方法[J].计算机工程与科学, 2008, 30(6):86-90.
    [56] A. Howard, M. J Mataric, G. S Sukhatme. Mobile Sensor Network Deployment Using Potential Fields: A Distributed, Scalable Solution to the Area Coverage Problem[C]. Proceedings of the 6th International Conference on Distributed Autonomous Robotic Systems, Fukuoka, Japan, 2002, 299-308.
    [57] Page L.B, Perry J.E. A practical implementation of the factoring theorem for network reliability[J]. IEEE Trans on Reliability, 1988, 37(3):259-267.
    [58]Theologou O.R., Carlier J.G.. Factoring and reductions for networks with imperfect vertices[J]. IEEE Trans on Reliability, 1991, 40(2):210-217.
    [59] Hang Su, Xi Zhang. Optimal Transmission Range for Cluster-Based Wireless Sensor Networks With Mixed Communication Modes[C]. Proceedings of the 2006 International Symposium on on World of Wireless, Mobile and Multimedia Networks(WOWMOM '06), 2006:7pp.-250.
    [60] PageL.B., Perry J. E. Reliability of directed networks using the factoring theorem[J].IEEE Trans on Reliability, 1989, 39(5):556-561.
    [61] Zhang H, Hou JC. Maintaining Sensing Coverage and Connectivity in Large Sensor Networks[R]. University of Illinois at Urbana Champaign, Tech Rep: UIUCDCS-R-2003-2351, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700