不同纳米形态TiO_2的合成及其负载Au催化剂的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
负载型纳米Au催化剂是近20年来多相金属催化领域的热点方向,Au/TiO_2是其中的一个典型代表。然而不同形态的TiO_2,特别是一维(1D)TiO_2在充当纳米Au催化剂载体时能否赋予Au/TiO_2更优异的催化作用效果尚少有报道。另一方面,Au/TiO_2在储存过程中的失活已成为阻碍其应用的主要因素。本文在实现了形貌可控合成TiO_2的基础上,研究了Au/TiO_2催化剂结构和性能的关系。探究Au/TiO_2室温存放稳定性的工作首次发现未还原Au3+和吸附H2O对催化剂稳定性有很大影响,据此发展了一种室温保存Au/TiO_2催化剂的方法。
     提出了利用TiCl4-丙酮混合物合成TiO_2纳米晶的新方法。在TiCl4/丙酮摩尔比(TiCl4/Ac)不大于1/15时,改变TiCl4/Ac和反应温度可以选择合成锐钛矿TiO_2(TiO_2-A)纳米颗粒,并在4-10 nm范围内调控其尺寸;在TiCl4/Ac≥1/10时,生成金红石型TiO_2纳米纤维。提出了形成TiO_2纳米晶的可能机理。还以乙醇-水混合液代替水,对既有的碱液水热处理粉体TiO_2制备钛酸纳米管的方法进行了改进,实现了钛酸纳米线和纳米管的可控合成。在400oC焙烧后分别制得了TiO_2(B)纳米线(NW-TiO_2(B))和TiO_2-A纳米棒(NR-TiO_2-A)。
     用沉积-沉淀法制备了系列Au/1D-TiO_2催化剂,研究了它们对CO氧化和1,3-丁二烯加氢反应的催化性能。对于CO氧化反应,Au/NR-TiO_2-A的催化活性是Au/P25-TiO_2的1.6倍,是Au/TiO_2-A的4倍,是Au/NW-TiO_2(B)的8倍。对于1,3-丁二烯选择加氢反应,Au/NW-TiO_2(B)和Au/P25-TiO_2表现出相当的催化活性,但Au/NR-TiO_2-A的催化活性不足它们的1/3。表明1D-TiO_2是很有发展潜力的Au催化剂载体,有望为研制高性能Au/TiO_2催化剂创造机会。
     为提高Au/TiO_2催化剂的存放稳定性,制备了Au3+比例和吸H2O量不同的Au/P25-TiO_2催化剂。发现Au/TiO_2样品中Au3+所占比例越高而吸附H2O量越低,其室温储存稳定性就越高。在此基础上制备了Au3+比例为100%且吸H2O量很低的Au/P25-TiO_2催化剂,它在室温储存150天后的催化活性仍然与新鲜催化剂相当。这些结果表明保持Au物种处于Au3+状态并防止催化剂吸H2O是阻止Au/TiO_2存放失活的关键。
Supported gold catalysts have been extensively studied during the past 20 years. Au/TiO_2 is one typical type of supported Au catalysts and has been extensively investigated. However, it is not known well how the catalytic behavior of Au/TiO_2 changes if we use different kinds of TiO_2, especially one-dimensional (1D) TiO_2 as supports. On the other hand, Au/TiO_2 may deteriorate when storing at room temperature, which has hindered the future applications of Au/TiO_2. In this paper, we show two new methods to synthesize 1D-TiO_2. We also compared the catalytic activity of Au supported on 1D-TiO_2, P25-TiO_2 and anatase TiO_2 nanoparticles (TiO_2-A), for the CO oxidation and selective hydrogenation of 1,3-butadiene. It is shown that the crystal phase and morphology of TiO_2 strongly affect the catalytic activity of Au/TiO_2 catalysts. The investigation on storage of Au/TiO_2 showed the first time that the influence of Au3+ percentage and water amount on the deactivation behavior of catalysts stored at room temperature.
     A novel method to synthesize single-phase titania nanomaterials was shown by autoclaving titanium tetrachloride in acetone at 80-140 oC. Depending on the molar ratio of TiCl4 to acetone (TiCl4/Ac), TiO_2 materials with different phases and morphologies were obtained. When the TiCl4 concentration was no higher than TiCl4/Ac = 1/15, single-phase anatase TiO_2 nanocrystals in sizes ranging from 4 nm to 10 nm were prepared by tuning TiCl4/Ac ratios from 1/90 to 1/15. On the other hand, when the TiCl4 concentration was high enough (e.g., TiCl4/Ac≥1/10), single-phase rutile TiO_2 nanofibres were obtained selectively. With the aid of GC-MS analysis of organic products in the liquid phase, it is shown that the controlled hydrolysis of TiCl4 with water, which was in-situ generated from the TiCl4 catalyzed aldol-condensation reactions of acetones, played an important role in the formation of the titania nanomaterials. This mechanism was also supported by our success in using other ketones as the alternatives of acetone in the synthesis. We also autoclaved anatase titania in NaOH-containing ethanol-water solutions to make controlling-synthesis of titanate nanotubes and nanowires. Nanotubes turned to be anatase nanorobs (NR-TiO_2-A) with calcination at 400 oC, while nanowires changed to TiO_2(B) nanowires (NW-TiO_2(B)).
     The synthesized 1D-TiO_2 was then used to prepare supported Au catalysts with deposition-precipitation method. CO oxidation data show that the activity of Au/NR-TiO_2-A is 1.6 times that of Au/P25-TiO_2, 4 time that of Au/TiO_2-A, and 8 times that of Au/NW-TiO_2(B). While conversion of 1,3-butadiene on Au/NW-TiO_2(B) is comparable to that on Au/P25-TiO_2, and 3 times that on Au/NR-TiO_2-A. These data suggest that 1D-TiO_2 is a kind of promising support of Au catalysts, which may provide opportunities for discovering and inventing high-performance Au/TiO_2 catalysts.
     In order to improve the stability of Au/TiO_2 during storage at ambient temperature, we controlled the syntheses of Au/P25-TiO_2 catalyst with different percentage of Au3+ and water amount. It was found that maximizing the percentage of Au3+ and minimizing the phy-sisorbed water on Au/TiO_2 surface could slowdown the deactivation during storage. Basing on the above results, A Au/P25-TiO_2 containing 100% Au3+ and less amount of physi-sorbed water could effectively preserve its activity for CO oxidation after storing at room temperature for 150 days. These data show that the main point to preserve activity of Au/TiO_2 during storage is to keep more percentage of Au3+ and less amount of physic-sorbed water.
引文
[1] Haruta M, Kobayashi T, Sano H, et al. Novel gold catalysis for the oxidation of carbon monoxide at a temperature far below 0 oC. Chem. Lett. 1987, 405-408
    [2] Haruta M, Yamada N, Kobayashi T, et al. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115: 301-309
    [3] Hutchings, G J. Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts J. Catal. 1985, 96: 292-295
    [4] Haruta M. Size and support-denpendency in the catalysis of gold. Catal. Today 1997, 36: 153-166
    [5] Valden M, Lai X, Goodman D W. Onset of catalystic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998, 281: 1647-1650
    [6] Bond G C, Thompson D T. Catalysis by gold. Catal. Rev. Sci. Eng. 1999, 41: 319-388
    [7] Bond G C, Thompson D T. Gold-catalysed oxidation of carbon monoxide. Gold Bull. 2000, 33: 41-50
    [8] Fu Q, Saltsburg H, Flytzani-Stephanopoulos M. Active Nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301: 935-938
    [9] Hashmi A S K. Homogeneous catalysis by gold. Gold Bull. 2004, 37: 51-65
    [10] Hutchings G J, Haruta M. A golden age of catalysis: A perspective. Appl. Catal. A: Gen. 2005, 291: 2-5
    [11] Nkosi B, Coville N J, Hutching G J, et al. Hydrochlorination of acetylene using gold catalysts: A study of catalyst deactivation. J. Catal. 1991, 128: 366-377
    [12] Bethke G K, Kung H H. Selective CO oxidation in a hydrogen-rich stream over Au/γ-Al2O3 catalysts. Appl. Catal. A: Gen. 2000, 194/195: 43-53
    [13] Kandoi S, Gokhale A A, Grabow L C, et al. Why Au and Cu are selective than Pt for preferential oxidation of CO at low temperature. Catal. Lett. 2004, 93: 93-100
    [14] Haruta M. Catalysis of gold nanoparticles deposited on metal oxides. Cattech. 2002, 6: 102-114
    [15] Haruta M, DatéM. Advances in the catalysis of Au nanoparticles. Appl. Catal. A 2001, 222: 427-437
    [16] Qi C, Akita A, Okumura M. Epoxidation of propylene over gold catalysts supported on non-porous silica. Appl. Catal. A: Gen. 2001, 218: 81-89
    [17] Sinha A K, Seelan S, Okumura M, et al. Three-dimensional mesoporous titanosilicates prepared by modified sol-gel methods: ideal gold catalyst supports for enhanced propene epoxidation. J. Phys. Chem. B 2005, 109: 3956-3965
    [18] Tabakova T, Idakiev V, Andreeva D, et al. Influence of the microscopic properties of the support on the catalytic activity of Au/ZnO, Au/ZrO2, Au/Fe2O3, Au/Fe2O3-ZnO, Au/Fe2O3-ZrO2 catalysts for the WGS reaction. Appl. Catal. A: Gen. 2000, 202: 91-97
    [19] Hoffmann-R?der A, Krause N. The golden gate to catalysis. Org. Biomol. Chem. 2005, 3: 387-391
    [20] Claus P, Brückner A, Mohr C, et al. Supported gold nanoparticles from quantum dot to mesoscopic size scale: effect of electronic and structure properties on catalytic hydrogenation of conjugated functional group. J. Am. Chem. Soc. 2000, 122: 11430-11439
    [21] Mohr C, Hofmeister H, Claus P. The influence of real structure of gold catalysts in the partial hydrogenation of acrolein. J. Catal. 2003, 213: 86-94
    [22] Carrettin S, Corma A, Iglesias M, et al. Stabilization of Au(III) on heterogeneous catalysts and their catalytic similarities with homogeneous Au(III) metal organic complexes. Appl. Catal. A: Gen. 2005, 291: 247-252
    [23] Milone C, Tropeano M L, Gulino G, et al. Selective liquid phase hydrogenation of citral on Au/Fe2O3 catalysts. Chem. Commun. 2002, 868-869
    [24] Carrettin S, McMorn P, Johnston P, et al. Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. Chem. Commun. 2002, 696-697
    [25] Sakurai H, Ueda A, Kobayashi T, et al. Low-temperature water-gas shift reaction over gold deposited on TiO2. Chem. Commun. 1997, 271-272
    [26] Ueda A, Oshima T, Haruta M. Reduction of nitrogen monoxide with propene in the presence of oxygen and moisture over gold supported on metal oxides. Appl. Catal. B: Environ. 1997, 12: 81-93
    [27] Hayashi T, Tanaka K, Haruta M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J. Catal. 1998, 178: 566-575
    [28] Park E D, Lee J S. Effects of pretreatment conditions on CO oxidation over supported Au catalysts. J. Catal. 1999, 186: 1-11
    [29] Yoon B, H?kkinen H, Landman U, et al. Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 2005, 307: 403-407
    [30] H?kkinen H, Abbet S, Sanchez A, et al. Structructure, elctronic, and impurity-doping effects in nanoscale chemistry: supported gold nanoclusters. Angew. Chem. Int. Ed. 2003, 42: 1297-1300
    [31] Maciejewski M, Fabrizioli P, Grunwaldt J D, et al. Supported gold catalysts for CO oxidation: effect of calcinations on structure, adsorption and catalytic behaviour. Phy. Chem. Chem. Phys. 2001, 3: 3846-3855
    [32] Bamwenda G R, Tsubota S, Nakamura T, et al. The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catal. Lett. 1997, 44: 83-87
    [33] DatéM, Okumura M, Tsubota S, et al. Vital role of moisture in the catalytic activity of supported gold nanoparticles. Angew. Chem. Int. Ed. 2004, 43: 2129-2132
    [34] DatéM, Haruta M. Moisture effect on CO oxidation over Au/TiO2 catalyst. J. Catal. 2001, 201: 221-224
    [35] Oh H S, Yang J H, Costello C K, et al. Selective catalytic oxidation of CO: effect of chloride on supported Au catalysts. J. Catal. 2002, 210: 375-386
    [36] Haruta M, Tsubota S, Kobayashi T, et al. Low-temperature Oxidation of CO over gold supported on TiO2,α-Fe2O3, and Co3O4. J. Catal. 1993, 144: 175-192
    [37] Costello C K, Yang J H, Law H Y, et al. On the potential role of hydroxyl groups in CO oxidation over Au/Al2O3. Appl. Catal. A: General 2003, 243: 15-24
    [38] Knell A, Barnickel P, Baiker A, et al. CO oxidation over Au/ZrO2 catalysts: activity, deactivation behavior, and reaction mechanism. J. Catal. 1992, 137: 306-321
    [39] Costello C K, Kung M C, Oh H S, et al. Nature of the active site for CO oxidation on highly active Au/γ-Al2O3. Appl. Catal. A: General 2002, 232: 159-168
    [40] Kung H H, Kung M C, Costello. Supported Au catalysts for low temperature CO oxidation. J. Catal. 2003, 216: 425-432
    [41] Daniells S T, Overweg A R, Makkee M, et al. The mechanism of low-temperature CO oxidation with Au/Fe2O3 catalysts: a combined M?ssbauer, FT-IR, and TAP reactor study. J. Catal. 2005, 230: 52-65
    [42]大连理工大学无机化学教研室编.无机化学.高等教育出版社,1990. 803– 817
    [43] Greenwood N N, Earnshaw A. Chemistry of the elements. Pergamon, Oxford, 1984
    [44] Cortie M B. The weird world of nanoscale gold. Gold Bull. 2004, 37: 12-19
    [45] Sermon P A, Bond G C, Wells P B. Hydrogenation of alkenes over supported gold. J. Chem. Soc. Farad. Trans. I 1979, 75: 385-394
    [46] Bond G C, Sermon P A, Webb G. Hydrogenation over supported gold catalysts. J. C. S. Chem. Comm. 1973, 444-445
    [47] Galvagno S, Parravano Chemical reactivity of supported gold: IV. Reduction of NO by H2 G. J. Catal. 1978, 55: 178-190
    [48] Buchanan D A, Webb G. Catalysis by group IB metals. J. Chem. Soc. Faraday Trans. 1975, 71: 134-144
    [49] Wachs I E. Research on gold in catalysis. Gold Bull. 1983, 16: 98-102
    [50] Schwank J. Catalytic gold. Gold Bull. 1983, 16: 103-110
    [51] Schwank J. Gold in bimetallic catalysts. Gold Bull. 1985, 18: 2-10
    [52] Haruta M. Gold as a novel catalyst in the 21st century: preparation, working mechanism and applications. Gold Bull. 2004, 37, 27-36
    [53] Galvagno S, Parravano. Chemical reactivity of supported gold: IV. Reduction of NO by H2 G. J. Catal. 1978, 55: 178-190
    [54] Buchanan D A, Webb G. Catalysis by group IB metals. J. Chem. Soc. Faraday Trans. 1975, 71: 134-144
    [55] Bollinger, M A, Vannice M A.. A kinetic and DRIFT study of low-temperature carbon monoxide over Au-TiO2 catalysts. Appl. Catal. B 1996, 8: 417-443
    [56] Cunningham D A H, Vogel W, Kageyama H, et al. The relationship between the structure and activity of nanometer size gold when supported on Mg(OH)2. J. Catal. 1998, 177: 1-10
    [57] Okumura M, Akita T, Haruta M. Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts. Catal. Today 2002, 74: 265-269
    [58] Haruta M. Size and support-denpendency in the catalysis of gold. Catal. Today 1997, 36: 153-166
    [59] Haruta M. Size and support-denpendency in the catalysis of gold. Catal. Today 1997, 36: 153-166
    [60] Moreau F, Bond G C, Taylor A O. Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents. J. Catal. 2005, 231: 105-114
    [61] Schimpf S, Lucas M, Mohr C, et al. Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and oxidation reactions. Catal. Today 2002, 72: 63-78
    [62] Wolf A, Schüth. A. Systematic study of the synthesis conditions for the preparation of highly active gold catalysts. Appl. Catal. A: Gen. 2002, 226: 1-13
    [63] Zanella R, Giorgio S, Henry C R, et al. Alternative Methods for the preparation of gold nanoparticles supported on TiO2. J. Phys. Chem. B 2002, 106: 7634-7642
    [64] Haruta M. Novel catalysis of gold deposited on metal oxides. Catal. Surveys of Japan, 1997, 61-73
    [65] Guillemot D, Borovkov VY, Kazansky V B. Surface characterization of Au/HY by 129Xe NMR and diffuse reflectance IR spectroscopy of adsorbed CO. Formation of electron-deficient gold particles inside HY cavities J. Chem. Soc. Faraday Trans. 1997, 93: 3587-3591
    [66] Kang T M, Wan B Z. Preparation of gold in Y-type zeolite for carbon monoxide oxidation. Appl. Catal. A: Gen. 1995, 128: 53-60
    [67] Chen J H, Lin J N, Kang Y M. Preparation of nano-gold in zeolites for CO oxidation: Effects of structures and number of ion exchange sites of zeolites. Appl. Catal. A: Gen. 2005, 291: 162-169
    [68] Okumura M, Nakamura S, Tsubota S, et al. Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2. Catal. Lett. 1998, 51: 53-58
    [69] Boccuzzi F, Chiorino A, Manzoli M, et al. Au/TiO2 nanosized samples: a catalytic, TEM, and FTIR study of the effect of calcinations temperature on the CO oxidation. J. Catal. 2001, 202:256-267
    [70] Grunwaldt J D, Maciejewski M, Becker O S, et al. Comparative study of Au/TiO2 and Au/ZrO2 catalysts for low-temperature CO oxidation. J. Catal. 1999, 186: 458-469
    [71] Kozlov A I, Kozlova A P, Liu H C, et al. A new approach to active supported Au catalysts. Appl. Catal. A: Gen. 1999, 182: 9-28
    [72] Hughes M D, Xu Y J, Jenkins P, et al. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 2005, 437: 1132-1135
    [73] Waters R D, Weimer J J, Smith J E. An investigation of the activity of coprecipitated gold catalysts for methane oxidation. Catal. Lett. 1995, 30:181-188
    [74] Choudhary T V, Sivadinarayana C, Datye A K, et al. Acetylene hydrogenation on Au-based catalysts. Catal. Lett. 2003, 86: 1-8
    [75] Jia J, Haraki K, Kondo J N, et al. Selective hydrogenation of acetylene over Au/Al2O3 catalyst. J. Phys. Chem. B 2000, 104: 11153-11156
    [76] Lopez-Sanchez J A, Lennon D. The use of titania- and iron ocide-supported gold catalysts for the hydrogenation of propyne. Appl. Catal. A: Gen. 2005, 291: 230-237
    [77] Claus P. Heterogeneously catalysed hydrogenation using gold catalysts. Appl. Catal. A: Gen. 2005, 291: 222-229
    [78] Bailie J E, Hutchings G J. Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation. Chem. Commun. 1999, 2151-2152
    [79] Sakurai H, Tsubota S, Haruta. Hydrogenation of CO2 over gold supported on metal oxides. Appl. Catal. A: Gen. 1993, 102: 125-136
    [80] Mohr C, Claus P. Hydrogenation properties of supported nanosized gold particles. Science Progress 2001, 84: 311-334
    [81] Qi C, Akita T, Okumura M, et al. Effect of surface chemical properties and texture of mesoporous titanosilicates on direct vapor-phase epoxidation of propylene over Au catalysts at high reaction temperature. Appl. Catal. A: Gen. 2003, 253:75-89
    [82] Qi C, Akita T, Okumura M, et al. Vapor-phase epoxidation of propylene using H2/O2 mixture over gold catalysts supported on non-porous and mesoporous titania-silica: effect of preparation conditions and pretreatments prior to reaction. Appl. Catal. A: Gen. 2004, 263:19-26
    [83] Haruta M. When gold is not noble: catalysis by nanoparticles. Chem. Rec. 2003, 3: 75-87
    [84] Gasior M, Grzybowska B, Samson K, et al. Oxidation of CO and C3 hydrocarbons on gold dispersed on oxide supports. Catal. Today 2004, 91-92: 131-135
    [85] Xu Y X, Landon P, Enache D, et al. Selective conversion of cyclohexane to cyclohexanol and cyclohexanone using a gold catalyst under mild conditions. Catal. Lett. 2005, 101:175-179
    [86] Zhao R, Ji D, Lv G M, et al. A highly efficient oxidation of cyclohexane over Au/ZSM-5molecular sieve catalyst with oxygen as oxidant. Chem. Commun. 2004, 904-905
    [87] Zhu K K, Hu J C, Richards R. Aerobic oxidation of cyclohexane by gold nanoparticles immobilized upon mesoporous silica. Catal. Lett. 2005, 100: 195-199
    [88] Prati L, Porta F. Oxidation of alcohols and sugars using Au/C catalysts - Part 1. Alcohols. Appl. Catal. A: Gen. 2005, 291: 199-203
    [89] Enache D I, Knight D W, Hutchings G J. Solvent-free oxidation of primary alcohols to aldehydes using supported gold catalysts. Catal. Lett. 2005, 103: 43-52
    [90] Biella S, Rossi M. Gas phase oxidation of alcohols to aldehydes or ketones catalysed by supported gold. Chem. Commun. 2003, 378-379
    [91] Centeno M A, Paulis M, Montes M, et al. Catalytic combustion of volatile organic compounds on Au/CeO2/Al2O3 and Au/Al2O3 catalysts. Appl. Catal. A: Gen. 2002, 234: 65-78
    [92] Schimpf S, Kusserow B, Claus P, et al. Proc. 13th Inernat. Congr. Catal.,Paris, July 2004.
    [93] Biella S, Prati L, Rossi M. Selective oxidation of D-glucose on gold catalyst. J. Catal. 2002, 206: 242-247
    [94] Biella S, Castiglioni G L, Fumagalli C, et al. Application of gold catalysts to selective liquid phase oxidation. Catal. Today 2002, 72: 43-49
    [95] Biella S, Rossi M. Proc. Gold 2003, Vancouver, Canada.
    [96] Prati L, Rossi M, Fumagalli C, et al. Italian Patent 99A002611, Lonza S.p.A.
    [97] Claus P, Schimpf S, Onal Y. Proc. 18th Meeting North Am. Catal. Soc., Cancun, Mexico, 2003, p.365
    [98] Onal Y, Schimpf S, Claus P. Structure sensitivity and kinetics of D-glucose oxidation to D-gluconic acid over carbon-supported gold catalysts. J. Catal. 2004, 223: 122-133
    [99] Bianchi C L, Biella S, Gervasini A, et al. Gold on carbon: influence of support properties on catalyst activity in liquid-phase oxidation. Catal. Lett. 2003, 85: 91-96
    [100] Landon P, Collier P J, Papworth A J, et al. Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst. Chem. Commun. 2002, 2058-2059
    [101] Ishihara T, Ohura Y, Yoshida S, et al. Synthesis of hydrogen peroxide by direct oxidation of H2 with O2 on Au/SiO2 catalyst. Appl. Catal. A: Gen. 2005, 291: 215-221
    [102] Edwards J K, Solsona B, Landon P, et al. Direct synthesis of hydrogen peroxide from H2 and O2 using Au-Pd/Fe2O3 catalysts. J. Mater. Chem. 2005, 15: 4595-4600
    [103] Landon P, Collier P J, Carley A F, et al. Direct synthesis of hydrogen peroxide from H2 and O2 using Pd and Au catalysts. Phys. Chem. Chem. Phys. 2003, 5: 1917-1923
    [104] Edwards J K, Solsona B E, Landon P, et al. Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au-Pd catalysts. J. Catal. 2005, 236: 69-79
    [105] Milone C, Ingoglia R, Pistone A, et al. Selective hydrogen of alpha, beta-unsaturated ketones toalpha, beta-unsaturated alcohols on gold-supported catalysts. J. Catal. 2004, 222:348-356
    [106] Shibata M, Kawata N, Masumoto T, et al. Selective hydrogenation of unsaturated carbonyl-compounds over an oxidized gold zirconium alloy. J.Chem. Soc. Chem. Commun. 1988, 154-156
    [107] Baillie J E, Abdullah H A, Anderson J A, et al. Hydrogenation of but-2-enal over supported Au/ZnO catalysts. Phys. Chem. Chem. Phys. 2001, 3: 4113-4121
    [108] Shi H, Xu N, Zhao D, et al. Immobilized PVA-stabilized gold nanoparticles on silica show an unusual selectivity in the hydrogenation of cinnamaldehyde. Catal. Commun. In press
    [109] He D P, Shi H, Wu Y, et al. Synthesis of chloroanilines: Selective hydrogenation of the nitro in chloronitrobenzenes over zirconia-supported gold catalyst. Green Chem. 2007, 9:849-851
    [110] Andreeva D, Idakiev V, Tabakova T, et al. Low-temperature water-gas shift reaction on Au/alpha-Fe2O3 catalyst. Appl. Catal. A: Gen. 1996, 134; 275-283
    [111] Andreeva D, Tabakova T, Idakiev V, et al. Au/alpha-Fe2O3 catalyst for water-gas shift reaction prepared by deposition-precipitation. Appl. Catal. A: Gen. 1998, 169: 9-14
    [112] Tabakova T, Boccuzzi F, Manzoli M, et al. FTIR study of low-temperature water-gas shift reaction on gold/ceria catalyst. Appl. Catal. A: Gen. 2003, 252: 385-397
    [113] Andreeva D. Low temperature water gas shift over gold catalysts. Gold Bull. 2002, 35: 82-88
    [114] Boccuzzi F, Chiorino A, Manzoli M, et al. FTIR study of the low-temperature water-gas shift reaction on Au/Fe2O3 and Au/TiO2 catalysts. J. Catal. 1999, 188: 176-185
    [115] Goodman D W“Catalytically active Au on Titania”: yet another example of a strong metal support interaction (SMSI)? Catal. Lett. 2005, 99: 1-4
    [116] Hodge N A, Kiely C J, Whyman R, et al. Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation. Catal. Today 2002, 72: 133-144
    [117] Arrii S, Morfin F, Renouprez A J, et al. Oxidation of CO on gold supported catalysts prepared by laser vaporization: direct evidence of support contribution. J. Am. Chem. Soc. 2004, 126: 1199-1205
    [118] Zhang X, Wang H and Xu B Q. Remarkable nanosize effect of zirconia in Au/ZrO2 catalyst for CO oxidation. J. Phys. Chem. B 2005, 109: 9678-9683
    [119] Yan W F, Mahurin S M, Chen B, et al. Effect of supporting surface layers on catalytic activities of gold nanoparticles in CO oxidation. J. Phys. Chem. B 2005, 109: 15489
    [120] YanW F, Chen B, Mahurin S M, et al. Brookite-supported highly stable gold catalytic system for CO oxidation. Chem. Commun. 2004: 1918
    [121] Akita T, Lu P, Ichikawa S, et al. Analytical TEM study on the dispersion of Au nanoparticles in Au/TiO2 catalyst prepared under various temperatures. Suf. Interface Anal. 2001, 31: 73-78
    [122] Schumacher B, Plzak V, Kinne V, et al. Highly active Au/TiO2 catalysts for low-temperature COoxidation: preparation, conditioning and stability. Catal. Lett. 2003, 89: 109-114
    [123] Zanella R, Louis C. Influence of the conditions of thermal treatments and of storage on the size of the gold particles in Au/TiO2 samples. Catal. Today 2005, 107-108: 768-777
    [124] Moreau F, Bond G C. Gold on titania catalysts, influence of some physicochemical parameters on the activity and stability for the oxidation of carbon monoxide. Appl. Catal. A: General 2006, 302: 110-117
    [125] DatéM, Ichihashi Y, Yamashita T, et al. Performance of Au/TiO2 catalyst under ambient conditions. Catal. Today 2002, 72: 89-94
    [126] Lee W S, Wan B Z, Kuo C N, et al. Maintaining catalytic activity of Au/TiO2 during the storage at room temperature. Catal. Commun. 2007, 8: 1604-1608
    [127] Armstrong A R, Armstrong G, Canales J, et al. TiO2-B nanowires. Angew. Chem. 2004, 43: 2286-2288
    [128] Lakshmi B B, Dorhout P K, Martin C R, et al. Sol-Gel Template Synthesis of Semiconductor Nanostructures. Chem. Mater. 1997, 9: 857-862
    [129] Hoyer P. Formation of a Titanium Dioxide Nanotube Array. Langmuir 1996, 12: 1411-1413
    [130] Zhang X Y, Zhang L D, Chen W, et al. Electrochemical Fabrication of Highly Ordered Semiconductor and Metallic Nanowire Arrays. Chem. Mater. 2001, 13: 2511-2515
    [131] Wang C, Deng Z X, Li Y. The synthesis of nanocrystalline anatase and rutile titania in mixed organic media. Inorg. Chem. 2001, 40: 5210-5214
    [132] Wang C, Deng Z X, Zhang G, et al. Synthesis of nanocrystalline TiO2 in alcohols. Powder Technology 2002, 125: 39-44
    [133] Trentler T J, Denler, T E, Bertone J F, et al. Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions. J. Am. Chem. Soc. 1999, 121: 1613-1614
    [134] Niederberger M, Bartl M H, Stucky G D. Benzyl alcohol and titanium tetrachloride - A versatile reaction system for the nonaqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles. Chem. Mater. 2002, 14: 4364-4370
    [135] Zhong Z Y, Chen F X, Ang T P, et al. Impact of growth kinetics on morphology and pore structure of TiO2-one-pot synthesis of macroporous TiO2 microspheres. Inorg. Chem. 2006, 45: 4619-4625
    [136] Cozzoli P D, Kornowski A, Weller H. Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. J. Am. Chem. Soc. 2003, 125: 14539-14548
    [137] Kasuga T, Hiramatsu M, Hoson A, et al. Formation of titanium oxide nanotube. Langmuir 1998, 14: 3160-3163
    [138] Du G H, Chen Q, Che R C, et al. Preparation and structure analysis of titanium oxide nanotubes. Appl. Phys. Lett. 2001, 79:3702-3704
    [139] Chen Q, Zhou W Z, Du G H, et al. Trititanate nanotubes made via a single alkali treatment. Adv. Mater. 2002, 14:1208-1211
    [140] Thorne A, Kruth A, Tunstall D, et al. Formation, structure, and stability of titanate nanotubes and their proton conductivity. J. Phys. Chem. B 2005, 109:5439-5444
    [141] Sun X M, Li Y D. Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem. Eur. J. 2003, 9:2229-2238
    [142] Ma R Z, Bando Y, Sasaki T. Nanotubes of lepidocrocite titanates. Chem. Phys. Lett. 2003, 380:577-582
    [143] Wu D, Chen Y F, Liu J, et al. Co-doped titanate nanotubes. Appl. Phys. Lett. 2005, 87:112501
    [144] Yuan Z Y, Colomer J F, Su B L. Titanium oxide nanoribbons. Chem. Phys. Lett. 2002, 363:362-366
    [145] Yuan Z Y, Su B L. Titanium oxide nanotubes, nanofibers and nanowires. Colloids and Surfaces A 2004, 241:173-183
    [146] Armstrong G, Armstrong A R, Canales J, et al. Nanotubes with the TiO2-B structure. Chem. Commun. 2005, 19:2454–2456
    [147] Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95:735-758
    [148] O’Regan B, Grtzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal titanium dioxide films. Nature 1991, 353:737-740
    [149] Wang H, Wu Y, Xu B Q. Preparation and characterization of nanosized anatase TiO2 cuboids for photocatalysis. Appl. Catal. B 2005, 59:139-146
    [150] Trentler T J, Denler T E, Bertone J F, et al. Synthesis of TiO2 Nanocrystals by Nonhydrolytic Solution-Based Reactions. J. Am. Chem. Soc. 1999, 121:1613-1614
    [151] Li G S, Li L P, Goates J B, et al. High Purity Anatase TiO2 Nanocrystals: Near Room-Temperature Synthesis, Grain Growth Kinetics, and Surface Hydration Chemistry. J. Am. Chem. Soc. 2005, 127:8659-8666
    [152] Garnweitner G, Antonietti M, Niederberger M. Nonaqueous synthesis of crystalline anatase nanoparticles in simple ketones and aldehydes as oxygen-supplying agents. Chem. Commun. 2005, 3:397-399
    [153] Xu, C Y; Zhang, P X; Yan, L. Blue shift of Raman peak from coated TiO2 nanoparticles. J. Roman Spectros. 2001, 32: 862-865
    [154] Navrotsky, A. Energetics of nanoparticle oxides: interplay between surface energy and polymorphism. Geochem. Trans. 2003, 4:34.
    [155] Park H K, Kim D K, Kim C H, et al. Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl4. J. Am. Ceram. Soc. 1997, 80:743-749
    [156] Kim S J, Park S D, Jeong Y H, et al. Homogeneous precipitation of TiO2 ultrafine powders from aqueous TiOCl2 solution. J. Am. Ceram. Soc. 1999, 82:927-932
    [157] Cheng H M, Ma J M, Zhao Z G, et al. Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles. Chem. Mater. 1995, 7:663-671
    [158] Shin H, Jung H S, Hong K S, et al. Crystallization process of TiO2 nanoparticles in an acidic solution. Chem. Lett. 2004, 33:1382-1383
    [159] Li Y Z, Fan Y N, Chen Y. A novel method for preparation of nanocrystalline rutile TiO2 powders by liquid hydrolysis of TiCl4. J. Mater. Chem. 2002, 12:1387-1390
    [160] Iijima S. Helical microtubules of graphitic carbon. Nature 1991, 354:56-58
    [161] M. Adachi, Formation of Titania Nanotubes with High Photo-Catalytic Activity. Chem. Lett. 2000, 8:942
    [162] Wen B M, Liu C Y, Liu Y. Solvothermal synthesis of ultralong single-crystalline TiO2 nanowires. New J. Chem. 2005, 29:969-971
    [163] Poudel B, Wang W Z, Dames C, et al. Formation of crystallized titania nanotubes and their transformation into nanowires. Nanotechnology 2005, 16:1935-1940
    [164] Marchand R, Brohan L, Tournoux M, et al. TiO2(B)a new form of titanium dioxide and the potassium octatitanate K2Ti8O17. Mater. Res. Bull. 1980, 15:1129-1133
    [165] Bickley R I, Gonzalez-Carreno T, Lees J S, et al. A structural investigation of titanium dioxide photocatalysts. J. Solid State Chem. 1991, 92:178-190
    [166] Yan W F, Chen B, Mahurin S M, et al. Preparation and Comparison of Supported Gold Nanocatalysts on Anatase, Brookite, Rutile, and P25 Polymorphs of TiO2 for Catalytic Oxidation of CO. J. Phys. Chem. B 2005, 109:10676-10685
    [167] Zhang X, Wang H and Xu B Q. Remarkable nanosize effect of zirconia in Au/ZrO2 catalyst for CO oxidation. J. Phys. Chem. B 2005, 109:9678-9683
    [168] Zhang X, Shi H, Xu B Q. Catalysis by gold: Isolated surface Au3+ ions are active sites for selective hydrogenation of 1,3-butadiene over Au/ZrO2 catalysts. Angew. Chem. 2005, 44:7132–7135
    [169] Zhang X, Shi H, Xu B Q. Comparative study of Au/ZrO2 catalysts in CO oxidation and 1,3-butadiene hydrogenation. Catal. Today 2007, 122:330-337
    [170]张鑫,徐柏庆. Au/ZrO2催化CO氧化反应中ZrO2纳米粒子的尺寸效应.化学学报. 2005, 63: 86-90
    [171] Chang C K, Chen Y J and Yeh C. Characterization of alumina-supported gold with temperature-programmed reduction. Appl. Catal. A: General 1998, 174: 13-23
    [172] Guzman J and Gates B C. Oxidation states of gold in MgO-supported complexes and clusters: characterization by X-ray absorption spectroscopy and temperature-programmed oxidation and reduction. J. Phys. Chem. B 2003, 107: 2242-2248
    [173] Christensen C H, J?rgensen B, Hansen J R, et al. Formation of acetic acid by aqueous-phase oxidation of ethanol with air in the presence of a heterogeneous gold catalyst. Angew. Chem. 2006, 45:4648 -4651
    [174] Soares J M C, Morrall P, Crossley A, et al. Catalytic and noncatalytic CO oxidation on Au/TiO2 catalysts. J. Catal. 2003, 219:17-24
    [175] Bus E, Prins R, Bokoven V J. Time-resolved in situ XAS study of the preparation of supported gold clusters. Phys. Chem. Chem. Phys. 2007, 9:3312-3320

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700