基于MCP的紫外光子计数探测器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界空间紫外天文台(WSO-UV/World Space Observatory Ultraviolet),是由俄罗斯牵头,中、德、意以及其它国家参与的空间天文项目,我国主要承担了长狭缝光谱仪(LSS/Long Slit Spectrograph)有效载荷的研制。LSS结构包括两个紫外光子计数成像探测器,其响应波长范围分别为102~170nm、160~320nm。
     本课题拟采用基于微通道板(MCP/Microchannel Plate)的感应读出方式紫外光子计数成像探测器。它具有信噪比高、背景噪声低、探测量子效率高、无漏电流影响和抗漂移、动态范围宽、大面阵、空间分辨和时间分辨较高以及耐辐射等优点,因此,该探测器更适合空间探测和天文观测。本文围绕近紫外探测器(NUVD/Near Ultraviolet Detector)关键技术开展研究工作。
     为使光电阴极在发射光电子时,电子能及时得到补充,高阻光阴极须制作在透明的导电基底上。采用真空镀膜法制备了不同厚度的Au、Al、Cr、Ni和掺锡氧化铟(ITO/Tin-doped Indium Oxide)五种薄膜导电基底,研究了其光电性能,为响应波段在160~320nm的光阴极选择合适的导电基底提供了实验依据。当面电阻为107/□左右,10nm厚的Ni薄膜在此波段的平均透过率为80%,而且性能稳定,因此,采用10nm厚的Ni薄膜为Cs_2Te阴极的导电基底。
     通过对CsI、KBr和KI光阴极性能研究分析,确定CsI光阴极为响应102-170nm波段的光阴极,并通过查阅大量文献确定了制备CsI光阴极的制备方法、发射方式、蒸发速率、衬底温度及一些防潮措施。通过对Cs_2Te和Rb2Te光阴极性能研究分析,确定Cs_2Te光阴极为响应160-320nm波段的光阴极及其制备方法。分别制备了以CsI和Cs_2Te为光阴极,以荧光屏为输出方式的两只样管,并通过亮度测试,检测光阴极的均匀性,证明了阴极制备工艺的可行性。
     当采用电荷感应读出方式时,电荷感应层Ge膜的电阻不同,电荷在膜层的扩散速度不同,从而导致成像电荷保持分布形状的时间常数不同,因此Ge膜的电阻是影响光子计数系统性能的重要参数。采用电子束真空蒸镀的方法制备了Ge膜,研究了不同衬底Ge膜晶相结构、表面形貌和各种工艺条件下的薄膜电阻,以及电阻对楔条型阳极(WSA/Wedge and StripAnode)光子计数成像系统性能的影响。实验证明,Ge膜电阻影响系统的性能,电阻较大时系统的计数率明显下降。该分析结果为采用感应读出方式光子计数成像系统的Ge膜制备提供了可靠依据。
     对感应读出方式成像原理进行研究,建立了感应读出电路理论模型,并通过实验证实该模型,解释了Ge膜方块电阻及衬底电容对感应读出成像性能的影响。此外,论述了电荷云尺寸对紫外光子计数系统成像性能的影响,着重研究了WSA阳极的调制和“S”畸变两种成像畸变机理。
     在NUVD制备过程中,已制备的Ge薄膜要经历真空烘烤除气等工艺过程,Ge薄膜的面电阻、晶格结构及表面形貌会发生变化,因此,真空热处理对Ge薄膜及光子计数成像系统性能的影响是值得关注的问题。研究了退火工艺对Ge薄膜及系统成像性能的影响,从而确定了退火工艺的关键参数——退火温度。系统成像实验的结果证实了采用陶瓷基底退火温度为250℃对系统的成像性能影响不大。因此,在器件制备工艺中,陶瓷基底以及250℃的退火温度是最佳选择。
     国内外文献报导的感应读出方式探测器皆采用Ge膜作为电荷感应层,首次采用Si薄膜作为电荷感应层,探讨了薄膜参数对成像性能的影响,并与采用Ge膜作为电荷感应层时系统成像性能进行了比较。实验也证明了适用感应方式光子计数成像探测器电荷感应层的薄膜不仅仅局限于一种,无论是Ge膜、Si膜或其它薄膜,若薄膜方块电阻更合适和薄膜更均匀致密,系统感应成像性能就能进一步优化。
     采用稳定且与实验中所用的光源(经滤光后的中心波长253.7nm)相匹配的透射式金阴极作为光电转换部件,较大地提高了感应成像系统的计数率,并将分辨率由100μm提高为75μm。
     通过在玻璃上蒸镀过渡金属膜的方法,提高In-Sn合金与玻璃的润湿性,并对焊料在薄膜表面的润湿性和润湿后的界面组织进行了研究分析。采用膜层结构Cr/Ni/Cu/Ag时,In-Sn合金在膜层上表现出良好的铺展性和润湿性,封接界面组织观察也表明,合金与膜层结构表层结合致密,无缝隙和孔洞出现。
     制作了感应读出方式微通道板NUVD样管,该样管采用了WSA阳极。简单测试了该探测器系统的探测效率及分辨率:分辨率优于350μm,计数率为1376counts/s。并针对测试中存在的问题,提出了搭建紫外探测器分辨率及线性度的测试系统的方案。
The World Space Observatory–Ultraviolet (WSO-UV) is a space telescope projectled by Russia, with contributions from a number of other countries in the world. In themission, Long Slit Spectrograph (LSS) instrument will provide low resolution spectrain the range102-320nm, the study of which is ongoing in China. Therefore, a task oftwo photon counting detectors respectively in the range102-170nm and160-320nmis being carried out.
     The ultraviolet photon counting imaging detector based on microchannel plate withinduction readout is adopted in this paper. Because it has many merits, such as lowbackground noise, high signal and nose ratio, high detection quantum efficiency,photon-counting sensitivity, long range, large format, radiation tolerance, high spaceresolution and time resolution, it is fit for being used in space detection and astronomyobservation. The research of this paper is focused on the key technology of the nearultraviolet detector (NUVD).
     The photocathodes with high resistance must be prepared on transparent conductivesubstrate in order that electrons are supplemented during photocathodes are emittingphotoelectrons. Five kinds of conductive thin films were prepared on MgF2substrateby vacuum deposition. The surface morphology, sheet resistance, microstructure andtransmittance curves in the wave band of190~800nm are investigated by opticalmicroscope (OM), four-probe method, high resistance meter, X-ray diffractomer(XRD) and spectrophotometer. Variation range of transmittance is acquired in thewave band of160~320nm when the sheet resistance reaches107/□. It is shownthat the average transmittance of Ni thin film is highest and is stable. Therefore, Nifilm with10nm is adopted for conductive substrate of Cs_2Te cathode.
     Through analysis on the performances of CsI, KBr and KI photocathodes, it isdetermined that CsI is the best one sensitive to the wavelength range of102-170nm.The preparation method, emission mode, evaporation rate, substrate temperature and some measures are also determined. Through analysis on the performances of Cs_2Teand Rb_2Te photocathodes, it is determined that Cs_2Te is the best one sensitive to thewavelength range of160-320nm. We prepared two prototypes with fluorescencescreen as readout and tested the uniformity of photocathodes, which shows that thepreparation technology is feasible.
     When the detector adopts induction readout method, the preparation parameters ofGe film will influence the performances of the photon counting imaging system. TheGe thin films were fabricated by electron beam evaporation. The structures of Ge thinfilms deposited on ceramic and quartz glass substrates and influences of technicalparameters on resistance were studied. The XRD analysis of thin films deposited onthe two substrates show that the thin films both have cubic amorphous Ge structure.The resistance can be controlled by anneal, depositing rate, or thickness of film. Theperformance of the system, which adopted Ge layers with different resistance,wasstudied. These results suggest that resistance of the charge induced layer influencesspatial resolution less than the counting rate.
     The imaging principle of induction readout mode is studied. In this paper, weestablished the theoretical model of induction readout circuit, explained the influenceof Ge film sheet resistance and substrate capacitance on the performances of thesystem, and validated it by experiments. In addition, the influence of charge cloudfootprint on this system was also discussed here, and Modulation,"S" distortion andtheir cause are focused. Then,Monte Carlo Simulations for anode decode withdifferent charge cloud size are presented.
     Annealing temperature during NUVD making process will affect properties of Gefilm, and consequently deteriorate the performance of detector. Therefore, theinfluence of annealing temperature on Ge films and detector is studied in order todetermine the crucial parameters. The Ge films are prepared on ceramic and quartzglass by electron gun, and then analyzed by scanning electron microscope (SEM),high resistance meter and XRD. The results suggest that the optimum choices ofsubstrate and annealing temperature are ceramic plate and250℃respectively.
     Presently, the detector with induction readout all adopted Ge film as charge induction layer. In this paper, we first adopted Si film and researched on theinfluences of film parameters on this system. Moreover, the performances of thissystem with two kinds of films were compared. The experiment testified that thecharge induction layer is not limited to Ge film. If only the sheet resistance is properand the structure is more uniform and compact, the kind of films can be used.
     The Au film with15nm thickness was adopted as transmission photocatode,because it is stable and matches the light source in this experiment (Mercury lamp andnarrow band optical filter of253.7nm). The results indicate that this measure canefficiently improve the resolution and count rate of this system.
     During the preparation process of image intensifiers, the technique of photocathodetransfer and indium seal not only makes device design more flexible but also canimprove gain, time and space resolution. However, it needs to be improved further inthe aspect of gas tightness. In this paper, metal multilayer films were prepared onglass substrate by vacuum deposition in order to improve the wettability of In-Snalloy with substrate. The wettability and spreading properties of In-Sn alloy with glassand the surfaces of five film structures were compared. The experiments of indiumseal indicated that the chance of leak is little when the film structure of glass/Cr/Ni/Cu/Ag was adopted.
     The prototype of ultraviolet photon counting imaging detector based on inductionreadout was proposed, which adopted Wedge and Strip Anodes (WSA) due to itsstructure is relatively simple. It has1375counts/s count rate and better than350μmresolution under this count rate. Aiming at the problems in the test, a test systemproject is proposed in order to acquire the more precise data of resolution and linearityof the detectors.
引文
[1] A. I. G mez de Castro, W. Wamsteker, M. Barstow. Fundamental problems in astrophysics.Astrophys Space Sci,2006,303:133-145
    [2] J. N. Bahcall, J. P. Ostriker. Unsolved problems in astrophysics. Princetonuniversity Press,1997
    [3] http://www.bao.ac.cn/kjz/TOP10/2007/2007top10/2007hax.htm
    [4] A. I. G′omez de Castro. On the source of the flaring activity in AB Doradus: the UV spectralsignatures. Monthly Notices of the R.A.S.,2002,332:409-421
    [5] A. J. Watson, T.M Donahue, J. C. G. Walker. The dynamics of a rapidlyescaping atmosphere–applications to the evolution of earth and Venus. Icarus.1981,48:150-166
    [6] http://news.gxradio.com/news/2006/1008/tpxw/093644.htm
    [7] http://txt.51dg.com/html/hwyd/20061125/51dg_3744.htm
    [8] http://oposite.stsci.edu/pubinfo/PR/2000/21/index.html
    [9] J. L. Linsky. Summary of the First NUVA Conference Space Astronomy: the UV Window tothe Universe. Astrophys Space Sci,2009,320:3-9
    [10] http://adsabs.harvard.edu/full/1996AJ....111..517N
    [11]程富华,程福臻. IUE卫星和类星体的紫外光谱.天文学进展.1989,7(3):200-209
    [12] http://hubblesite.org/the_telescope/hubble_essentials/
    [13] H. W. Moos, W. C. Cash, L. L. Cowie, et al. Overview of the far ultraviolet spectroscopicexplorer mission. The Astrophysical Journal.2000,538:1-10
    [14] D. C. Martin, J. Fanson, D. Schiminovich, et al. The Galaxy Ecolution Explorer a SpaceUltraviolet Survey Mission. The Astrophysical Journal.2005,619:1-9
    [15] http://ast.cable.nu/~bill/astro/hst/hst.htm
    [16] I. Pagano, M. Rodon. The world space observatory project for ultraviolet. Chinese Journalof Astronomy and Astrophysics.2006,6:377-382
    [17] http://www.sciencenet.cn/html/shownews.aspx?id=199708
    [18] M. A. Barstow, L. Binette, N. Brosch, et al. The WSO, a world-class observatory for theultraviolet. Proc. of SPIE.2003,4854:364-374
    [19] M. H. Huang, M. A. Barsow, Z. Y. Chen, et al. The Long Slit SpectrogrphOnboard the WorldSpace Observatory—Ultraviolet. Proc. of SPIE.2008,7011:70111Y1-8
    [20]阮宁娟,苏云.国外紫外空间探测器发展综述.航天返回与遥感.2008,29(3):71-78
    [21] http://heasarc.gsfc.nasa.gov/docs/euve/euve.html.
    [22] http://tech.dayoo.com/gb/content/2004-08/09/content_1669978.htm.
    [23]徐克尊,陈向军,庞文宁,等.一维电阻阳极位置灵敏探测器的研制.核技术,1994,17(9):517-520
    [24]贾昌春,陈向军,田善喜,等.基于微通道板的二维位置灵敏探测器的研制.核技术,1999,22(3):153-156
    [25]赖的是,张文新,庞文宁,等.一维电阻阳极位置灵敏探测器.核电子学与探测技术,1998,18(1):54-56
    [26]朱小龙,马新文,沙杉,等.基于微通道板的二维成像探测器.原子与分子物理学报,2004,4(supplement):205-207
    [27]戴丽英,徐华盛,李慧蕊,等.128×128阵列MAMA器件.光电子技术,1999,19(2):117-120
    [28]赵文锦,徐汉成,马健一,等.256*256型矩阵阳极组件的设计和工艺研究.光电子技术,2003,23(4):233-235
    [29]黄钧良. MAMA紫外探测器系统与高增益MCP.红外技术,1997,19(5):39-44
    [30]缪震华.基于楔条形阳极探测器的单光子成像系统.西安:西安光学精密机械研究所,2008:3-9
    [31]张兴华.紫外光子计数成像系统关键技术研究.西安:西安光学精密机械研究所,2009:35-37
    [1]吕可诚,张春平,张光寅,等.生物光子学进展.光子学报,1997,26(12):1123-1129
    [2]赵占娟,李光,杨卫星,等.不同光波长下大光金鱼花叶片超微弱发光的光子计数统计.植物生理学通讯,2008,44(3):539-542
    [3] S. Feuerlein, E. Roessl, R. Proksa, et al. Multienergy photon-counting K-edge imaging:potential for improved luminal depiction in vascular imaging. Radiology,2008,249(3):1010-1016
    [4] V. Becker. Multi-dimensional time-correlated single photon counting: a fast and efficientoptical recording technique for biomedical spectroscopy. Journal of Shenzhen UniversityScience and Engineering,2008,25(3):221-231
    [5]朱磊,黄庚华,欧阳俊华,等.光子计数成像激光雷达时间间隔测量系统研究.红外与毫米波学报,2008,27(6):461-464
    [6]印建平,顾华俭.光子计数技术用于SEM二次电子信号检测的理论探讨.苏州大学学报(自然科学),1990,6(1):102-106
    [7]唐宇,王洪,邓诚先,等.基于光纤束传感器结构的激光诱导荧光检测系统的研制.传感技术学报,2007,20(12):2713-2715
    [8]高峰,和慧园,马烝.基于时间分辨反射测量的混浊介质光学参数计算方法.天津大学学报,2008,41(6):757-761
    [9]邱健,杨冠玲,何振江,等.基于紫外荧光法的大气SO2气体浓度分析仪.仪器仪表学报,2008,1:174-178
    [10]徐伟,谢志行,戴戈,等.时辨光子计数法测量单泡声致发光光谱.上海交通大学学报,2006,40(5):873-876
    [11] B. Su, V. Katsoulidou, W. Becker. Recording fast time-series of fluorescence lifetime imagesby TCSPC FLIM. Journal of Shenzhen University Science and Engineering,2008,25(3):238-243
    [12]李光,赵占娟,焦小雪,等.叶片衰老过程中的光子计数统计实验研究.河南大学学报(自然科学版),2008,28(4):360-364
    [13]赵慧,王银海.用单光子计数系统测量长余辉材料的发光.大学物理实验,2007,20(3):40-42
    [14]赵勋杰,石万山.光子成像计数及其应用.光电对抗与无源干扰,2002,3:1-4
    [15]金玉峰,黄敏.光子计数成像器件.真空科学与技术学报,1998,18(6):459-464
    [16] O.Jagutzki, J. S. Lapington, L. B. C. Worth, et al. Position sensitive anodes for MCP read-outusing induced charge measurement. Nucl.Instr. and Meth.A.,2002,477:256-61
    [17] J. Barnstedta, M. Grewing. Development and characterisation of a visible light photoncounting imaging detector system. Nucl.Instr. and Meth.A,2002,477:268-72
    [18] J. S. Lapington, S. Chakrabarti, T. Cook, et al. A position sensitive detector for SPIDR-amission to map the cosmic web. Nucl.Instr. and Meth.A,2003,513:159-162
    [19] J. M. Maia, D. Mormann, A. Breskin. Single-UV-photon2-D imaging with multi-GEMdetectors. Nucl.Instr. and Meth.A.,2007,580:373-376
    [20]缪震华.基于楔条形阳极探测器的单光子成像系统.西安:西安光学精密机械研究所,2008:15-17
    [21]安毓英,曾小东.光电探测原理.西安电子科技大学出版社.2004
    [22] M. Saito, Y. Satio, T. Mukai, et al. Spatial charge cloud size of microchannel plates. Rev. Sci.Instrum.,2007,78(2):0233021-0233027
    [23] C. Martin, P. Jelinsky, M. Lampton, et al. Wedge-and-strip anodes for centroid-findingsensitive photon and particle detectors, Rev. Sci. Instrum.1981,52(7):1067-1074
    [24]繆震华,赵宝升,刘永安,朱香平,楔条形阳极探测器位置灵敏的理论计算,光子学报,2007,36(12):2215-2218
    [1] G. Brage, J. E. Graebner, B. I. Halperin, et al. Nonlinear phonon in fused silica below1K.Appl. Opt.,1973,31(6):223-337
    [2] M. J. Dodge. Refractive properties of magnesium fluoride. Appl. Opt.,1984,23(12):1980-1985
    [3] J. H. Burnett, H. L. Zachary, L. Eric. Intrinsic birefringence in calcium fluoride and bariumfluoride. Shirley Physical Review B,2001,64(24):241102-241105
    [4] H. Malitson. A redetermination of some optical properties of calcium fluoride. Appl. Opt.1963,2(11):1103-1107
    [5] H. Malitson. Interspecimen comparison of the refractive index of fused silica. Journal of theOptical Society of America,1965,55(10):1205-1209
    [6] A. H.萨默光电发射材料(第一版)1979(北京:科学出版社)第193页
    [7]李慧蕊,戴丽英. MgF2光窗性能与洁净工艺的研究.真空电子技术,1997,1:15-17
    [8]薛春荣,易葵,魏朝阳,等.真空紫外到深紫外波段基底材料的光学特性.强激光与离子束,2009,21(2):287-290
    [9] P. Laporte, J. L. Subtil, M. Courbon, et. al. Vacuum-ultraviolet refractive index of LiF andMgF2in the temperature range80-300K. Optical Society of America,1983,73(8):1062-1069
    [10] A. Braem, C. Joram, F. Piuz, et al. Technology of photocathode production. Nucl. Instr. andMeth. A,2003,502(1):205-210
    [11]牛惠辉.条纹管光电阴极导电基底的研制.光学机械,1990,3:5-8
    [12]李佳,庞其昌,彭文达,等.选能式象增强器的新型导电基底.2000,光子学报,29(9):861-864]
    [13] A. H.萨默光电发射材料(第一版)1979(北京:科学出版社)第197页
    [14]雷志远,常增虎,侯洵,等.用于高速摄影变象管的软X射线光电阴极.高速摄影与光子学,1989,18(3):235-244
    [15] L. J. Meng, F. Placido. Annealing effect on ITO thin films prepared by microwave-enhanceddc reactive magnetron sputtering for telecommunication applications. Surf. Coat. Techn.,2003,166:44~50
    [16] J. Herrero, C. Guillen. Improved ITO thin films for photovoltaic applications with a thin ZnOlayer by sputtering. Thin Solid Films,2004,451~452:630~633
    [17] M. J. Alam, D. C. Cameron. Optical and electrical properties of transparent conductive ITOthin films deposited by sol-gel process. Thin Solid Films,2000,377~378:455~459
    [18]辛琦,李文连,李天乐,等.基于迭层结构的高效红色有机电致发光器件.光学学报,2008,28(10):2002~2005
    [19]钟高余,周素云,陈冠雨,等.有机发光器件的一种失效机制.光学学报,2008,35(1):35~38
    [20]娄双玲,于军胜,黎威志,等.基于新型空穴传输材料的有机电致发光器件的研究.光学学报,2007,27(8):1455~1459
    [21]马凤英,苏建坡,程东明,等.高效高亮度有机红色微腔发光二极管.光学学报,2007,36(8):1397~1399
    [22] J. K. Sheu, Y. K. Su. Effects of thermal annealing on the indium tin oxide Schottky contactsof n-GaN. Applied Physics Letters,1998,72(25):3317~3319
    [23]沈伟东,刘旭,叶辉,等.确定薄膜厚度和光学常数的一种新方法.光学学报,2004,24(7):885~889
    [24]朱小娟,李新贝. ITO透明导电薄膜的制备工艺研究[J].光电子技术,2008,9(3):202~206
    [25] V. Teixera, H. N. Cui, L. J. Meng et al.. Amorphous ITO thin films prepared by DCsputtering for electrochromic applications. Thin Solid Films,2000,420~421:70~75
    [26]孙兆奇,曹春斌,宋学萍,等.氧化铟锡薄膜的椭偏光谱研究.光学学报,2008,28(2):403~408
    [27]夏冬林,杨晟,王树林,等. ITO薄膜直流反应磁控溅射制备及性能研究.材料导报,2005,19:113~117
    [28]许晶,桂太龙,梁丽超等.真空蒸镀ITO薄膜退火特性分析.哈尔滨理工大学学报,2007,13(1):93~95
    [1] Breskin. CsI UV photocathodes: History and mystery. Nucl. Instr. Meth. A,1996,371:116-136
    [2] W. E. Spicer, A. Herrera-Gomez. Modern theory and applications of photocathodes inphotodetectors and power meters. Proc. SPIE,1993,2022:18-35
    [3] P. D. Townsend. Photocathodes-past performance and future potential. ContemporaryPhysics,2003,44:17-34
    [4] D. P. Lowney, P. A. Heimann, E. M. Gullikson, et al. Characterization of CsI photocathodesat grazing incidence for use in a unit quantum efficiency x-ray streak camera. Proc. SPIE,2004,5194:139-148
    [5] F. Sauli. GEM: A new concept for electron amplification in gas detectors. Nucl. Instr. Meth A,1997,386:531-534
    [6] A. Breskin, M. Balcerzyk, R. Chechik, et al. Recent advances in gaseous imagingphotomultipliers. Nucl. Instr. Meth. A,2003,513:250-255
    [7] A. S. Tremsin, O. H. W. Siegmund. The quantum efficiency and stability of UV and softX-ray photocathodes. Proc. of SPIE,2005,5920:592001(1-13)
    [8] D. J. Sahnow, H. W. Moos, T. B. Ake, et al. On-orbit performance of the Far UltravioletSpectroscopic Explorer satellite. Astrophysical J.,2000,538: L7-L11.
    [9] J. I. Larruquert, J. A. Mendez, J. A. Aznarez, et al. Optical constants of as-deposited andmodified alkali halides, and the effect on their VUV quantum efficiency, Proc. SPIE,1999,3765:789-798
    [10] J. I. Larruquert, J. A. Mendez, J. A. Aznarez. Optical properties and quantum efficiency ofthin film alkali halides in the far ultraviolet. Applied Optics,2002,41:2532-2540
    [11] A. S. Tremsin, O. H. W. Siegmund. Heat enhancement of radiation resistivity of evaporatedCsI, KI and KBr photocathodes. Nucl. Instr. Meth. A,2000,442:337-341
    [12] A. S. Tremsin, O. H. W. Siegmund. The stability of quantum efficiency and visible lightrejection of alkali halide photocathodes. Proc. SPIE,2000,4013:411-420
    [13] A. S. Tremsin, J. F. Pearson, A. P. Nichols, et al. X-ray-induced radiation damage in CsI,Gadox, Y2O2S and Y2O3thin films. Nuclear Instruments and Methods in Physics Research A,2001,459:543-551
    [14] J. Vavra, A. Breskin, A. Buzulutskov, et al. Study of CsI photocathodes: Volume resistivityand ageing. Nucl. Instr. Meth. A,1997,387:154-162
    [15] A. S. Tremsin, S. Ruvimov, O. H. W. Siegmund, et al. Structural transformation of CsI thinfilm photocathodes under exposure to air and UV irradiation. Nuclear Instruments andMethods in Physics Research A,2000,447:614-618
    [16] A. S. Tremsin, O. H. W. Siegmund. UV radiation resistance and solar blindness of CsI andKBr photocathodes. IEEE Trans. Nucl. Sci.,2001,48:421-425
    [17] A. S. Tremsin, O. H. W. Siegmund. Quantum efficiency and stability of alkali halide UVphotocathodes in the presence of electric field. Nucl. Instr. Meth. A,2003,504:4-8
    [18] J. Vavra. Physics and chemistry of aging-early developments. Nucl. Instr. Meth. A,2003,515:1-14
    [19] A. Braem, M. Davenport, A. Di Mauro, et al. Aging of large-area CsI photocathodes for theALICE HMPID prototypes. Nucl. Instr. Meth. A,2003,515:307-312
    [20] R. M. Wilson, W. E. Pendleton, R. T. Williams. Atomic-force microscopy ofultraviolet-induced surface erosion on potassium-iodide. Radiation Effects and Defects inSolids,1994,128:79-88
    [21] R. M. Wilson, R. K.R. Thomar, W. E. Pendleton, et al. Defect processes induced byelectronic excitation at halide crystal-surfaces. Nucl. Instr. Meth. B,1994,91:12-21
    [22] M. Huisinga, N.Bouchaala, R. Bennewitz, et al. The kinetics of CaF2metallization inducedby low-energy electron irradiation. Nucl. Instr. Meth. B,1998,141:79-84
    [23] S. R. Jelinsky, O. H. W. Siegmund, J. A. Mir. Progress in soft X-ray and UV photocathodes.Proc. SPIE,1996,2808:617-625
    [24] M. A. Nitti, A. Valentini, G. S. Senesi, et al. Ion-beam sputtering deposition of CsI thin films.Appl. Phys. A,2005,80:1789-1791
    [25] B. K. Singh, E. Nappi. Role of the substrate reflectance and surface-bulk treatments in CsIquantum efficiency. Nucl.Instr and Meth.A,2003,502:108-111
    [26] M. A. Nitti, G. S. Senesi, A. Liotino, et al. Influence of the film deposition rate and humidityon the properties of thin CsI photocathodes. Nucl.Instr and Meth.A,2004,523:323-333
    [27] C. I. Coleman. Field-enhancement of photoemission from cesium telluride. Applied Optics,1978,17:1789-1796
    [1] H.萨默.光电发射材料.北京:科学出版社,1979,344-345
    [2]董亚强,吕忠诚.双铟封技术的工艺研究.光电子技术,1994,14(3):223-226
    [3]董亚强.铟封中铟与玻璃表面结合状态的研究.真空电子技术,1994,5:15-18
    [4]徐江涛.透射式GaAs光电阴极激活技术研究.应用光学,2000,21(4):5-7
    [5]徐江涛,程耀进,师宏立.微光器件铟封漏气因素分析.真空电子技术,2008,5:47-49
    [6]徐江涛.二代近贴微光管光电阴极转移热铟封技术.应用光学,1996,17(3):10-13
    [7]崔大田,王志法,姜国圣,周俊. Au-19.25Ag-12.80Ge钎料的焊接性能研究.稀有金属,2008,32(3):269-273
    [8] K. S. Kim, S. H. Huh, K. Suganuma. Effects of intermetallic compounds on properties ofSn-Ag-Cu lead-free soldered joints. Journal of Alloys and Compounds,2003,352:226-236
    [9]马广才,李文,李宏,张海峰,胡壮麒. In-Sn合金熔体在非晶和晶态Cu46Zr45Al7Gd2合金上的润湿性及界面特性.金属学报,2006,42(2):201-204
    [10]金浩,马元远,王德苗.铁氧化表面无钎焊接薄膜的磁控溅射制备研究.真空科学与技术学报,2008,28(4):341-345
    [11]李良锋,丘泰,杨建等.(Ag-Cu28)80-Inx-Sn20-x合金焊粉的制备及熔化特性研究.有色金属,2008,4:30-33
    [12] K. W. Moon, W. J. Boettinger, U. R. Kattner, et al. Experimntal and termodynamicassessment of Sn-Ag-Cu solder alloys. Journal of Alloys and Compounds,2000,29:1122-1136
    [1]李伟,赵宝升,赵菲菲,等.双近贴式X射线像增强器成像不均匀性的分析与校正.光子学报,2009,38(6):1353-1357
    [2] J. S. Lapington. A comparision of readout techniques for high-resolution imaging withmicrochannel plate detectors. Nucl. Instr. and Meth. A,2004,525:361-365
    [3] O. Jagutzki, J. Barnstedt, U. Spillmann, et al. Proc.SPIE,1999,3764:61-69
    [4]张兴华,赵宝升,缪震华,等.紫外单光子成像系统的研究.物理学报,2008,57:4238-4243
    [5] Miao Zhen-hu, Zhao Bao-Sheng, Zhang Xing-Hua, et al. A single photon imaging systembased on Wedge and Strip Anode. Chin. Phys. Lett.,2008,25:2698-2701
    [6] J. S. Lapington. Microchannel plate image readouts: in search of high resolution and countrate. Nucl. Instr. and Meth. A,2003,513:132-135
    [7] J. M. Maia, D. M rmann, A. Breskin, et al. Single-UV-photon2-D imaging with multi-GEMdetectors. Nucl. Instr. and Meth. A2007,580:373-376
    [8] J. S. Lapington, S. Chakrabarti, T. Cook, et al. A position sensitive detector for SPIDR-amission to map the comic web. Nucl. Instr. and Meth. A,2003,513:159-162
    [9]陈杰,黎遥,吴光,等.偏振稳定控制下的量子密钥分发.物理学报,2007,56:5243-5247
    [10]孙怡雯,屈军乐,赵羚伶,等.眼底视网膜色素上皮层细胞脂褐素及氧化黑色素自体荧光寿命成像研究.物理学报,2008,57:772-777]
    [11]张建英,郝书顺.单光子计数系统的研制.无线电通信技术,2002,28(4):63~64
    [12]刘华峰.利用作用深度信息提高正电子断层成像仪分辨率一致性.物理学报,2006,55(10):5186~5188
    [13]朱香平,赵宝升,刘永安,等.30.4nm极紫外成像探测器的实验研究.光学学报,2008,28(10):1925~1929
    [14]顾牡,王迪,倪晨等.一种基于微通道板的脉冲X射线时间谱仪.光学学报,2008,28(4):813~816
    [15]曹根瑞,俞信,胡新奇.光子计数成像计数及其应用.光学学报,1996,16(2):167~172
    [16]缪震华,赵宝升,刘永安,等.楔条形阳极收集器的参量设计与工艺优化.光子学报,2008,37(1):11~16
    [17]缪震华,赵宝升,刘永安,等.楔条形阳极收集器的参量设计与工艺优化.光子学报,2008,36(12):2215~2218
    [18]田民波.薄膜技术与薄膜材料[M].北京:清华大学出版社,2006:216
    [19]张大伟,洪瑞金.离子辅助沉积中离子束流密度的作用.光子学报,2005,34(3):477~480
    [20]张宇峰,张溪文,任兆杏等.离子束辅助薄膜沉积.材料导报,2003,17(11):40~43
    [21] D. Céolin, G. Chaplier, M. Lemonnier, et al. High spatial resolution two-dimensional positionsensitive detector for the performance of coincidence experiments. Rev. Sci. Instrum.,2005,76:0433021-7
    [22] J. V. Vallerga, G. C. Kaplan, O. H. W. Siegmund, et. al. Imaging characteristics of the extremeultraviolet explorer microchannel plate detectors. IEEE Trans. Nucl. Sci.,198936:881-886
    [23] X. H. Zhang, B. S. Zhao, F. F. Zhao, et al. The estimation of charge footprint size ofultraviolet photon counting imaging detector with induction readout. Rev. Sci. Instrum.,2009,80:0331011-5
    [24]赵菲菲,赵宝升,张兴华,等. Ge薄膜特性及其在光子计数成像系统中的应用.光学学报2009,29:3236-3240
    [25] A. Smith, R. Kessel, J. S. Lapington, et al. Modulation effects in wedge and strip anodeRev.Sci.Instrum.1989,60:3509-3516
    [26] M. Saito, Y. Saito, K. Asamura, et al. Spatial charge cloud size of microchannel plates. Rev.Sci. Instrum.,2007,78:0233021-7
    [27] G. J. Price, G. W. Fraser. Calculation of the output charge cloud from a microchannel plate.Nucl. Instr. and Meth. A,2001,474:188-196
    [28] A. S. Tremsin, O. H. W. Siegmund. Spatial distribution of electron cloud footprints frommicrochannel plates: measurements and modeling. Rev. Sci. Instrum.,1999,70:3282-3288
    [29] S. E. Grantham, E. J. Miesak, Reese P. C. T., et al. Optimum microchannel plate(MCP)configuration for use in high-speed, high-resolution X-ray imaging. Proc.SPIE,1994,2273:108-117
    [30]张兴华、赵宝升、刘永安、缪震华、朱香平、赵菲菲.紫外单光子成像系统增益特性研究.物理学报,2009,58(3):779-1784
    [31] X. R. Jiang, C. N. Berglund, and A. E. Bell. Photoemission from gold thin films forapplication in multiphotocathode arrays for electron beam lithography. J. Vac. Sci. Technol. B,1998,16(6):3374-3378

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700