高脂、高糖对HPA轴功能影响及分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:海马负责HPA轴的负反馈调节。本研究探讨血浆高游离脂肪酸(FFA)是否通过改变海马糖皮质激素受体(GR)、盐皮质激素受体(MR)、11β-羟类固醇脱氢酶1(11β-HSD1)或诱导型一氧化氮合酶(iNOS)的表达,从而“损伤”海马、激活HPA轴。
     方法:20只成年雌性Sprague-Dawley大鼠分成两组,一组输注20%脂肪乳(FFA组,n=10),另一组输注0.9%生理盐水作为对照组(NS组,n=10)。留取0分钟血浆后以2ml/小时速度开始输液共持续180分钟,输液结束后将老鼠迅速断头取血备用,摘取脑组织、速冻,供海马原位杂交和免疫组化使用。
     结果:(1)输注NS不能升高血浆FFA浓度,而FFA组180分钟的血浆FFA浓度明显升高,是其输液前5.1倍。(2)两组的基础ACTH和皮质酮浓度无差异。比较输液前后的净改变量,FFA组的ΔACTH(15.6±10.2 pg/ml)明显高于NS组的ΔACTH(2.6±3.9 pg/ml)。与基础值相比,两组180分钟的皮质酮水平均下降,但FFA组下降幅度(104.6±193.1 ng/ml)明显低于NS组的Δ皮质酮(187.2±167.3 ng/ml)。相对NS组而言,输注脂肪乳轻度激活HPA轴。(3)与NS组相比,FFA组海马CA4亚区锥体细胞的11β-HSD1蛋白表达水平以及mRNA水平均明显减少。但是FFA组海马CA4亚区锥体细胞的iNOS蛋白表达水平以及mRNA水平却明显增加。(4)两组海马结构的GR与MR蛋白表达水平以及mRNA水平无明显差异。
     结论:本研究的结果支持FFA可能“损伤”海马激活HPA轴的假说。这种激活机制可能是由于FFA下调海马局部11β-HSD1的表达、上调iNOS的表达,减弱了海马对HPA轴的抑制调控。
     目的:了解多囊卵巢综合症(PCOS)患者空腹血浆皮质醇浓度的变化及其影响因素,以及短期高糖或高胰岛素刺激对其皮质醇水平的影响,同时了解PCOS患者胰岛β细胞功能状况。
     方法:84例PCOS患者分为肥胖组(肥胖或超重, n=34)和非肥胖组(正常体重,n=50人);20名正常体重的健康妇女作为对照组。所有受试者先行口服75g无水葡萄糖耐量试验(OGTT),隔天空腹进行60分钟高糖刺激(静脉葡萄糖耐量试验,IVGTT)和120分钟高胰岛素-正糖钳夹术(简称正糖钳夹术)。测定空腹葡萄糖、胰岛素浓度,以及IVGTT、正糖钳夹术期间的皮质醇浓度(0,60,180分钟三个点),皮质醇的相对变化即下降幅度:Δ皮质醇x=空腹皮质醇—皮质醇x (x指时间)。胰岛素敏感性(IS)采用正糖钳夹术阶段胰岛素介导的葡萄糖代谢率(M值,mg.kg-1.min-1)表示。胰岛β细胞功能(βF)采用IVGTT第一时相胰岛素分泌量(AIR)评估。葡萄糖处置指数(DI)= IS×AIR
     结果:(1)肥胖PCOS组空腹皮质醇浓度(158.85±78.76 ng/ml)明显低于非肥胖PCOS组(210.70±108.65 ng/ml)和对照组(231.23±89.21ng/ml),而非肥胖组与对照组间无明显差异。(2)高糖刺激结束后,即60分钟时肥胖组血浆皮质醇浓度(87.66±33.74 ng/ml)仍然最低,与正常对照组(141.46±45.84 ng/ml)相比较仍有显著差异,但与非肥胖组(123.76±86.98 ng/ml)的差别已经不明显,而非肥胖组与对照组之间无差异。比较各组60分钟时血浆皮质醇的相对变化Δ皮质醇60,三组间并无差别(肥胖组:65.03±59.28 ng/ml;非肥胖组:86.62±66.71 ng/ml;对照组:89.77±74.26 ng/ml)。(3)高胰岛素刺激结束后,即180分钟时三组的皮质醇浓度已无差异(肥胖组:116.07±48.53 ng/ml;非肥胖组:120.53±83.65 ng/ml;对照组:123.20±53.61 ng/ml)。但是肥胖组血浆皮质醇的相对变化Δ皮质醇180最小(39.28±72.94 ng/ml),与非肥胖组(89.89±102.49 ng/ml)和对照组(108.03±108.17 ng/ml)相比较,存在明显差异。非肥胖组与对照组之间无差异。(4)对84例PCOS患者进行两两相关分析结果显示空腹皮质醇与M值、BMI、空腹血糖存在负相关,相关系数r分别为-0.241、-0.230、-0.253,p值均<0.05。空腹皮质醇和空腹胰岛素的相关系数为-0.200, p=0.071,其相关性可疑。以空腹皮质醇为应变量,多元回归分析的结果提示M值、BMI、空腹胰岛素3个自变量被纳入回归模型中,反而空腹血糖没被引入回归模型中。(5)三组间AIR差别无统计学意义,但PCOS患者有增高趋势,尤以肥胖者明显(P=0.074)。非肥胖和肥胖PCOS组DI比对照组降低,但前两组间差别无统计学意义。
     结论:本研究显示PCOS患者基础皮质醇水平不仅与体重有关,还与胰岛素敏感性和空腹胰岛素水平有关;短期高糖刺激并不影响PCOS患者HPA轴的功能;肥胖PCOS患者基础皮质醇水平降低,但是经过大剂量胰岛素刺激后皮质醇水平和其它两组并无差异,提示短期高剂量胰岛素可能会激活肥胖PCOS患者的HPA轴;此外,PCOS患者糖刺激后第一时相胰岛素分泌无降低,但其葡萄糖处置指数降低,提示胰岛β细胞对胰岛素抵抗代偿能力下降。
Objective Hippocampus controls HPA axis negative feedback. The current study aimed to test the hypothesis whether the activation of the HPA axis response to high FFA was due to the lesions of hippocampus, which was associated with the altered expression of GR, MR, 11β-HSD1 or iNOS in hippocampus.
     Methods After baseline (0 minute) sample was obtained, 20% Intralipid (FFA group, n=10) or 0.9% saline (as control, NS group, n=10) was infused IV (2ml/h) into Sprague-Dawley rats for 180 minutes. Rats were killed by decapitation after injection, and trunk blood were stored for future measures. For in situ hybridization and immunohistochemistry, whole brains from animals were dissected and immediately frozen.
     Results (1)Infusion of Intralipid into rats elevated plasma FFA up to 5.1-fold above basal values (preinfusion) at 180 min. There was no influence on FFA levels after saline infusion(.2)There was no significantly difference in basal ACTH and corticosterone levels between FFA and NS groups. The net change in ACTH (ΔACTH: FFA,15.6±10.2 pg/ml; NS, 2.6±3.9 pg/ml, respectively)during infusion was higher in FFA group than that in NS group. In comparison with basal corticosterone levels, plasma corticosterone levels at 180 min were lower in the two groups. However, the magnitude of decrease in corticosterone levels was significantly less in FFA group compared with NS group (Δcorticosterone: FFA, 104.6±193.1 ng/ml; NS, 187.2±167.3 ng/ml, respectively). The current study showed that administering Intralipid mildly activated the axis compared with NS group.(3)In FFA group, 11β-HSD1 mRNA and protein levels were significantly decreased in the pyramidal cells in hippocampal CA4 subregion compared with NS group. However, Intralipid infusion significantly increased iNOS mRNA and protein levels in the pyramidal cells in the CA4 field of hippocampus.(4)Neither GR mRNA nor protein levels in the hippocampal formation differed between FFA and NS group. Moreover, there was no significant effect on MR mRNA and protein levels in the hippocampal formation after Intralipid infusion.
     Conclusion Our findings support the hypothesis that FFA would impair hippocampus and then stimulate the HPA axis. The mechanism of the action of FFA might be attributable to down-regulation of 11β-HSD1 and up-regulation of iNOS expression in hippocampus.
     Objective To measure the basal levels of cortisol in patients with Polycystic Ovarian Syndrome (PCOS), analyze its associations with correlative factors, investigate the effects of short-term hyperglycemia or hyperinsulinemia per se on their plasma cortisol concentrations, and evaluate isletβ-cell function in women with PCOS.
     Methods 84 PCOS patients divided into two groups (obese group, n=34; non-obese group, n=50) and 21 age-matched healthy women were recruited. All subjects received oral glucose tolerance test (OGTT). After an overnight fasting, an acute 60-minute glucose stimulation was performed by intravenous glucose tolerance test followed by a 120-minute euglycemic hyperinsulinemic clamp. Basal glucose, insulin, and cortisol during IVGTT and euglycemic clamp at 0, 60 and 180 minute (cortisol0, cortisol60 and cortisol180) were measured. The net change in cortisol during IVGTT and euglycemic clamp was calculated asΔcortisolx= cortisol0-cortisolx (x meaned time). Insulin sensitivity (IS) calculated as the glucose infusion rate during the euglycemic clamp phase (M value, mg﹒kg-1﹒min-1). Isletβ-cell function was reflected through acute insulin response (AIR) of IVGTT. Glucose disposition index (DI) = IS×AIR.
     Results 1)Basal cortisol levels were similar between the non-obese PCOS group and control groups, and significantly higher than that in the obese PCOS group. 2)The cortisol-60 levels after short-term hyperglycemic challenges were lower in the obese PCOS group than that in the control group, Whereas the net change in cortisol during IVGTT did not significantly differ among the groups. 3)Although the cortisol-180 levels after euglycemic clamp were similar among the groups, the magnitude of the net change in cortisol was significantly less in the obese PCOS group than that in the other groups. 4)In the group of 84 PCOS subjects, simple Pearson correlations showed a negative relationship between basal cortisol with either M value, BMI, or fasting glucose (r=-0.241, -0.230, -0.253 , respectively; all p value <0.05). A shady correlation was found between basal cortisol and fasting insulin (r=0.200; p=0.071). However, with basal cortisol as the independent variable, M value, BMI, fasting glucose and fasting insulin as dependent variables, multiple regression analysis showed that the significance of fasting glucose on basal cortisol was removed when fasting insulin was added as a covariate. 5)AIR was similar in three groups, but there was a trend of increase in women with PCOS patients, especially for the obese(P=0.08). DI was lower in non-obese and obese PCOS patients than that in healthy women, and no significant difference was found between the non-obese and obese PCOS group.
     Conclusion Our data suggest that basal level of cortisol correlates not only with body weight, but also with insulin sensitivity and fasting insulin level in patients with PCOS. In present study we did not observe changes in cortisol concentrations after short-term hyperglycemic challenges. Although basal cortisol levels decreased in the obese or overweight patients with PCOS, the cortisol180 levels after short-term hyperinsulinemic challenges were similar among the groups. It suggested that a rise in plasma insulin might moderately activate the HPA axis of obese PCOS patients. Acute insulin response to glucose in women with PCOS doesn’t decrease, but compensatory ability of isletβ-cell for insulin resistance is deficient.
引文
[1] Sylvie F, Sergio M, Ivet E, et al. Adipose Overexpression of Phosphoenolpyruvate Carboxykinase Leads to High Susceptibility to Diet-Induced Insulin Resistance and Obesity [J]. Diabetes, 2006; 55(2): 273-280.
    [2] Girard J. Contribution of free fatty acids to impairment of insulin secretion and action. mechanism of beta-cell lipotoxicity [J]. Med Sci (Paris), 2005; 21(9): 19-25.
    [3] Anderwald C, Roden M. Adipotoxicity and the insulin resistance syndrome [J]. Pediatr Endocrinol Rev. 2004; 1(3): 310-319.
    [4] Qi D, An D, Kewalramani G, et al. Altered cardiac fatty acid composition and utilization following dexamethasone-induced insulin resistance [J]. Am J Physiol Endocrinol Metab, 2006; 291(2): 420-427.
    [5] Darmon P, Dadoun F, Boullu C S, et al. Insulin resistance induced by hydrocortisone is increased in patients with abdominal obesity [J]. Am J Physiol Endocrinol Metab, 2006; 291(5): 995-1002.
    [6] Widmaier E P, Margenthaler J and Sarel I. Regulation of pituitary-adrenocortical activity by free fatty acids in vivo and in vitro [J]. Prostaglandins Leukot Essent Fatty Acids, 1995; 52(2-3): 179-183.
    [7] Subramanian S, Derosa M A, Bernal M C, et al. PPAR {alpha} activation elevates blood pressure and does not correct glucocorticoid-induced insulin resistance in humans [J]. Am J Physiol Endocrinol Metab, 2006; 291(6): 1365 – 1371.
    [8] Rimanoczy A, Slamberova R, Bar N, et al. Morphine exposure prevents up-regulation of MR and GR binding sites in the brain of adult male and female rats due to prenatal stress [J]. Int J Dev Neurosci, 2006; 24(4): 241-248.
    [9] Galeeva A, Ordyan N, Pivina S, et al. Expression of glucocorticoid receptors in the hippocampal region of the rat brain during postnatal development [J]. J Chem Neuroanat, 2006; 31(3): 216-225.
    [10] Derijk R H, Schaaf M, Stam F J, et al. Very low levels of the glucocorticoid receptor beta isoform in the human hippocampus as shown by Taqman RT-PCR and immunocytochemistry [J]. Brain Res Mol Brain Res, 2003; 116(1-2): 17-26.
    [11] Shoener J A, Baig R and Page K C. Prenatal exposure to dexamethasone alters hippocampal drive on hypothalamic-pituitary-adrenal axis activity in adult male rats [J]. Am J Physiol Regul Integr Comp Physiol, 2006; 290(5): 1366-1373.
    [12] Poletto R, Steibel J P, Siegford J M, et al. Effects of early weaning and social isolation on the expression of glucocorticoid and mineralocorticoid receptor and 11beta-hydroxysteroid dehydrogenase 1 and 2 mRNAs in the frontal cortex and hippocampus of piglets [J]. Brain Res. 2006; 1067(1): 36-42.
    [13] Wan S L, Liao M Y, Hao R S, et al. Colocalization of 11beta-hydroxysteroid dehydrogenase type I and glucocorticoid receptor and its significance in rat hippocampus [J]. Sheng Li Xue Bao, 2002; 54(6): 473-478.
    [14] Jacobson L and Sapolsky R. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis [J]. Endocr Res, 1991; 12(2): 118-123.
    [15] Weidenfeld J and Feldman S. Glucocorticoid feedback regulation of adrenocortical responses to neural stimuli: Role of CRF-41 and type-I and type-II receptors [J]. Neuroendocrinology, 1993; 58(1): 49-54。
    [16] Brooke S . Dexamethasone resistance among nonhuman primates associated with a selective decrease of glucocorticoid receptors in the hippocampus and a history of social in stability [J]. Neuroendocrinology, 1994; 60(2): 134-140.
    [17] Palkovits M B, Rownskin M J. Maps and guide to microdissection of the rat brain [M]. New York: Elsevier, 1988.
    [18] Vicennati V and Pasquali R. Abnormalities of the hypothalamic-pituitary-adrenal axis in nondepressed women with abdominal obesity and relations with insulin resistance: evidence for a central and a peripheral alteration [J]. J Clin Endocrinol Metab, 2000; 85(11): 4093-4098.
    [19] Corry D B and Tuck M L. Selective aspects of the insulin resistance syndrome [J]. Curr Opin Nephrol Hypertens, 2001; 10(4):507-514.
    [20] Bjorntorp P. Neuroendocrine perturbations as a cause of insulin resistance [J]. Diabetes Metab Res Rev, 1999; 15(6): 427-441.
    [21] Brindley D N. Role of glucocorticoids and fatty acids in the impairment of lipid metabolism observed in the metabolic syndrome [J]. Int J Obes Relat Metab Disord, 1995; 19 (Suppl 1): 69-75.
    [22] 高虹,李启富,丘彦等. 多囊卵巢综合症患者血清游离脂肪酸浓度测定及相关因素分析[J].重庆医科大学学报,2005; 30(2): 296-299.
    [23] Godoy-Matos A F, Vieira A R, Moreira R O, et al. The potential role of increased adrenal volume in the pathophysiology of obesity-related type 2 diabetes [J]. JEndocrinol Invest, 2006; 29(2): 159-163.
    [24] Doi S A, Towers P A, Scott C J, et al. PCOS: an ovarian disorder that leads to dysregulation in the hypothalamic-pituitary-adrenal axis [J]? Eur J Obstet Gynecol Reprod Biol, 2005; 118(1): 4-16.
    [25] Bousquet-Melou A, Formentini E, Picard-Hagen N, et al. The ACTH stimulation test: Contribution of a physiologically-based model developed in horse for its interpretation in different pathophysiological situations encountered in man [J]. Endocrinology, 2006; 147(9): 4281-4291
    [26] Dalm S, Enthoven L, Meijer O C, et al. Age-related changes in hypothalamic-pituitary-adrenal axis activity of male C57BL/6J mice[J]. Neuroendocrinology, 2005; 81(6): 372-380.
    [27] Hundt W, Kellner M and Wiedemann K. Neuroendocrine effects of a short-term osmotic stimulus in patients with chronic schizophrenia [J]. World J Biol Psychiatry, 2001; 2(1): 27-33.
    [28] Eric P, Widmaier K and Brian A. Free Fatty Acids Activate the Adrenocortical Axis in Rats [J]. Endocrinology, 1992; 131(5): 2313-2318.
    [29] Herman J P, Dolgas C M and Carlson S L. Ventral subiculum regulates hypothalamo- pituitary- adrenocortical and behavioral responses to cognitive stressors [J]. Nertoscience, 1998; 86(2):449-459.
    [30] Mitsukawa K, Mombereau C, Lotscher E, et al. Metabotropic glutamate receptor subtype 7 ablation causes dysregulation of the HPA axis and increases hippocampal BDNF protein levels: implications for stress-related psychiatric disorders.Neuropsychopharmacology [J]. 2006; 31(6): 1112-1122.
    [31] Swaab D F, Bao A M and Lucassen P J. The stress system in the human brain in depression and neurodegeneration [J]. Ageing Res Rev, 2005; 4(2): 141-194.
    [32] Miller D B and O'Callaghan J P. Aging, stress and the hippocampus [J]. Ageing Res Rev, 2005; 4(2): 123-140.
    [33] Sandeep T C, Yau J L, MacLullich A M, et al. 11Beta-hydroxysteroid dehydrogenase inhibition improves cognitive function in healthy elderly men and type 2 diabetics[J]. Proc Natl Acad Sci U S A, 2004; 101(17): 6329-6330.
    [34] Goursaud A P, Mendoza S P and Capitanio J P. Do neonatal bilateral ibotenic acid lesions of the hippocampal formation or of the amygdala impair HPA axis responsiveness and regulation in infant rhesus macaques (Macaca mulatta) [J]?Brain Res, 2006; 1071(1): 97-104.
    [35] Shoener J A, Baig R and Page K C. Prenatal exposure to dexamethasone alters hippocampal drive on hypothalamic-pituitary-adrenal axis activity in adult male rats [J]. Am J Physiol Regul Integr Comp Physiol. 2006; 290(5): 1366-1373.
    [36] Wan S, Hao R and Sun K. Repeated maternal dexamethasone treatments in late gestation increases 11beta-hydroxysteroid dehydrogenase type 1 expression in the hippocampus of the newborn rat [J]. Neurosci Lett, 2005; 382(1-2): 96-101.
    [37] Jacobson L and Sapolsky R. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis [J]. Endocr Res 1991; 12(2): 118-123.
    [38] Weidenfeld J and Feldman S. Glucocorticoid feedback regulation of adrenocortical responses to neural stimuli: Role of CRF-41 and type-I and type-II receptors [J]. Neuroendocrinology, 1993; 58(1): 49-54.
    [39] Poletto R, Steibel J P, Siegford JM, et al. Effects of early weaning and social isolation on the expression of glucocorticoid and mineralocorticoid receptor and 11beta-hydroxysteroid dehydrogenase 1 and 2 mRNAs in the frontal cortex and hippocampus of piglets [J]. Brain Res, 2006; 1067(1): 36-42.
    [40] Erdeljan P, Andrews M H, MacDonald J F, et al. Glucocorticoids and serotonin alter glucocorticoid receptor mRNA levels in fetal guinea-pig hippocampal neurons, in vitro [J]. Reprod Fertil Dev, 2005; 17(7): 743-749.
    [41] Louvart H, Maccari S, Lesage J, et al. Effects of a single footshock followed by situational reminders on HPA axis and behaviour in the aversive context in male and female rats [J]. Psychoneuroendocrinology, 2006; 31(1): 92-99.
    [42] Kabbaj M, Yoshida S, Numachi Y, et al. Methamphetamine differentially regulates hippocampal glucocorticoid and mineralocorticoid receptor mRNAs in Fischer and Lewis rats [J]. Brain Res Mol Brain Res, 2003; 117(1): 8-14.
    [43] Van R E, Meijer O C, Steenbergen P J, et al. Chronic unpredictable stress causes attenuation of serotonin responses in cornu ammonis 1 pyramidal neurons [J]. Neuroscience, 2003; 120(3): 649-658.
    [44] Yau J L, Noble J, Kenyon C J, et al. Lack of tissue glucocorticoid reactivation in 11beta –hydroxysteroid dehydrogenase type 1 knockout mice ameliorates age-related learning impairments [J]. Proc Natl Acad Sci U S A, 2001; 98(8): 4716-4721.
    [45] Jellinck P H, Pavlides C, Sakai R R, et al. 11beta-hydroxysteroid dehydrogenase functions reversibly as an oxidoreductase in the rat hippocampus in vivo [J]. J Steroid Biochem Mol Biol, 1999; 71(3-4): 139-144.
    [46] Giordano R, Pellegrino M, Picu A, et al. Neuroregulation of the hypothalamus-pituitary-adrenal (HPA) axis in humans: effects of GABA-, mineralocorticoid-, and GH-Secretagogue-receptor modulation [J]. ScientificWorldJournal, 2006; 6: 1-11.
    [47] Jamieson P M, Chapman K E and Seckl J R. Tissue- and temporal-specific regulation of 11beta-hydroxysteroid dehydrogenase type 1 by glucocorticoids in vivo [J]. J Steroid Biochem Mol Biol, 1999; 68(5-6): 245-250.
    [48] Danielle D M, José E S and Jamil A. Inhibition of glucocorticoid receptor binding by nitric oxide in endotoxemic rats [J]. Crit Care Med, 2004; 32(11): 2304 –2310
    [49] Galigniana M D, Piwien-Pilipuk G and Assreuy J. Inhibition of glucocorticoid receptor binding by nitric oxide [J]. Mol Pharmacol, 1999; 55(2): 317–323.
    [50] 孙玉锦. 一氧化氮的生理作用[J]. 中华现代临床医学杂志, 2005; 3(22): 2356-2357.
    [51] Yang R; Huang Z N; Cheng J S. Anticonvulsion effect of acupuncture might be related to the decrease of neuronal and inducible nitric oxide synthases [J]. Acupunct Electrother Res, 2000; 25(3-4): 137-143.
    [52] Ananth C, Gopalakrishnakone P and Kaur C. Protective role of melatonin in domoic acid-induced neuronal damage in the hippocampus of adult rats [J]. Hippocampus, 2003; 13(3): 375-387.
    [53] Shimabukuro M, Ohneda M, Lee Y, et al. Role of nitric oxide in obesity-induced B-cell disease [J]. J Clin Invest, 1997; 100(2): 290–295.
    [1] Sam S and Dunaif A. Polycystic ovary syndrome: Syndrome XX [J]? Trends Endocrinol Metab, 2003; 14(8): 365-370.
    [2] Ovalle F and Azziz R. Insulin resistance, polycystic ovary syndrome, and type 2 diabetes mellitus [J]. Fertil Steril, 2002; 77(6): 1095-1105.
    [3] Zhang G, Garmey J C, Veldhuis J D, et al. Interactive stimulation by luteinizing hormone and insulin of the steroidogenic acute regulatory (StAR) protein and 17a-hydroxylase/17,20-lyase (CYP17) genes in porcine theca cells [J]. Endocrinology, 2000; 141(8): 2735–2742.
    [4] Doi S A, Towers P A, Scott C J, et al. PCOS: an ovarian disorder that leads to dysregulation in the hypothalamic-pituitary-adrenal axis [J]? Eur J Obstet Gynecol Reprod Biol, 2005; 118(1): 4-16.
    [5] Kondoh Y, Uemura T, Ishikawa M, et al. Classification of polycystic ovary syndrome into three types according to response to human corticotropin-releasing hormone [J]. Fertil Steril, 1999; 72(1): 15-20.
    [6] Farah E L, Reyna R, Knochenhauer E S, et al. Glucose action and adrenocortical biosynthesis in women with polycystic ovary syndrome [J]. Fertil Steril, 2004; 81(1): 120-125.
    [7] Lanzone A, Guido M, Ciampelli M, et al. Evidence of a disturbance of the hypothalamic pituitary adrenal axis in polycystic ovary syndrome: effect of naloxone [J]. Clin Endocrinol (Oxf), 1996; 45(1): 73-77.
    [8] Gambineri A, Pelusi C, Vicennati V, et al. Obesity and the polycystic ovary syndrome [J]. Int J Obes Relat Metab Disord, 2002; 26(7): 883-896.
    [9] Ciampelli M, Guido M, Cucinelli F, et al. Hypothalamic-pituitary-adrenal axis sensitivity to opioids in women with polycystic ovary syndrome [J]. Fertil Steril, 2000; 73(4): 712-717.
    [10] Putignano P, Bertolini M, Losa M, et al. Screening for Cushing's syndrome in obese women with and without polycystic ovary syndrome [J]. J Endocrinol Invest, 2003;26(6): 539-544.
    [11] Zawadzki J K, Dunaif A. Diagnostic criteria for polycystic ovary syndrome: towards a rational approach. In: Dunaif A, Givensf J R, Haseltine F, Merriam G R, eds. Polycystic ovary syndrome [M]. Boston: Black-well Scientific. 1992; 377-384.
    [12] WHO-IDF. Asian-Pacific Type 2 Diabetes Policy Group. Type 2 diabetes practical targets and treatments (3rd edition) [M]. 2002.
    [13] Wild R A, Umstot E S, Andersen R N, et al. Androgen parameters and their correlation with body weight in one hundred thirty-eight women thought to have hyperandrogenism [J]. Am J Obstet Gynecol, 1983; 146(6): 602–606.
    [14] Carmina E, Koyama T, Chang L, et al. Does ethnicity influence the prevalence of adrenal hyperandrogenism and insulin resistance in polycystic ovary syndrome [J]? Am J Obstet Gynecol, 1992; 167(6): 1807–1812.
    [15] Barbieri R L, Makris A, Randall R W, et al. Insulin stimulates androgen accumulation in incubations of ovarian stroma from women with hyperandrogenism [J]. J Clin Endocrinol Metab, 1986; 62(5): 904–910.
    [16] Nestler J E, Jakubowicz D J, Evans W S, et al. Effects of metformin on spontaneous and clomiphene-induced ovulation in the polycystic ovary syndrome [J]. N Engl J Med, 1998; 338(26): 1876–1880.
    [17] Declue T J, Shah S C, Marchese M, et al. Insulin resistance and hyperinsulinemia induce hyperandrogenism in a young type B insulinresistant female[J]. J Clin Endocrinol Metab, 1991; 72(6): 1308–1311.
    [18] Invitti C, Demartin M, Delitala G, et al. Altered morning and nighttime pulsatile corticotropin and cortisol release in polycystic ovary syndrome [J]. Metabolism, 1998; 47(2): 143-148.
    [19] Alessandra G, Carla P, Elisa M, et al. Glucose Intolerance in a Large Cohort of Mediterranean Women with Polycystic Ovary Syndrome [J]. Diabetes, 2004; 53(9): 2353-2358.
    [20] Chin D, Shackleton C, Prasad V K, et al. Increased 5alpha-reductase and normal11beta-hydroxysteroid dehydrogenase metabolism of C19 and C21 steroidsin a young population with polycystic ovarian syndrome [J]. J Pediatr Endocrinol Metab, 2000; 13(3): 253-259.
    [21] Lanzone A, Fulghesu A M, Guido M, et al. Somatostatin treatment reduces the exaggerated response of adrenocorticotropin hormone and cortisol to corticotropin-releasing hormone in polycystic ovary syndrome [J]. Fertil Steril, 1997; 67(1): 34-39.
    [22] Lanzone A, Petraglia F, Fulghesu A M, et al. Corticotropin-releasing hormone induces an exaggerated response of adrenocorticotropic hormone and cortisol in polycystic ovary syndrome [J]. Fertil Steril, 1996; 65(6): 210-211.
    [23] Kopelman P G, White N, Pilkington T R, et al. Impaired hypothalamic control of prolactin secretion in massive obesity [J]. Lancet, 1979; 1(8119): 747–750.
    [24] Walker B R, Phillips D I, Noon J P, et al. Increased glucocorticoid activity in men with cardiovascular risk factors [J]. Hypertension, 1998; 31(4): 891–895.
    [25] Stewart P M, Boulton A, Kumar S, et al. Cortisol metabolism in human obesity: impaired cortisone-cortisol conversion in subjects with central adiposity [J]. J Clin Endocrinol Metab, 1999; 84(3): 1022–1027.
    [26] Solano M P, Kumar M, Fernandez B, et al. The pituitary response to ovine corticotropin-releasing hormone is enhanced in obese men and correlates with insulin resistance [J]. Horm Metab Res, 2001(1); 33: 39–43.
    [27] Guido M, Ciampelli M, Fulghesu A M, et al. Influence of body mass on the hypothalamic pituitary adrenal axis response to naloxone in patients with polycystic ovary syndrome [J]. Fertil Steril, 1999; 71(3): 462-467.
    [28] Rodin A, Thakkar H, Taylor N, et al. Hyperandrogenism in polycystic ovary syndrome: evidence of dysregulation of 11 ?-hydroxysteroid dehydrogenase [J]. N Engl J Med, 1994; 330(7): 460–465.
    [29] Rodin A, Stewart P M, Shackleton C L, et al. 5 -Reductase activity in polycystic ovary syndrome [J]. Lancet, 1990; 335(8687): 431–433.
    [30] Katz J R, Mohamed A V, Wood P J, et al. An in vivo study of the cortisol-cortisone shuttle in subcutaneous abdominal adipose tissue [J]. Clin Endocrinol (Oxf), 1999;50(1): 63–68.
    [31] Rask E, Olsson T, Soderberg S, et al. Tissue-specific dysregulation of cortisol metabolism in human obesity [J]. J Clin Endocrinol Metab, 2001; 86(3): 1418–1421.
    [32] Rask E, Walker B R, Soderberg S, et al. Tissue-specific changes in peripheral cortisol metabolism in obese women: increased adipose 11β-hydroxysteroid dehydrogenase type 1 activity [J]. J Clin Endocrinol Metab, 2002; 87(7): 3330–3336.
    [33] Seckl J R, Walker B R. Minireview: 11β-hydroxysteroid dehydrogenase type 1, a tissue specific amplifier of glucocorticoid action [J]. Endocrinology, 2001; 142(4): 1371–1376.
    [34] Tasoula T, John W H and Gerards C. Altered Cortisol Metabolism in Polycystic Ovary Syndrome: Insulin Enhances 5α-Reduction But Not the Elevated Adrenal Steroid Production Rates [J]. J Clin Endocrinol Metab, 2003; 88(12): 5907–5913.
    [35] Bjorntorp P. The regulation of adipose tissue distribution in humans [J]. Int J Obes Rel Metab Disord, 1996; 20(3): 291–302.
    [36] Bjorntorp P. Metabolic implications of body fat distribution [J]. Diabetes Care, 1991; 14(12): 1132- 1143.
    [37] Riitta M K, Jaana J, Ilkka V, et al. Metabolic and Steroidogenic Alterations Related to Increased Frequency of Polycystic Ovaries in Women with a History of Gestational Diabetes [J]. J Clin Endocrinol Metab, 2001; 86(6): 2591-2599
    [38] Sipols A J, Baskin D G, Schwartz M W. Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression [J]. Diabetes, 1995; 44(2): 147–151.
    [39] Owen C, Karen I, Eitan A, et al. Matthews Insulin Alone Increases Hypothalamo-Pituitary-Adrenal Activity, and Diabetes Lowers Peak Stress Responses [J]. Endocrinology, 2005; 146(3): 1382-1390.
    [40] Renehan A G, Frystyk J, Flyvbjerg A. Obesity and cancer risk: the role of the insulin-IGF axis [J]. Trends Endocrinol Metab, 2006; 17(8): 328-336.
    [41] Morales A J, Laughlin G A, Butzow T, et al. Insulin, somatotropic, and luteinizing hormone axes in lean and obese women with polycystic ovary syndrome: common and distinct features [J]. J Clin Endocrinol Metab, 1996; 81(8): 2854–2864.
    [42] Martin R M, Holly J M, Davey S G, et al. Associations of adiposity from childhood into adulthood with insulin resistance and the insulin-like growth factor system: 65-year follow-up of the Boyd Orr Cohort [J]. J Clin Endocrinol Metab, 2006; 91(9): 3287-3295.
    [43] Allemand D, Penhoat A, Lebrethon M C, et al. Insulin-like growth factors enhance steroidogenic enzyme and corticotropin receptor messenger ribonucleic acid levels and corticotropin steroidogenic responsiveness in cultured human adrenocortical cells [J]. J Clin Endocrinol Metab, 1996; 81(11): 3892–3897.
    [44] Evans S B, Wilkinson C W, Gronbeck P, et al. Inactivation of the DMH selectively inhibits the ACTH and corticosterone responses to hypoglycemia [J]. Am J Physiol Regul Integr Comp Physiol, 2004; 286(1): 123–128.
    [45] Verrotti A, Giuva P T, Morgese G, et al. New trends in the etiopathogenesis of diabetic peripheral neuropathy [J]. J Child Neurol, 2001; 16(6): 389–394.
    [46] Levin B E, Govek E K and Dunn-Meynell A A. Reduced glucose-induced neuronal activation in the hypothalamus of diet-induced obese rats [J]. Brain Res, 1998; 808(2): 317–319.
    [47] Baskin D G, Figlewicz L D, Seeley R J, et al. Insulin and leptin: dual adiposity signals to the brain for the regulation of food intake and body weight [J]. Brain Res, 1999; 848(1): 114–123.
    [48] Fruehwald S B, Kern W, Bong W, et al. Supraphysiological hyperinsulinemia acutely increases hypothalamic-pituitary-adrenal secretory activity in humans [J]. J Clin Endocrinol Metab, 1999; 84(9): 3041–3046.
    [49] Fruehwald S B, Kern W B, Fehm H L, et al. Hyperinsulinemia causes activation of the hypothalamus-pituitary-adrenal axis in humans [J]. Int J Obes Relat Metab Disord, 2001; 25 (Suppl 1): 38–40.
    [50] Dirlewanger M, Schneiter P H, Paquot N, et al. Effects of glucocorticoids onhepatic sensitivity to insulin and glucagon in man [J]. Clin Nutr, 2000; 19: 29–34.
    [51] Vrbikova J, Bendlova B, Hill M, et al. Insulin sensitivity and beta-cell function in women with polycystic ovary syndrome [J]. Diabetes Care, 2002; 25(7): 1217–1222.
    [52] Bergman R N, Phillips L S, Cobelli C. Physiologic evaluation of factors controlling glucose tolerance in man [J]. J Clin Invest, 1981; 68(6): 1456–1467.
    [53] Kahn S E, Prigeon R L, McCulloch D K, et al. Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function [J]. Diabetes, 1993; 42(11): 1663–1672.
    [54] Ahren B and Pacini G. Importance of quantifying insulin secretion in relation to insulin sensitivity to accurately assess beta cell function in clinical studies [J]. Eur J Endocrinol, 2004; 150(2): 97–104.
    [55] Bergman R N, Ader M, Huecking K, et al. Accurate assessment of beta-cell function: the hyperbolic correction [J]. Diabetes, 2002; 51(Suppl 1): 212–220.
    [56] Dunaif A and Finegood D T. Beta-cell dysfunction independent of obesity and glucose intolerance in the polycystic ovary syndrome [J]. J Clin Endo Meta, 1996; 81(3): 942–947.
    [1] Carmina E and Azziz R. Diagnosis, phenotype, and prevalence of polycystic ovary syndrome [J]. Fertil Steril, 2006; 86 (Supp1): 7-8.
    [2] Rotterdam ESHRE/ASRM Sponsored PCOS Consensus Workshop Group: Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome [J]. Fertil Steril, 2004; 81(1): 19-25.
    [3] 李昕, 林金芳. 肥胖型多囊卵巢综合征患者临床及内分泌代谢特征的研究[J]. 中华医学杂志.2005.85(46): 3266-3271.
    [4] Dunaif A. Insulin resistance in women with polycystic ovary syndrome [J]. Fertil Steril, 2006; 86(Supp1): 13-14.
    [5] 冯静,程庆丰,丘彦等。应用简易葡萄糖处置指数评估多囊卵巢综合征患者胰岛 β 细胞功能[J].中国糖尿病杂志.2007.15(1):67-69。
    [6] 程庆丰,李启富.蛋白酪氨酸磷酸酶-1B 与胰岛素信号转导[J].国外医学内分泌学分册.2005.25(增刊): 8-11.
    [7] 高虹,李启富,丘彦等.多囊卵巢综合症患者血清游离脂肪酸浓度测定及相关因素分析[J].重庆医科大学学报.2005.30(2): 296-299.
    [8] Douglas C C, Gower B A, Darnell B E, et al. Role of diet in the treatment of polycystic ovary syndrome [J]. Fertil Steril, 2006; 85(3): 679-688.
    [9] Yilmaz M, Bukan N, Ersoy R, et al. Glucose intolerance, insulin resistance and cardiovascular risk factors in first degree relatives of women with polycystic ovary syndrome [J]. Hum Reprod, 2005; 20(9): 2414-2420.
    [10] Munir I, Yen H W, Baruth T, et al. Resistin stimulation of 17alpha-hydroxylase activity in ovarian theca cells in vitro: relevance to polycystic ovary syndrome [J]. J Clin Endocrinol Metab, 2005; 90(8): 4852-4857.
    [11] Dunger D B, Ahmed M L, Ong K K. Effects of obesity on growth and puberty [J]. Best Pract Res Clin Endocrinol Metab, 2005; 19(3): 375-390.
    [12] Glueck C J, Sieve L, Zhu B, Plasminogen activator inhibitor activity, 4G5G polymorphism of the plasminogen activator inhibitor 1 gene, and first-trimester miscarriage in women with polycystic ovary syndrome [J]. Metabolism, 2006; 55(3): 345-352.
    [13] Ek I, Arner P, Ryden M, et al. A unique defect in the regulation of visceral fat celllipolysis in the polycystic ovary syndrome as an early link to insulin resistance [J]. Diabetes, 2002; 51(2): 484-492.
    [14] Chu Y L, Sun Y Y, Qiu H Y, et al. Tyrosine phosphorylation and protein expression of insulin receptor substrate-1 in the patients with polycystic ovary syndrome [J]. Zhonghua Fu Chan Ke Za Zhi, 2004; 39(3): 176–179.
    [15] Wang Z C, Gu X F, Yang D Z, et al. Expression of insulin receptor substrate 1 and phosphorylation of tyrosine in adipose tissue of polycystic ovary syndrome [J]. Zhonghua Fu Chan Ke Za Zhi, 2005; 40(2): 120–123
    [16] Qiu H Y, Chu Y L, Li M, et al. Tyrosine phosphorylation and protein expression of insulin receptor substrate-2 in the adipose tissue from patients with polycystic ovary syndrome [J]. Zhonghua Fu Chan Ke Za Zhi, 2005; 40(2): 116–119.
    [17] Dunaif A, Wu X, Lee A,et al. Defects in insulin receptor signaling in vivo in the polycystic ovary syndrome (PCOS) [J]. Am J Physiol Endocrinol Metab, 2001; 281(2): 392–399.
    [18] Corbould A, Kim Y B, Youngren J F, et al. Insulin resistance in the skeletal muscle of women with PCOS involves intrinsic and acquired defects in insulin signaling [J]. Am J Physiol Endocrinol Metab, 2005; 288(5): 1047-1054.
    [19] Cresswell J, Fraser R, Bruce C, et al. Relationship between polycystic ovaries, body mass index and insulin resistance [J]. Acta Obstet Gynecol Scand, 2003; 82(1): 61-64.
    [20] Zhang G, Garmey J C, Veldhuis J D, et al. Interactive stimulation by luteinizing hormone and insulin of the steroidogenic acute regulatory (StAR) protein and 17a-hydroxylase/17,20-lyase (CYP17) genes in porcine theca cells [J]. Endocrinology, 2000; 141(8): 2735–2742.
    [21] Munir I, Yen H W, Geller D H, et al. Insulin augmentation of 17a-hydroxylase activity is mediated by phosphatidyl inositol 3-kinase but not extracellular signal-regulated kinase-1/2 in human ovarian theca cells [J]. Endocrinology, 2004; 145(1): 175–183.
    [22] Nelson-Degrave V L, Wickenheisser J K, Hendricks K L, et al. Alterations in mitogen-activated protein kinase kinase and extracellular regulated kinase signaling in theca cells contribute to excessive androgen production in polycystic ovary syndrome [J]. Mol Endocrinol, 2005; 19(2): 379–390.
    [23] Sekar N, HollyA, Lavoie, et al. Concerted regulation of steroidogenic acuteregulatory gene expression by luteinizing hormone and insulin (or insulin-like growth factor I) in primary cultures of porcine granulosaluteal cells [J]. Endocrinology, 2000; 141(11): 3983–3992.
    [24] Sekar N and Veldhuis J D. Concerted transcriptional activation of the low density lipoprotein receptor gene by insulin and luteinizing hormone in cultured porcine granulosa-luteal cells:possible convergence of protein kinase a, phosphatidylinositol 3-kinase, and mitogen-activated protein kinase signaling pathways [J]. Endocrinology, 2001; 142(7): 2921–2928.
    [25] Li M, Youngren J F, Dunaif A, et al. Decreased insulin receptor (IR) autophosphorylation in fibroblasts from patients with PCOS: effects of serine kinase inhibitors and IR activators [J]. J Clin Endocrinol Metab, 2002; 87(9): 4088–4093.
    [26] Venkatesan A M. Dunaif A, Corbould A, et al. Insulin resistance in polycystic ovary syndrome: progress and paradoxes [J]. Recent Prog Horm Res, 2001; 56(1): 295–308.
    [27] 程庆丰,李启富等. 正常女性 BOTNIA 钳夹术的建立[J].重庆医科大学学报.2005.30(4):598-601.
    [28] Devjit T , Ylva W , Monica G , et al. Importance of obtaining independent measures of insulin secretion and insulin sensitivity during the same test[J]. Diabetes Care, 2003; 26(5): 1395-1401.
    [29] Palomba S, Falbo A, Orio F J, et al. Metformin hydrochloride and recurrent miscarriage in a woman with polycystic ovary syndrome [J]. Fertil Steril, 2006; 85(5): 1511-1515.
    [30] Yilmaz M, Biri A, Karakoc A, et al. The effects of rosiglitazone and metformin on insulin resistance and serum androgen levels in obese and lean patients with polycystic ovary syndrome [J]. J Endocrinol Invest, 2005; 28(11): 1003-1008.
    [31] Viollet B, Foretz M, Guigas B, et al. Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders[J]. J Physiol, 2006; 574(13): 41-53.
    [32] Lamarca A, Orvieto R, Giulini S, et al. Effects of metformin and rosiglitazone, alone and in combination, in nonobese women with polycystic ovary syndrome and normal indices of insulin sensitivity [J]. Fertil Steril, 2004; 82(4): 893-902.
    [1] Stulnig T M and waldh?usl W. 11β-Hydroxysteroid dehydrogenase Type 1 in obesity and Type 2 diabetes [J]. Diabetologia, 2004; 47(1): 1—11.
    [2] Walker B R. Cortisol--cause and cure for metabolic syndrome [J]? Diabet Med, 2006; 23(12): 1281-1288.
    [3] Desbriere R, Vuaroqueaux V, Achard V, et al. 11beta-hydroxysteroid dehydrogenase type 1 mRNA is increased in both visceral and subcutaneousadipose tissue of obese patients [J]. Obesity, 2006; 14(5): 794-798.
    [4] Chapman K E, Coutinho A, Gray M, et al. Local amplification of glucocorticoids by 11beta-hydroxysteroid dehydrogenase type 1 and its role in the inflammatory response [J]. Ann N Y Acad Sci, 2006; 1088: 265-273.
    [5] Herzig S, Long F, Jhala U S, et al. CREB regulateshepatic gluconeogenesis through the coactivator PGC-1 [J]. Nature; 413(6852): 179–183.
    [6] Vestergaard H, Bratholm P and Christensen N J. Increments in insulin sensitivity during intensive treatment are closely correlated with decrements in glucocorticoid receptor mRNA in skeletal muscle from patients with Type II diabetes [J].Clin Sci (Lond), 2001; 101(5): 533–540.
    [7] Basu R, Edgerton D S, Singh R J, et al. Splanchnic cortisol production in dogs occurs primarily in the liver: evidence for substantial hepatic specific 11beta hydroxysteroid dehydrogenase type 1 activity [J]. Diabetes, 2006; 55(11): 3013-3019.
    [8] Fruchter O, Zoumakis E, Alesci S, et al. Intracrine modulation of gene expression by intracellular generation of active glucocorticoids [J]. Steroids, 2006; 71(12): 1001-1006.
    [9] Jang C, Obeyesekere V R, Dilley R J, et al. 11Beta hydroxysteroid dehydrogenase type 1 is expressed and is biologically active in human skeletal muscle [J]. Clin Endocrinol (Oxf), 2006; 65(6): 800-805.
    [10] Bahr V, Pfeiffer A F, Diederich S. The metabolic syndrome X and peripheral cortisol synthesis [J]. Exp Clin Endocrinol Diabetes, 2002; 110(7): 313–318.
    [11] Basu R, Singh R, Basu A, et al. Effect of nutrient ingestion on total-body and splanchnic cortisol production in humans [J]. Diabetes, 2006; 55(3): 667-674.
    [12] Paulsen S K, Pedersen S B, Jorgensen J O, et al. Growth hormone (GH) substitution in GH-deficient patients inhibits 11beta-hydroxysteroid dehydrogenase type 1 messenger ribonucleic acid expression in adipose tissue [J]. J Clin Endocrinol Metab, 2006; 91(3): 1093-1098.
    [13] Bujalska I J, Walker E A, Hewison M, et al. A switch in dehydrogenase to reductase activity of 11 betahydroxysteroid dehydrogenase type 1 upon differentiation of human omental adipose stromal cells [J]. J Clin Endocrinol Metab, 2002; 87(3): 1205–1210.
    [14] Bujalska I J, Walker E A, Tomlinson J W, et al. 11Beta-hydroxysteroiddehydrogenase type 1 in differentiating omental human preadipocytes: from de-activation to generation of cortisol [J]. Endocr Res, 2002; 28(4): 449–461.
    [15] Tiosano D, Eisentein I, Militianu D, et al. 11beta-hydroxysteroid dehydrogenase activity in hypothalamic obesity [J]. J Clin Endocrinol Metab, 2003; 88(1): 379–384.
    [16] Das U N. Aberrant expression of perilipins and 11-beta-HSD-1 as molecular signatures of metabolic syndrome X in south east Asians [J]. J Assoc Physicians India, 2006; 54: 637-649.
    [17] Alberts P, Engblom L, Edling N, et al. Selective inhibition of 11beta-hydroxysteroid dehydrogenase type 1 decreases blood glucose concentrations in hyperglycaemic mice [J]. Diabetologia, 2002; 45(11): 1528–1532.
    [18] Patel J R, Shuai Q, Dinges J, et al. Discovery of adamantane ethers as inhibitors of 11beta-HSD-1: Synthesis and biological evaluation [J]. Bioorg Med Chem Lett, 2007; 17(3):750-755.
    [19] Schuster D, Maurer E M, Laggner C, et al. The discovery of new 11beta-hydroxysteroid dehydrogenase type 1 inhibitors by common feature pharmacophore modeling and virtual screening [J]. J Med Chem, 2006; 49(12): 3454-3466.
    [20] Furnsinn C, Waldhausl W. Thiazolidinediones: metabolic actions in vitro [J]. Diabetologia, 2002; 45(9): 1211–1223.
    [21] Cao G, Liang Y, Broderick C L, et al. Antidiabetic action of a liver X receptor agonist mediated by inhibition of hepatic gluconeogenesis [J]. J Biol Chem, 2003; 278(2): 1131–1136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700