腺相关病毒介导的PD-L1基因转染对大鼠移植肝的保护作用及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     器官移植后器官功能维持的主要障碍是术后排斥反应和免疫抑制剂的毒性。基因治疗为肝移植领域供肝抵抗移植后排斥反应和损伤提供了新的治疗思路。将免疫调节基因导入移植肝内,使其表达致耐受分子,产生能抑制受体免疫反应的细胞因子,可有效地抑制排斥反应的发生和增强移植肝的保护功能,能在不用或少量使用免疫抑制剂的情况下延长移植肝存活,甚至长期存活。
     程序性死亡配体-1(Programmed Death Ligand-1, PD-L1)是一种重要的抑制性共刺激分子,可通过激活初始T细胞、抑制活化的效应T细胞及调节细胞因子的分泌等参与多种免疫过程。体外研究发现:PD-L1与其受体程序性死亡-1(Programmed Death-1, PD-1)结合后,能抑制活化T细胞增殖及细胞因子的产生。动物实验也证实,在心脏、胰岛、角膜、皮肤等多种器官移植模型中,PD-L1均能抑制排斥反应及延长移植物的存活;这强烈提示了PD-L1可能具有保护移植肝免受排斥反应损伤的治疗潜能。PD-L1可通过多种机制产生免疫抑制效应,与肝移植联系起来考虑,它可能通过抑制活化T细胞的增殖及细胞因子的合成、分泌,从而阻断宿主对移植肝的攻击。此外,免疫抑制分子的局部表达有可能减少其全身性副作用、增加其生物利用度及治疗效应,因此是减轻排斥反应、促进移植物长期存活的很有前景的方法。腺相关病毒(Adeno-associated Virus, AAV)是移植物保护分子转染和表达的理想载体。报告基因红色荧光蛋白(Red Fluorescent Protein, RFP)因其具有灵敏度高、信号清楚等特点亦日益受到关注。
     研究目的
     基于以上分析,本研究拟通过建立近交系大鼠原位肝移植模型,以RFP为报告基因,将AAV作为PD-L1的载体,采用冷保存期门静脉灌注夹闭法转染供肝,观察其安全性和有效性。在此基础上,于活体内观察PD-L1基因转染对大鼠异基因肝移植术后肝脏的保护作用及其与亚剂量CsA的协同效果,并通过检测PD-L1对移植肝CD4+、CD8+、CD25+淋巴细胞浸润及细胞因子INF-γ、IL-17、IL-10、TGF-β1表达的影响,试图阐明PD-L1在抑制大鼠肝移植急性排斥反应中的可能机制。
     方法与结果
     第一部分近交系大鼠肝移植急性排斥模型的建立及排斥反应观察
     大鼠随机分为3组:①G1(同基因肝移植组);②G2(异基因肝移植组);③G3(CsA组,移植后0~7d腹腔注射CsA 2.5mg/Kg.d,余同G2)。采用改良“二袖套法”建立大鼠肝移植急性排斥模型。术后观察一般情况、平均存活时间(Median Survival Time, MST),分别在术后3、7、14及21d采用全自动生化分析仪检测肝功能,光镜下观察移植肝组织学变化,根据Banff标准判断排斥反应强度。结果表明:在无外界干预的情况下,G1大鼠无急性排斥表现;G2受体多在术后7d出现耳廓黄染、尿黄等,至14d进行性加重伴血性腹水等;G3用药期间大鼠精神差,停药后逐渐恢复,至14d出现轻度急排表现;三组大鼠MST分别为:G1(106.7±0.24)d,G2(18.3±1.15)d和G3(28.7±0.98)d,G3较G2明显延长,差异显著(P<0.05);肝功及肝组织病理学改变早于上述表现,术后3d急排大鼠ALT、TBIL明显升高伴轻度的排斥反应病理改变,7d后上述指标进一步恶化,至14d最为典型,与G1、G3相比差异显著(P<0.05);各时段排斥分级与病理变化趋势一致:术后3d G3与G2急性排斥活动指数(Rejection Activity Index, RAI)评分无明显差异,而7d、14d及21d G2 RAI评分明显高于G1、G3 (P<0.05)。
     第二部分重组PD-L1-AAV2-RFP转染大鼠移植肝的安全性和有效性
     1.重组PD-L1-AAV2-RFP载体PCR鉴定:以重组载体为模板,在PCR仪上进行扩增反应,取PCR产物行1%琼脂糖凝胶电泳,紫外灯下观察发现扩增条带与预期的891bp大小的特异性条带相吻合,表明PD-L1基因构建正确。
     2.重组PD-L1-AAV2-RFP载体感染活性检测:重组病毒感染BHK细胞后荧光显微镜下观察RFP基因表达。结果表明PD-L1-AAV2-RFP感染后24h即可观察到红色荧光,48h后转染率可达30%,表明其具有较强的感染活性,可用于体内外转染研究。
     3.大鼠随机分为3组:①G1(同基因肝移植组);②G2(AAV空载体组,供肝切取后经门静脉灌注AAV2-RFP空病毒液夹闭冷转染供肝2h,移植前乳酸林格氏液经门静脉冲洗供肝,余同G1);③G3(PD-L1转染组,所用灌注液为PD-L1-AAV2-RFP,余同G2)。改良“二袖套法”建立大鼠肝移植基因转染模型,于荧光显微镜下观察移植肝RFP的表达,分别采用实时荧光定量RT-PCR、IHC从mRNA及蛋白水平检测移植肝PD-L1的表达,肝功能及肝组织病理检测同第一部分。结果发现:ALT与TBIL分别于术后3d、7d达到峰值,14d基本恢复正常,各组间无显著性差异;与未转染组相比,PD-L1转染后肝组织病理未见明显差异;G2、G3术后7d即可在荧光显微镜下观察到微弱的红色荧光,14、21d逐渐增强,呈高亮度的红色荧光,而三组大鼠肝外器官中始终无红色荧光;RT-PCR及IHC检测显示未转染组PD-L1mRNA基因和蛋白均微弱表达;PD-L1转染7d后随时间延长靶基因表达逐渐增强,21d达峰值,主要位于汇管区周围;除3d外,余各时段PD-L1基因转录及蛋白表达G3较G1、G2明显增强(P<0.05)。
     第三部分腺相关病毒介导的PD-L1表达对大鼠移植肝的保护作用及其机制
     大鼠随机分为6组:①G 1(同基因肝移植组);②G2(异基因肝移植组);③G3(AAV空载体组,供肝切取后经门静脉灌注AAV2-RFP空病毒液夹闭冷转染供肝2h,移植前乳酸林格氏液经门静脉冲洗供肝,余同G2);④G4(CsA组,移植后0~7d予腹腔注射CsA 2.5mg/kg.d,余同G2);⑤G5(PD-L1转染组,所用灌注液为PD-L1-AAV2-RFP,余同G3);⑥G6(联合治疗组,所用灌注液为PD-L1-AAV2-RFP,术后0~7d予腹腔注射CsA 2.5mg/kg.d,余同G2)。改良“二袖套法”建立大鼠肝移植模型,利用组织病理、IHC、ELISA等技术,观察术后移植肝病理改变、PD-L1蛋白表达及其对移植肝CD4+、CD8+、CD25+细胞浸润和细胞因子INF-γ、IL-17、IL-10、TGF-β1表达的影响。结果显示:G1大鼠无急性排斥表现;肝功能损害较轻,ALT与TBIL分别于术后3d、7d达到峰值,14d基本恢复正常;肝脏病理学呈Banff 0级排斥反应;各时段PD-L1蛋白微弱表达;汇管区未见明显淋巴细胞浸润;IFN-γ无明显表达,而IL-17、IL-10和TGF-β1呈低表达;大鼠MST为(106.7±0.24)d。G2、G3 7d开始出现急排表现,14d症状加重;肝功能指标明显恶化;肝脏病理学呈BanffⅡ~Ⅲ级排斥反应,RAI评分随时间推移逐渐升高;各时段PD-L1蛋白微弱表达;移植肝大量CD4+、CD8+、CD25+细胞浸润;细胞因子IFN-γ、IL-17上调表达,而IL-10、TGF-β1表达下降;大鼠MST为(18.3±1.15)d、(18.3±0.72)d。与G2、G3相比,G4、G5及G6大鼠发生急性排斥反应的时间均明显延迟,直至14d才出现轻度排斥表现;肝功能部分改善,术后出现ALT、TBIL再次升高及肝功能衰竭的时间明显推迟;肝脏病理学呈BanffⅠ~Ⅱ级排斥反应;G5、G6各时段移植肝PD-L1蛋白的表达随时间逐渐增强,G4无明显变化;移植肝CD4+、CD8+、CD25+细胞浸润明显减少,尤以CD8+细胞为著(P<0.05);移植肝细胞因子IFN-γ、IL-17含量显著下降,而IL-10、TGF-β1含量明显升高,差异显著(P<0.05);受体MST明显延长,但未获得长期存活,仅为(28.7±0.98)d、(29.3±1.47)d。PD-L1基因转染联合亚剂量CsA治疗的大鼠各时段肝功能损害进一步减轻,RAI评分显著降低,受体MST明显延长至(34.0±1.49)d (P<0.05)。
     四、结论
     1.采用改良“二袖套法”成功建立了LEW-BN组合大鼠肝移植急性排斥模型。
     2.冷保存期经门静脉灌注PD-L1-AAV2-RFP夹闭法转染供肝,可安全、有效地将目的基因转染至大鼠移植肝内并分泌功能性蛋白。
     3.在本实验条件下,采用PD-L1-AAV2-RFP(1×1011v.g./只)经门静脉灌注夹闭冷保存2h是介导足量蛋白表达的理想方案。
     4.腺相关病毒介导的PD-L1基因转染对移植肝具有显著的保护作用,可延长移植肝存活,且与CsA有协同效果。
     5. PD-L1基因可抑制肝移植急性排斥反应,其机制可能是PD-L1基因转染增强了PD-L1/PD-1信号通路,通过抑制移植肝CD4+、CD8+、CD25+T细胞浸润及其功能,在上调细胞因子IL-10、TGF-β1表达的同时,下调INF-γ、IL-17的表达,从而发挥对移植肝的保护作用。
Background
     Liver transplantation is an effective or even only approach of treatment to some end stage liver diseases, but acute rejection remains to be the primary clinical problem and challenge of transplantation. The outcome of allogeneic organ transplants is, in part, dependent on the balance between co-stimulatory and modulatory signals that accompany TCR-mediated recognition by recipient’s T cells. The local expression of a gene encoding an immunosuppressive protein within a graft can generate local immunosuppression, which enhanced co-inhibitory signals in recipients, making gene therapy a viable approach for facilitating transplantation.
     Programmed death ligand-1 (PD-L1), a newer member of the CD28 family, has been implicated as a negative regulator of T cell activation. In previous research, engagement of programmed death-1 (PD-1) by PD-L1 inhibited proliferation and cytokine production by activated T cells. Conversely, blockade of PD-L1 using specific monoclonal antibodies stimulated T cell proliferation and cytokine production. Meanwhile, recent studies showed that interfering with the PD-L1/PD-1 co-stimulatory pathway prolonged allograft survival in various organ transplantation models, suggesting that they might play an important role in maternal acceptance of liver allograft. Thus, the recombinant PD-L1 gene was chosen as the immunomodulator.
     This study focused on establishing acute rejection model of orthotopic liver transplantation in inbred rats. The effective way of transferring the target gene into the liver allograft with PD-L1-AAV2-RFP was also explored. Furthermore, we investigated the protective effects and mechanisms of modification of liver allograft with target gene on the survival in vivo. The main results and conclusions were as follows:
     Part 1 Establishment of acute rejection model of orthotopic liver transplantation in inbred rats
     Objective To establish acute rejection model of orthotopic liver transplantation in inbred rats.
     Methods We established LEW-BN rat orthotopic liver transplantation model using“the innovated two-cuff technique”. Experimental groups included:①G1: Isogenic (ISO) group.②G2: Allogeneic (ALLO) group.③G3: CsA group injected CsA (2.5mg/kg.d) intraperitoneally daily from day 0 to day 7 postoperatively. Recipients were sacrificed on POD 3, 7, 14, and 21 respectively. Liver tissues and blood samples were collected. The general states, median survival time (MST), and histopathological characteristic of recipients were observed. Serum levels of ALT and TBIL were measured with automatic biochemical analyser.
     Results In G2, typical mild, moderate and severe acute rejection occurred on POD 3, 7 and 14 respectively, and the delayed occurrence of graft rejection were observed in G3. The MST of G3 (28.7±0.98)d was prolonged significantly compared with that of G2 (18.3±1.15)d (P<0.05). Serum ALT and TBIL levels of G2 increased obviously on POD 3 and has been booming ever since. Serum ALT and TBIL levels of G2 were significantly higher than those of G1 and G3. Typical histological change occurred on POD 14 in G2 and the light rejection in G3. There was no significant difference in rejection activity index (RAI) scores between G2 and G3 on POD 3. Whereas on d7, d14 and d21 after operation, RAI scores of G2 were marked higher than that of G3 and G1 (P<0.05).
     Conclusions
     1. Rat orthotopic liver transplantation of LEW to BN strain is an ideal acute rejection model.
     2. The model has stable and typical allograft rejection. It can be used in the study of liver transplantation immunity.
     Part 2 The security and effectiveness of recombinant adeno-associated virus transfecting PD-L1 gene into livers of donor
     Objective To find the effective way of transfecting PD-L1 gene into livers of donor with recombinant adeno-associated virus.
     Methods The PD-L1-AAV2-RFP was identified by PCR. The transfection efficiency of PD-L1-AAV2-RFP was determined by observing the expression of RFP in BHK cell with fluorescence microscope. We established the PD-L1-AAV2-RFP gene transfer model and recipients were randomly divided into three groups:①G1: ISO group.②G2: AAV group introduced through back-table portal vein perfusion with AAV2-RFP for 2 hours, and the graft was flushed with Ringer’s lactate solution to remove any free virus before implantation.③G3: PD-L1 group introduced with PD-L1-AAV2-RFP. Liver allografts harvested on POD 3, 7, 14, and 21 were fixed in 10% buffered formalin and embedded in paraffin for histological study by hematoxylin-eosin staining. Part of the grafts were frozen for RFP expression analysis. PD-L1 mRNA and protein expression in grafts were detected by using Realtime RT-PCR and IHC respectively. The function of liver was also measured. Results The fragment was verified by PCR analysis to make sure that the cDNA is just the one we expected. Evident red fluorescence was observed and the transfection rate increased with the prolongation of time, suggesting that the donor liver might be transfected efficiently by PD-L1-AAV2-RFP. Serum levels of ALT and TBIL increased obviously on POD 3 and 7 respectively, then gradually returned back to normal with time. Pathological changes of the specimens showed only mild ischemia-reperfusion injury on POD 7, with no statistical difference among three groups (P>0.05). Red fluorescence was not observed in sections of heart, lung, kidney, and spleen after transplantation. However, evident red fluorescence was observed in sections of livers after operation except day 3 and increased in the later. The expressions of PD-L1mRNA and protein were both upregulated in the liver of donor at 7th day after transfection, and reached its peak at 21st day in G3, but still lower in G1 and G2.
     Conclusions
     1. PD-L1-AAV2-RFP is effective and safe for gene delivery in rat liver transplantation.
     2. Back-table perfusion through the portal vein with PD-L1-AAV2-RFP (1×1011v.g./animal) and preservation of grafts for 2 hours is the optimal protocol to induce sufficient protein expression.
     Part 3 The protective effects of PD-L1 gene transfer mediated by AAV-2 on liver allograft of rat and its mechanisms
     Objective To evaluate the protective effects and mechanisms of the liver allograft transfected with PD-L1 gene in vivo.
     Methods Recipients were randomized into six groups:①G1: ISO group.②G2: ALLO group.③G3: AAV group introduced with AAV2-RFP.④G4: CsA group injected CsA (2.5mg/kg.d) intraperitoneally daily from day 0 to day 7 postoperatively.⑤G5: PD-L1 group introduced with PD-L1-AAV2-RFP.⑥G6: Combination therapy group introduced with PD-L1-AAV2-RFP plus a subtherapeutic regimen of CsA. We established ROLT model using“the innovated two-cuff technique”. Gene delivery to donor liver was done by intracoronary instillation of virus containing solution (1×1011v.g./animal) through the portal vein. On POD 3, 7, 14 and 21, grafts were taken for IHC to assess the expression of PD-L1.Ig, CD4+, CD8+ and CD25+ lymphocytes, for ELISA to analysis the concentration of IFN-γ, IL-17, IL-10, and TGF-β1 respectively. The MST, liver function and histopathological changes were also observed.
     Results In G1, no acute rejection was found, biochemical datas showed that the levels of ALT and TBIL increased during the first weeks after operation and decreased to normal with time. Fewer PD-L1-positive cells in the graft were detected. The expression of IFN-γ, CD4+, CD8+, and CD25+ lymphocytes were not observed in various period of time. Otherwise, IL-17, IL-10, and TGF-β1 were all low-expressed. The MST was (106.7±0.24)d. In G2 and G3, typical mild, moderate and severe acute rejection occurred on POD 3, 7 and 14 respectively. The function of liver were markedly higher than those of other groups (P<0.05). Fewer PD-L1-positive cells in the graft were detected. A lot of CD4+, CD8+ and CD25+ lymphocytes infiltrated in portal area of grafts, especially CD8+ T cells (P<0.05). On POD 3, the concentration of IFN-γand IL-17 in grafts increased continuously and even decreased on POD 21, while the expression of IL-10 and TGF-β1 were down-regulated gradually. The MST were (18.3±1.15)d and (18.3±0.72)d. In G4, G5 and G6, acute rejection still occurred after operation with light rejection sign in histopathological change. The function of gene transfected liver was inferior to that of G2 and G3 significantly (P<0.05). Although fewer PD-L1-positive cells were detected in G4, a certain number of PD-L1-positive cells were found in G5 and G6. Compared with G2 and G3, those allografts treated with PD-L1 or CsA had a significantly reduced cellular infiltrate, especially CD8+ cell. The concentration of IFN-γand IL-17 in grafts were greatly inhibited, accompanying with greatly increased secretion of IL-10 and TGF-β1. Allografts transduced with the PD-L1 survived for longer periods of time (P<0.05). PD-L1 gene transfer combined with a subtherapeutic regimen of CsA was superior to CsA alone: (34.0±1.49)d vs. (28.7±0.98)d.
     Conclusions
     1. Adeno-associated virus mediated PD-L1 gene delivery significantly prolongs liver allograft survival in a rat model.
     2. Enhanced expression of PD-L1 protein in donor liver attenuates acute allograft rejection. The effect is additive to that of a subtherapeutic regimen of CsA.
     3. PD-L1 gene may take the effect in liver transplantation via reducing intragraft infiltrates of T lymphocytes, suppression of INF-γand IL-17 production as well as stimulation of IL-10 and TGF-β1 production.
引文
1. Lee S, Charters AC, Chandler JG, et al. A technique for orthotopic liver transplant in the rat [J]. Transplantation, 1973, 16(6): 664-669.
    2. Yamamoto S, Okuda T, Yamasaki K, et al. FK778 and FK506 combination therapy to control acute rejection after rat liver allotransplantation [J]. Transplantation, 2004, 78(11): 1618-1625.
    3. Yamamoto S, Okuda T, Yamasaki K. FK778 controls acute rejection after rat liver allotransplantation showing positive interaction with FK506 [J]. Transplant Proc, 2005, 37(1):126-129.
    4. Suzuki A, Kudoh S, Mori K, et al. Expression of nitric oxide and inducible nitric oxide synthase in acute renal allograft rejection in the rat [J]. Int J Urol, 2004, 11(10): 837-844.
    5. Lee AD, Ribeiro U Jr, Ferreira MA, et al. Apoptosis participation in the acute rejection of intestinal transplantation in rats [J]. Arq Gastroenterol, 2004, 41(3):193-198.
    6. Deuse T, Schrepfer S, Schafer H, et al. FK778 attenuates lymphocyte-endothelium interaction after cardiac transplantation: in vivo and in vitro studies [J]. Transplantation, 2004, 78(1): 71-77.
    7. Kamada N. The immunology of experimental liver transplantation in the rat [J]. Immunology, 1985, 55(3): 369-389.
    8. Otto C, Kauczok J, Martens N, et al. Mechanisms of tolerance induction after rat liver transplantation: Intrahepatic CD4 (+) T cells produce different cytokines during rejection and tolerance in response to stimulation [J]. Gastrointest Surg, 2002, 6(3): 455-463.
    9. Jiang H, Wynn C, Pan F, et al. Tacrolimus and cyclosporine differ in their capacity to overcome ongoing allograft rejection as a result of the differential abilities to inhibit interleukin-10 production [J]. Transplantation, 2002, 73(11):1808-1817.
    10. Hashimoto T, Yamaguchi J, Gu W, et al.The presence of donor-reactive CD4+ T cells in early-phase liver-induced tolerance in rats: analysis using donor passenger leukocytes from the recipient [J]. Transpl Immunol, 2006, 15(3):205-209.
    11. Wang C, Li J, Cordoba SP, et al. Posttransplant interleukin-4 treatment converts ratliver allograft tolerance to rejection [J]. Transplantation, 2005, 79(9):1116-1120.
    12. Nagasaki K, Obara H, Xiong A, et al. Liver allografts are toleragenic in rats conditioned with posttransplant total lymphoid irradiation [J]. Transplantation, 2007, 84(5): 619-628.
    13. Kazuhiro Usui, Junzo Yamaguchi, Weili Gu, et al. Cytoxic T cell elimination during anti-CD4 induced rat liver acceptance and rapid replacement of functional graft antigen presenting cells [J]. Liver Transplant, 2004, 10(6): 734-742.
    14. Jiang GP, Hu ZH, Zheng SS, et al. Adenovirus mediated CTLA4 Ig gene inhibits infiltration of immune cells and cell apoptosis in rats in after liver transplantation [J]. World J Gastroenterol, 2005, 11(7): 1065-1069.
    15. Wu SL, Yu L, Jiao XY, et al. The suppressive effect of resveratrol on protein kinase C theta in peripheral blood T lymphocytes in a rat liver transplantation model [J]. Transplant Proc, 2006, 38(9): 3052-3054.
    16.刘静,高毅,汪爽,等。引起排斥反应模型肝移植大鼠生存时间延长分析[J].广东医学, 2004, 25(12): 1374-1376。
    17.袁晟光,王继见,董家鸿,等。冷保存大鼠部分肝移植模型的建立[J].消化外科, 2003, 2(4): 274-276。
    18. An IP. An International Panel. Banff schema for grading liver allograft rejection; An International Consensus Document [J]. Hepatology, 1997, 25(3): 658-663.
    19. Blain B, Zhang F, Jones M, et al. Vascular grafts in the rat model: an anatomic study [J]. Microsurgery 2001, 21(3): 80-83.
    20. Cowley AW Jr, Liang M, Roman RJ, et al. Consomic rat model systems for physiological genomics [J]. Acta Physiol Scand, 2004, 181(4): 585-592.
    21. Herrera VL, Ruiz-Opazo N. Genetic studies in rat models: insights into cardiovascular disease [J]. Curr Opin Lipidol, 2005, 16(2): 179-191.
    22. Schemmer P, Schoonhoven R, Swenbery JA, et al. Gentle in situ liver manipulation during organ harvest decreases survival after rat liver transplantation [J]. Transplantation, 1998, 65(8): 1015-1020.
    23. Schemmer P, Enomoto N, Bradford BU, et al. Activated Kupffer cells cause a hypermetabolic state after gentle in situ manipulation of liver in rats [J]. Am J Physiol Gastrointest Liver Physiol, 2001, 280(6): 1076-1082.
    24. Qin L, Gao GY, Yu B, et al. Experience after 150 cases of rat orthotopic liver transplantation [J]. Suzhou University Journal of Medical Science, 2005, 25(1): 77-79.
    25. Liu Jiangwen, Tang Yong, Li Youping, et al. Establishment of acute rejection model of orthotopic liver transplantation in inbred rats [J]. Fourth Mil Med Univ, 2007, 28 (2): 114-118.
    26. Peng Y, Gong JA, Liu CA, et al. Selection of anesthetic method in setting up the animal model of orthotopic liver transplantation [J]. Chinese Journal of General surgery, 2003, 12(9): 673-676.
    27.杨卫平,邵堂雷,蔡伟耀,等。大鼠两种不同供肝对原位肝移植术中和术后影响的比较[J].消化外科, 2003, 2(1):30-33。
    28. Fernandez-Merino J, Nuno-Garza J, Lopez-Hervas P, et al. Influence of ischemia and surgery times on development of primary dysfunction liver transplant in patients [J]. Transplant Proc, 2003, 35(4): 1439-1441.
    29. Goto S, Shimizu Y, Lord R, et al. The beneficial effect of the prostacyclin analogue (OP 2507) on rat liver transplantation subjected to an extended anhepatic phase [J].Transpl Int, 1996, 9(6): 607-610.
    30. Kashfi A, Mehrabi A, Pahlavan PS, et al. A review of various techniques of orthotopic liver transplantation in the rat [J]. Transplant Proc, 2005, 37(1): 185-188.
    31. Delriviere L, Gibbs P, Kobayashi E, et al. Detailed modified technique for safer harvesting and preparation of liver graft in the rat [J]. Microsurgery, 1996, 17(12): 690-696.
    32. Tanaka H, Hashizume k, Enosawa S, et al. Successful transplantation of a 20% partial liver graft in rats: a technical innovation [J]. Surg Res, 2003, 110(2): 409-412.
    33.黄文鹏,黄祖发,叶启发,等。大鼠肝移植模型的建立及排斥品系的选择[J].中国现代手术学杂志, 2007, 11(4): 244-246。
    34. Ninova DI, Ferguson DM, Wettstein PJ, et al. Liver allograft rejection in rats depleted of CD8+ cells [J]. Transpl Int, 1996, 9(5): 499-505.
    35. Chimalakonda AP, Montgomery DL, Weidanz JA, et al. Attenuation of acute rejection in a rat liver transplantation model by a liver-targeted dextran prodrug of methylprednisolone [J]. Transplantation, 2006, 81(5): 678-685.
    36. Shaked A, Csete ME, Shiraishi M, et al. Retroviral-mediated gene transfer into ratexperimental liver transplant [J]. Transplantation, 1994.57(1): 32-4.
    37. Chen CH, Kuo LM, Chang Y, et al. In vivo immune modulatory activity of hepatic stellate cells in mice [J]. Hepatology, 2006, 44(5): 1171-1181.
    38. Watson MP, George AT, Larkin DF, et al. Differential effects of co-stimulatory pathway modulation on corneal allograft survival [J]. Investigative Ophthalmology & Visual Science, 2006, 47(8): 3417-3422.
    39. Cao Y, Zhou H, Tao J, et al. Keratinocytes induce local tolerance to skin graft by activating interleukin-10 secreting T cells in the context of costimulation molecule PD-L1 [J]. Transplantation, 2003, 75(8): 1390-1396.
    40. Baird GS, Zacharias DA, Tsien RY. Biochemistry, mutagennsis and oligomerization of DsRed, a red fluorescent protein from coral [J]. Proc Natl Acad Sci USA, 2000, 7(22): 1984-1989.
    41. Higuchi R, Fockler C, Dollinger G, et al. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions [J]. Biotechnology, 1993, 1(9): 1026-1030.
    42. Starzl TE , Murase N , AbuElmagd K, et al. Tolerance for immunosuppression in organ transplantation [J]. Lancet, 2003, 361(9368): 1502-1510.
    43. Nakajima H, Uchida K, Kobayashi S, et al. Rescue of rat anterior horn neurons after spinal cord injury by retrograde transfection of adenovirus vector carrying brain-derived neurotrophic factor gene [J]. Neurotrauma, 2007, 24: 703-712.
    44. Cui L, Li FC, Zhang Q, et al. Effect of adenovirus-mediated gene transfection of vascular endothelial growth factor on survival of random flaps in rats [J]. Chin J Traumatol, 2003, 6 (4): 199-204.
    45. Shen J, Taylor N, Duncan L, et al. Ex vivo adenovirus mediated gene transfection of human conjunctival epithelium [J]. Br J Ophthalmol, 2001, 85(1): 861-867.
    46. Gao W, Demirci G, Terry B , et al. Stimulating PD-1 negative signals concurrent with blocking CD154 co-stimulation induces long term islet allograft survival [J] . Transplantation, 2003, 76(6): 994-999.
    47. Ozkaynak E, Wang LQ, Goodearl A, et al. Programmed death-1 targeting can promote allograft survival [J]. Immunology, 2002, 169 (11): 546-553.
    48. Nicole SG, Otto M, Andreas S, et al. B7-H1 (programmed death-1 ligand) on dendritic cells is involved in the induction and maintenance of T cell anergy [J]. Immunology,2003, 170 (7): 3637-3644.
    49. Nishimura H, Honjo T. PD-1: An inhibitory immunoreceptor involved in peripheral tolerance [J]. Trends in Immunol, 2001, 22(5): 265-268.
    50. Isner JM, Vale PR, Symes JF, et al. Assessment of risks associated with cardiovascular gene therapy in human subjects [J]. Circ Res, 2001, 89(5): 389-400.
    51. Van Tendeloo V, Van Broeckhoven V, Breneman ZN. Gene therapy: princip les and applications to hematopoietic cells [J]. Leukemia, 2001, 15(4): 523-544.
    52. Ilan Y, Saito H, Thummala NR, et al. Adenovirus-mediated gene therapy of liver disease [J]. Seminars Liver Dis, 1999, 19(1): 49-59.
    53. Palella TD, Hidaha Y, Silverman LJ, et al. Expression of human HPRT mRNA in brains of mice infected with a recombinant herpes simplex virus-1 vector [J]. Gene, 1989, 80(1): 137-144.
    54. Monahan PE,Samulski RL. AAV vectors is clinical success on the horizon? [J]. Gene Ther, 2000, 7(1): 24-30.
    55. Walz CM, Correa-Ochoa MM, Muller M, et al. Adeno-associated virus type2-induces inhibition of the human papillomavirus type 18 promoter in transgenic mice [J]. Virology, 2002, 293(1): 172-181.
    56. Sarukhan A, Camugli S, Gjata B, et al. Successful interference with cellular immune responses to immunogenic protein encoded by recombinant viral vectors [J]. Virol, 2001, 75(1): 269-277.
    57. Manning WC, Zhou S, Bland MP, et al. Transient immunosuppression allows transgene expression following readministration of adeno-associated viral vectors [J]. Hum Gene Ther, 1998, 9(4): 477-485.
    58. Kenneth ED, Lily W, Xiuda S, et al. Adenovirus-mediated gene transfer in the transplant setting. PartⅢ. Variables affecting gene transfer in liver grafts [J]. Transplantation, 1995, 59(5): 670-673.
    59. Xiao W, Berta SC, Lu MM, et al. Adeno-associated virus as a vector for liver-directed gene therapy [J]. Virol, 1998, 72(12): 10222-10226.
    60. Kashiwakura Y, Tamayose K, Iwabuchi K, et al. Hepatocyte growth factor receptor is a coreceptor for adeno-associated virus 2 infection [J]. Virol, 2005, 79(1): 609-614.
    61. Qing K, Mah C, Hansen J, et al. Human fibroblast growth factor receptor 1 is aco-receptor for infection by adeno-associated virus 2 [J]. Nat Med, 1999, 5(1): 71-77.
    62. Selvaragan P, Pinku M, Mervin CY, et al. Aneno-associated virus 2-mediated gene transfer in vivo: organ-tropism and expression of transduced sequences in mice [J]. Gene, 1997, 190 (1): 203-210.
    63. Tenenbaum L, Lehtonen E, Monahan PE. Evaluation of risks related to the use of adeno-associated virus-based vectors [J]. Curr Gene Ther, 2003, 3(6): 545-565.
    64. Katri Pajusola, Marcin Gruchala, Hana Joch, et al. Cell-type-specific characteristics modulate the transduction efficiency of adeno-associated virus type 2 and restrain infection of endothelial cells [J]. virol, 2002, 76(22): 11530-11540.
    65. Miao CH, Nakai H, Thompson AR, et al. Nonrandom transduction of recombinant adeno-associated virus vectors in mouse hepatocytes in vivo: Cell cycling does not influence hepatocyte transduction [J]. Virol, 2000, 74(8): 3793-3803.
    66. Zhenfan Yang, Xiaobing Wu, Tungyu Tsui, et al. Recombinant adeno-associated virus vector: Is it ideal for gene delivery in liver transplantation? [J]. Liver Transplantation, 2003, 9(4): 411-420.
    67. Xu Feng, Yang Jiamei, Qian Qijun, et al. Adeno-associated virus mediated gene transfer into liver graft in rat [J]. Chin J Organ Transplant, 2002, 23(1): 10-12.
    68. Takahashi Y, Geller DA, Gambotto A, et al. Adenovirus-mediated gene therapy to liver grafts: successful gene transfer by donor pretreatment [J]. Surgery, 2000, 128(2): 345-352.
    69. Nakai H, Yant SR, Storm TA, et al. Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo [J]. Virol, 2001, 75(15): 6969-6976.
    70. Lo WD, Qu G, Sferra TJ, et al. Adeno-associated virus-mediated gene transfer to the brain: duration and modulation of expression [J]. Hum Gene Ther, 1999, 10(2): 201-213.
    71. Podsakoff G, Wong KK Jr, Chatterjee S. Efficient gene transfer into nondividing cells by adeno-associated virus 2 based vectors [J]. Virol, 1994, 68(9): 5656-5666.
    72. Srivastava A. Delivery system for gene therapy: adeno-associated virus 2 [J]. Stem Cell Biol Gene Ther, 1998, 72(6): 257-285.
    73. Bilbao G, Contreras JL, Gomez-Navarro J, et al. Genetic modification of liver grafts with an adenoviral vector encoding the Bcl-2 gene improved organ preservation [J].Transplantation, 1999, 67(6):775-783.
    74. Herweijer H, Wolff JA. Progress and prospects: naked DNA gene transfer and therapy [J]. Gene Ther, 2003, 10 (6): 453-458.
    75. Kren BT, Chowdhury NR, Chowdhury JR, et al. Gene therapy as an alternative to liver transplantation [J]. Liver Transplant, 2002, 8 (12): 1089-1108.
    76. Lalani AS, Chang B, Lin J, et al. Anti-tumor efficacy of human angiostatin using liver-mediated adeno-associated virus gene therapy [J]. Mol Ther, 2004, 9(1): 56-66.
    77. Raper SE, Wilson JM. Cell transplantation in liver-directed gene therpy [J]. Cell Transplantation, 1993, 2(5): 381-400.
    78. Seisenberger G, Ried MU, Endress T, et al. Real-time single-molecule imaging of the infection pathway of adeno-associated virus [J]. Scinece, 2001, 294(5548): 1929-1932.
    79. Itano H, Mora BN, Zhang W, et al. Lipid-mediated ex vivo gene transfer of viral interleukin-10 in rat lung allotransplantation [J]. Thorac Cardiovasc Surg, 2001, 122(1): 29-38.
    80. Shinozaki K, Yahata H, Tanji H, et al. Allograft transduction of IL-10 prolongs survival following orthotopic liver transplantation [J]. Gene Ther, 1999, 6(5): 816-822.
    81. Keir ME, Liang SC, Guleria I, et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance [J]. Exp Med, 2006, 203(4): 883-895.
    82. Lee I, Wang L, Wells AD, et al. Blocking the monocyte chemoattractant protein-1/ CCR2 chemokine pathway induces permanent survival of islet allografts through a programmed death-1 ligand 1-dependant mechanism [J]. Immunology, 2002, 171(12): 6929-6935.
    83. Chen CH, Kuo LM, Chang Y, et al. In vivo immune modulatory activity of hepatic stellate cells in mice [J]. Hepatology, 2006, 44(5): 1171-1181.
    84. Wiesner RH, Rakela J, Ishitani MB, et al. Recent advances in liver transplantation [J]. Mayo Clin Proc, 2003, 78(2): 197-210.
    85. Debray D, Furlan V, Baudouin V, et al. Therapy for acute rejection in pediatric organ transplant recipients [J]. Paediatr Drugs, 2003, 5(2): 81-93.
    86. Game DS, Warrens AN, Lechler RI. Rejection mechanisms in transplantation [J].Wien Klin Wochenschr, 2001, 113(20-21): 832-838.
    87. Sayegh MH, Perico N, Remuzzi G. Transplantation tolerance. A complex scenarioawaiting clinical applicability [J]. Contrib Nephrol, 2005, 146: 95-104.
    88. Fehr T, Sykes M. Tolerance induction in clinical transplantation [J]. Transpl Immunol, 2004, 13(2): 117-130.
    89. Suciu Foca N, Cortesini R. Reviewing the mechanism of peripheral tolerance in clinical transplantation [J]. Contrib Nephrol, 2005, 146: 132-142.
    90. Neujahr D, Turka LA. Lymphocyte depletion as a barrier to immunological tolerance [J]. Contrib Nephrol, 2005, 146: 65-72.
    91. Walsh PT, Taylor DK, Turka LA. Tregs and transplantation tolerance [J]. J Clin Invest, 2004, 114(10): 1398-1403.
    92. Nanji SA, Hancock WW, Luo B, et al. Costimulation blockade of both inducible costimulator and CD40 ligand induces dominant tolerance to islet allografts and prevents spontaneous autoimmune diabetes in the NOD mouse [J]. Diabetes, 2006, 55(1): 27-33.
    93. Sharpe A. Costimulation and regulation of autoimmunity and tolerance [J]. Pediatr Gastroenterol Nutr, 2005, 40, Suppl 1: S20-21.
    94. Dai Z, Lakkis FG. The role of cytokines, CTLA-4 and costimulation in transplant tolerance and rejection [J]. Curr Opin Immunol, 1999, 11(5): 504-508.
    95. Jean Dudler, Jianping Li, Maria Pagnotta, et al. Gene transfer of programmed death ligand-1.Ig prolongs cardiac allograft survival [J]. Transplantation, 2006, 82(12): 1733-1737.
    96. Dong H, Zhu G, Tamada K, et al. B7-H1, a third member of the B7 family, costimulates T cell proliferation and interleukin-10 secretion [J]. Nat Med, 1999, 5(12): 1365-1369.
    97. Taams LS, Smith MH, Rustin M, et al. Human anergic/suppressive CD4+CD25+ T cells: a highly differentiated and apoptosis-prone population [J]. Eur J Immunol, 2001, 31(4):1122-1131.
    98. Kang Hao, Hong Guangxiang, Wang Fabin, et al. Changes and significance of T lymphocyte subsets in rat limballo transplantation [J].Chin J Exp Surg, 2003, 20(5): 456-459.
    99. Iwai Y, Terawaki S, Ikegawa M, et al. PD-1 inhibits antiviral immunity at the effector phase in the liver [J]. Exp Med, 2003, 198 (1): 39-50.
    100. Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation [J]. Exp Med, 2000, 192 (7): 1027-1034.
    101.朱珉,陈栋。T细胞亚群与免疫耐受[J].国外医学免疫学分册, 2004, 27(1): 8-11。
    102. Battaglia M, Stabilini A, Draghici E, et al. Rapamycin and interleukin-10 treatment induces T regulatory type 1 cells t hat mediate antigen specific transplantation tolerance [J]. Diabetes, 2006, 55(1): 40-49.
    103. Waldmann H, Graca L, Cobbold S, et al. Regulatory T cells and organ transplantation [J]. Semin Immunol, 2004, 16(2): 119-126.
    104. Maruyama K, Yamada J, Sano Y, et al. Th2-biased immune system promotion of allogeneic corneal epithelial cell survival after orthotopic limbal transplantation [J]. Invest Ophthalmol Vis Sci, 2003, 44 (11): 4736-4741.
    105. Mocchegiani E, Malavolta M. NK and NKT cell functions in immunosenescebce [J]. Aging Cell, 2004, 3(4): 177-184.
    106. Abou-Bacar A, Pfaff AW, Letscher-Bru V, et al. Role of gamma interferon and T cells in congential toxoplasma transmission [J]. Parasite Immunol, 2004, 26(8-9): 315-318.
    107. Affleck DG, Bull DA, Albanil A, et al. Interleukin-18 production following murine cardiac transplantation: correlation with histologic rejection and the induction of IFN-gamma [J]. Interferon Cytokine Res, 2001, 21(1): 1-9.
    108. Nakae S, Komiyama Y, Nambu A, et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses [J]. Immunity. 2002, 17(3): 375-387.
    109. MoseleyTA, Haudenschild DR, Rose L, et al. Interleukin-17 family and IL-17 receptors [J]. Cytokine Growth Factor Rev, 2003, 14(2): 155-174.
    110. Antonysamy MA, Fanslow WC, Fu F, et al. Evidence for a role of IL-17 in organ allograft rejection: IL-17 promotes the functional differentiation of dendritic cell progenitors [J]. Immunology, 1999, 162(1): 577-584.
    111. Afzali B, Lombardi G, Lechler RI, et al. The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Lord GM [J]. Clin Exp Immunol, 2007, 148(1): 32-46.
    112. Li J, Simeoni E, Fleury S, et al. Gene transfer of soluble interleukin-17 receptor prolongs cardiac allograft survival in a rat model [J]. Eur J Cardiothorac Surg, 2006, 29(5): 779-783.
    113. Tashiro H, Shinozaki K, Yahata H, et al. Prolongation of liver allograft survival after interleukin-10 gene transduction 24~48 hours before donation [J]. Transplantation, 2000, 70(2): 336-339.
    114. Ito K, Takaishi H, Jin Y, et al. Staphylococcal enterotoxion B stimulates expansion of autoreactive T cells that induce apoptosis in intestinal epithelial cells: regulation of autoreactive response by IL-10 [J]. Immunology, 2000, 164(6): 2994 -3001.
    115. Lindsay J, Van Montfrans C. IL-10 gene therapy prevents TNBS2 induced colitis [J]. Gene Ther, 2002, 9(24): 1715-1721.
    116. Oshima K, Sen L , Cui G, et al. Localized interleukin-10 gene transfer induces apoptosis of alloreactive T cells via FAS/FASL pathway, improves function, and prolongs survival of cardiac allograft [J]. Transplantation, 2002, 73(7): 1019-1026.
    117. Hong IC, Mullen PM, Precht AF, et al. Nonviral human IL-10 gene expression reduces acute rejection in heterotopic auxiliary liver transplantation in rats [J]. Microsurgery, 2003, 23(5): 432-436.
    118. Starnes T, Broxmeyer HE, Robertson MJ, et al. Cutting edge: IL-17D, a novel member of the IL-17 family, stimulates cytokine production and inhibits hemopoiesis [J]. Immuinity, 2002, 169(2): 642-646.
    119. Chan SY, Goodman RE, Szmuszkovicz JR, et al. DNA-liposome versus adenoviral mediated gene transfer of transforming growth factorβ1 in vascularized cardiac allografts; different cneitvity of CD4+ and CD 8+ T cells to transforming growth factorβ1 [J]. Transplantation, 2000, 70(9):1292-1301.
    1. Dong H, Zhu G, Tamada K, et al. PD-L1, a third member of the B7 family, costimulates T cell proliferation and interleukin-10 secretion [J]. Nat Med, 5(12): 1365-1369.
    2. Manish Jutte, Mary E Keir, Theresa B Phamduy, et al. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses [J]. Immunity, 2007, 27(1): 111-122.
    3. Eppihimer MJ, Gunn J, Freeman GJ, et al. Expression and regulation of the PD-L1 immunoinhibitory molecule on microvascular endothelial cells [J]. Microcirculation, 2002, 9(2): 133-145.
    4. Yoshiko Iwai, masayoshi I, Yoshimasa T, et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade [J]. Proc Natl Acad Sci, 2003, 99 (19): 12293-12297.
    5. Tamura H, Dong H, Zhu G. B7-H1 costimulation preferentially enhances CD28- independent T helper cell function [J]. Blood, 2001, 97(6): 1809-1816.
    6. Petroff MG, Chen L, Phillips TA, et al. B7 family molecules: novel immunomodulators at the maternal-fetal interface [J]. Placenta, 2002, 23, suppl A: 95-101.
    7. Ishida M, Iwai Y, Tanaka Y, et al. Differential expression of PD-L1 and PD-L2,ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues [J]. Immunol Lett, 2002, 84(1): 57-62.
    8. Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion [J]. Nat Med, 2002, 8(8): 793-800.
    9. Laura L, Carter Beatriz M, Carreno. Cytotoxic T lymphocyte antigen-4 and programmed death-1 function as negative regulators of lymphocyte activation [J]. Immunologic Research, 2003, 28(1): 49-59.
    10. Finger LR, Pu J, Wasserman R, et al. The human PD-1 gene: complete cDNA, genomic organization, and developmentally regulated expression in B cell progenitors [J]. Gene, 1997, 197(1-2): 177-187.
    11. Gavin MA, Clarke SR, Negrou E, et al. Homeostasis and anergy of CD4(+)CD25(+)suppressor T cells in vivo [J]. Nat Immunol, 2002, 3(1): 33-41.
    12. Truong W, Hancock WW, Anderson CC, et al. Coinhibitory T cell signaling in islet allograft rejection and tolerance [J]. Cell Transplant, 2006, 15 (2): 105-119.
    13. Wang J, Yoshida T, Nakaki F, et al. Establishment of NODPd-L1-/- mice as an efficient animal model of type I diabetes [J]. Proc Natl Acad Sci, 2005, 102(33): 11823-11828.
    14. Kanai T, Totsuka T, Uraushihara K, et al. Blockade of PD-L1 suppresses the development of chronic intestinal inflammation [J]. Immunology, 2003, 171(8): 4156- 4163.
    15. Wang S, Jürgen Bajorath, Dallas BF, et al. Molecular modeling and functional mapping of B7-H1 and B7-DC uncouple costimulatory function from PD-1 interaction [J]. Exp Med, 2003, 197(9): 1083-1092.
    16. Okazaki T, Maeda A, Nishimura H, et al. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine [J]. Proc Natl Acad Sci, 2001, 98(24): 13866-13871.
    17. Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation [J]. Nat Immunol, 2001, 2(3): 261-268.
    18. Carter L, Fouser LA, Jussif J, et al. PD-1: PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2 [J]. Eur J Immunol, 2002, 32(3): 634-643.
    19. Muhlbauer M, Fleck M, Schutz C, et al. PD-L1 is induced in hepatocytes by viral infection and by interferon-alpha and gamma and mediates T cell apoptosis [J]. Hepatol, 2006, 45(4): 520-528.
    20. J Sayos, KB Nguyen, C Wu, et al. Potential pathways for regulation of NK and T cell responses: differential X-linked lymphoproliferative syndrome gene product SAP interactions with SLAM and 2B4 [J]. Int Immunol, 2000(12), pp1749-1757.
    21. Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, Sasayama S, Mizoguchi A, Hiai H, Minato N, Honjo T. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice [J]. Science, 2001, 291(5502): 319-322.
    22. Fagarasan S,Honjo T. T indepent immune response: new aspects of B cell biology [J]. Science, 2000, 290(5498): 89-92.
    23. Bown JA, Dorfman DM, Ma FR, et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production [J]. Immunology, 2003, 170(3): 1257-1266.
    24. Tsushima F, Iwai H, Otsuki N, et al. Preferential contribution of B7-H1 to programmed death-1-mediated regulation of hapten-specific allergic inflammatory responses [J]. Eur J Immunol, 2003, 33(10): 2773-2782.
    25. Ryan T, Allen JA, Pang H, et al. Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ T cell activation and cytolysis [J]. Eur J Immunol, 2003, 33(11): 3117-3126.
    26. Krupnick AS, Gelman AE, Barchet W, et al. Murine vascular endothelium activates and induces the generation of allogeneic CD4+25+Foxp3+ regulatory T cells [J]. Immunology, 2005, 175(10): 6265-6270.
    27. Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation [J]. Exp Med, 2000, 192(7): 1027-1034.
    28. Sabine Wintterle, Bettina Schreiner, Meike Mitsdoerffer, et al. Expression of B7 related molecule PD-L1 by Glioma Cells: A potential mechanism of immune paralysis [J]. Cancer research, 2003, (163): 7462-7467.
    29. Curiel TJ, Wei S, Dong H, et al. Blockade of PD-L1 improves myeloid dendritic cell mediated antitumor immunity [J]. Nat Med, 2003, 9(5): 562-567.
    30. Billiau A, Heremans H, Vermeire K, et al. Immunomodulatory properties of interferon- gamma. An update. [J]. Ann NY Acad Sci, 1998, 856: 22-32.
    31. Mazanet MM, Hughes CC. B7-H1 is expressed by human endothelial cells and suppresses T cell cytokine synthesis [J]. Immunology, 2002, 169(7): 3581-3588.
    32. Chen CH, Kuo LM, Chang Y, et al. In vivo immune modulatory activity of hepatic stellate cells in mice [J]. Hepatology, 2006, 44(5): 1171-1181.
    33. Keir ME, Liang SC, Guleria I, et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance [J]. Exp Med, 2006, 203(4): 883-895.
    34. Wenda Gao, Gulcin Demirci, Terry B, et al. Stimulating PD-1 negative signals concurrent with blocking CD154 costimulation induces long term islet allograft survival [J]. Transplantation, 2003, 76 (6): 994-999.
    35. Ozkaynak E, Wang LQ, Goodearl A, et al. Programmed death-1 targeting can promote allograft survival [J]. Immunology, 2002, 169(11): 546-553.
    36. Cao Y, Zhou H, Tao J, et al. Keratino cytes induce local tolerance to skin graft byactivating interleukin-10 secreting T cells in the context of costimulation molecule PD-L1 [J]. Transplantation, 2003, 75(8): 1390-1396.
    37. Marin P, Watson, Andrew J.T. George, et al. Differential effects of co-stimulatory pathway modulation on corneal allograft survival [J]. Investigative Ophthalmology & Visual Science, 2006, 47(8): 3417-3422.
    38. Jean Dudler, Jianping Li, Maria Pagnotta, et al. Gene transfer of programmed death ligand-1.Ig prolongs cardiac allograft survival [J]. Transplantation, 2006, 82(12): 1733-1737.
    39. Subudhi SK, Zhou P, Yerian LM, et al. Local expression of B7-H1 promotes organ specific autoimmunity and transplant rejection [J]. Clin Invest, 2004, 113 (5): 694-700.
    40. Koga N, Suzuki J, Kosuge H, et al. Blockade of the interaction between PD-1 and PD-L1 accelerates graft arterial disease in cardiac allografts [J]. Arterioscler Thromb Vasc Biol, 2004, 4(11): 2057-2062.
    41. Nishimura H, Nose M, Hiai H, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor [J]. Immunity, 1999, 11(2): 141-151.
    42. Salama AD, Chitnis T, Imitola J, et al. Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis [J]. Exp Med, 2003, 198(4): 677-686.
    43. Blazar BR, Carreno BM, Panoskltsis Mortari A, et al. Blockade of programmed death-1 engagement accelerates graft-versus-host-disease lethality by an IFN-gamma- dependent mechanism [J]. Immunology, 2003, 171(3): 1272-1277.
    44. Ansari MJ, Salama AD, Chitnis T, et al. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice [J]. Exp Med, 2003, 198(1): 63-69.
    45. Iwai Y, Terawaki S, Ikegawa M, et al. PD-1 inhibits antiviral immunity at the effector phase in the liver [J]. Exp Med, 2003, 198(1): 39-50.
    46. Day CL, Kaufmann DE, Kiepiela P, et al. PD-1 expression on HIV specific T cells is associated with T cell exhaustion and disease progression [J]. Nature, 2006, 433(7109): 350-354.
    47. Urbani S, Amadei B, Tola D, et al. PD-1 expression in acute hepatitis C (HCV)infection is associated with HCV specific CD8 exhaustion [J]. Virol, 2006, 80(22): 11398-11403.
    48. Holly Maier, Masanori Isogawa, Gordon J Freeman, et al. PD-1: PD-L1 interactions contribute to the functional suppression of virus specific CD8+ T lymphocytes in the liver [J]. Immunology, 2007, 178(5): 2714-2720.
    49. Barber DL, Wherry EJ, Masopust D, et al. Restoring function inexhausted CD8+ T cells during chronic viral infection [J]. Nature, 2006, 439(7077): 682-687.
    50. Daria Trabattoni, Marina Saresella, Mara Biasin. B7-H1 is up-regulated in HIV infection and is a novel surrogate marker of disease progression [J]. Blood, 2003, 101(7): 2514 -2520.
    51. Dong HD, Chen LP. PD-L1 pathway and its role in the evasion of tumor immunity [J]. Mol Med, 2003, 81(5): 281-287.
    52. Pardoll DM. Spinning molecular immunology into successful immunotherapy [J]. Nat Rev Immunol, 2002, 2(4): 227-238.
    53. Terrazas LI, Montero D, Terrazas CA, et al. Role of the programmed death-1 pathway in the suppressive activity of alternatively activated macrophages in experimental cysticercosis [J]. Int J Parasitol, 2005, 35(13): 1349-1358.
    54. Smith P, Walsh CM, Mangan NE, et al. Schistosoma mansoniworms induce anergy of T cells via selective up-regulation of programmed death ligand 1 on macrophages [J]. Immunology, 2004, 173(2): 1240-1248.
    1. Rouvier E, MF Luciani, MG Mattei, et al. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene [J]. Immunology, 1993, 150(12): 5445-5456.
    2. Park H, Li Z, Yang XO, et al. A distinct lineage of CD4+ T cells regulates tissue inflammation by producing interleukin-17 [J]. Nat Immunol, 2005, 6 (11): 1133-1141.
    3. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector Th17 and regulatory T cells [J]. Nature, 2006, 441 (7090): 235-238.
    4. Weaver CT, Harrington LE, Mangan PR, et al. Th17: an effector CD4+ T cell lineage with regulatory T cell ties [J]. Immunity, 2006, 24(6): 677-688.
    5. Albrecht JC, J Nicholas, D Biller, et al. Primary structure of the herpesvirus saimirigenome [J]. Virol, 1992, 66(8): 5047-5058.
    6. Yao Z, Fanslow WC, Seldin MF, et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor [J]. Immunity, 1995, 3(6): 811-821.
    7. Hymowitz SG, Filvaroff EH, Yin JP et al. IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding [J]. EMBO, 2001, 20(19): 5332-5341.
    8. Aggarwal S, Gurney AL. IL-17: prototype member of an emerging cytokine family [J]. Leukoc Biol, 2002, 71(1): 1-8.
    9. Harrington LE, Hatton RD, Mangan PR, et al. Interleukin-17 producing CD4+ effector T cells develop via a liesge distinct from the T helper type 1 and lineages [J]. Nat Immunol, 2005, 6(11): 1123-1132.
    10. Aarvak T, Chabaud M, Miossec P, et al. IL-17 is produced by some proinflammatory Th1/Th0 cells but not by Th2 cells [J]. Immunology, 1999, 162(3): 1246-1251.
    11. Ferretti S, Bonneau O, Dubois Gr, et al. IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger [J]. Immunology, 2003, 170(4): 2106-2112.
    12. Molet S, Hamid Q, Davoine F, et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblast to produce cytokines [J]. Allergy Clin Immunol, 2001, 108(3): 430-438.
    13. Happel KI, M Zheng, E Young, et al. Cutting edge: Roles of toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection [J]. Immunology, 2003, 170(9): 4432-4436.
    14. Meeuwsen S, Persoon-Deen C, Bsibsi M, et al. Cytokine, chemokine and growth factor gene profiling of cultured human astrocytes after exposure to proinflammatory stimuli [J]. Glia, 2003, 43(3): 243-253.
    15. Li GZ, Zhong D, Yang LM, et al. Expression of interleukin-17 in ischemic brain tissue [J]. Scand J Immunol, 2005, 62(5): 481-486.
    16. Wynn TA. Th17: a giant step from Th1 and Th2 [J]. Nat Immunol, 2005, 6(11): 1069-1070.
    17. Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation [J]. Exp Med, 2005, 201(2):233-240.
    18. Miossec P. Interleukin-17 in rheumatoid arthritis: if T cells were to contribute to inflammation and destruction through synergy [J]. Arthritis Rheum, 2003, 48(3): 594-601.
    19. Moseley TA, Haudenschild DR, Rose L, et al. Interleukin-17 family and IL-17 receptors [J]. Gytokine Growth Factor Rev, 2003, 14(2): 155-174.
    20. Ye P, Rodriguez FH, Kanaly S, et al. Repuirement of interleukin-17 receotor signaling for lung CXC chemokine and granulocyte colony stimulating factor expression: neutrophil recruitment and host defense [J]. Exp Med, 2001, 94(4): 519-527.
    21. Jovanovic, DV, JA Di Battista, J Martel-Pelletier, et al. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-1βand TNF-α, by human macrophages [J]. Immunology, 1998, 160(7): 3513-3521.
    22. Yutaka Komiyama, Susumu Nakae, Taizo Matsuki, et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis [J]. Immunology, 2006, 177(1): 566-573.
    23. Hirahara N, Nio Y, Sasaki S, et al. Reduced invasiveness and metastasis of chinese hamster ovary cells transfected with human interleukin-17 gene [J]. Anticancer Res, 2000, 20(5A): 3137-42.
    24. Harrington LE, Mangan PR, Weaver CT. Expanding the effector CD4+ T cell repertoire: the Th17 lineage [J]. Curr Opin Immunol, 2006, 18(3): 349-356.
    25. Veldhoen M, Hocking RJ, Atkins CJ, et al. TGF beta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17 producing T cells [J]. Immunity, 2006, 24(2): 179-189.
    26. Afzali B, Lombardi G, Lechler RI, et al. The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease [J]. Lord GM Clin Exp Immunol. 2007, 148(1): 32-46.
    27. Ivanov II, Mckenzie BS, Zhou L, et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells [J]. Cell, 2006, 126(6): 1121-1133.
    28. Antonysamy MA, Fanslow WC, Fu F, et al. Evidence for a role of IL-17 in organ allograft rejection: IL-17 promotes the functional differentiation of dendritic cellprogenitors [J]. Immunology, 1999, 162(1): 577-584.
    29. Lock C, G Hermans, R Pedotti, et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis [J]. Nat Med, 2002, 8(5): 500-508.
    30. Van Kooten C, Boonstra JG, Paape ME, et al. Interleukin-17 activates human renal epithelial cells in vitro and is expressed during renal allograft rejection [J]. Am Soc Nephrol, 1998, 9(8): 1526-1534.
    31. Loong CC, Hsieh HG, Lui WY, et al. Evidence for the early involvement of interleukin-17 in human and experimental renal allograft rejection [J]. Pathol, 2002, 197(3): 322-332.
    32. Hsieh HG, Loong CC, Lui WY, et al. IL-17 expression as a possible predictive parameter for subclinical renal allograft rejection [J]. Transplantation, 2001, 14(5): 287-298.
    33. Tang JL, Subbotin VM, Antonysamy MA, et al. Interleukin-17 antagonism inhibits acute but not chronic vascular rejection [J]. Transplantation, 2001, 72 (2): 348-501.
    34. Li J, Simeoni E, Fleury S, et al. Gene transfer of soluble interleukin-17 receptor prolongs cardiac allograft survival in a rat model [J]. Eur J Cardiothorac Surg, 2006, 29(5): 779-783.
    35. Vanaudenaerde BM, Dupont LJ, Wuyts WA, et al. The role of interleukin-17 during acute rejection after lung transplantation [J]. Eur Respir, 2006, 27(4): 779-787.
    36. Jun Kawanokuchi, Kouki Shimizu, Atsumi Nitta, et al. Production and functions of IL-17 in microglia [J]. Neuroimmunology, 2008, 194(1-2): 54-61.
    37. Rho J, Takami M, Choi Y, et al. Osteoimmunology: interactions of the immune and skeletal systems [J]. Mol Cells, 2004, 17 (1): 1-9.
    38. Kolls JK, Linden A. Interleukin-17 family members and inflammation [J]. Immunity, 2004, 21 (4): 467-476.
    39. Rifas L, Arackal S. T cells regulate the expression of matrix metal loprotei-nase in human osteoblasts via a dual mitogen activated protein kinase mechanism [J]. Arthritis Rheum, 2003, 48(4): 993-1001.
    40. Cai L, Yin JP, Starovasnik MA, et al. Pathways by which interleukin-17 induces articular cartilage breakdown in vitro and in vivo [J]. Cytokine, 2001, 16(1): 10-21.
    41. Chen Y, Langrish CL, McKenzie B, et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis [J]. Clin Invest, 2006, 116(5): 1317-1326.
    42. Nurieva R, Yang XO, Martinez G, et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells [J]. Nature, 2007, 448(7152): 480-483.
    43. Iwakura Y, Ishigame H. The IL-23/IL-17 axis in inflammation [J]. Clin Invest, 2006, 116(5): 1218-1222.
    44. Starnes T, Robertson M, Sledge G, et al. Cutting edge: IL-17F, a novel cytokine selectively expressed in activated T cells and monocytes, regulates angiogenesis and endothelial cell cytokine production [J]. Immunology, 2001, 167(8): 4137-4140.
    45. Benchetrit F, Ciree A, VivesV, et al. Interleukin-17 inhibits tumor cell growth by means of a T-cell-dependent mechanism [J]. Blood, 2002, 99(6): 2114-2121.
    46. Xie Yufeng, Sheng Weihua, Miao Jingcheng, et al. The effect of human IL-17F on growth of human hepatocarcinoma xenograft tumor in nude mice [J]. Chinese Journal of Biotechnology, 2006, 22(5): 772-778.
    47.张志刚,何权瀛,刘新民,等。白细胞介素-17在急性肺损伤发病机制中的作用[J].心肺血管病杂志, 2007, 26 (1): 38-43。
    48. Shellito JE, Quan Zheng M, Ye P, et al. Effect of alcohol consumption on host release of interleukin-17 during pulmonary infection with Klebsiella pneumoniae [J]. Alcohol Clin Exp Res, 2001, 25(6): 872-881.
    49. Laan M, Palmberg L, Larsson K, et al. Free soluble Interleukin-17 protein during severe inflammation in human airways [J]. Eur Respir, 2002, 19(3): 534-537.
    50. Prause O, Laan M, Lotvall J, et al. Pharmacological modulation of interleukin -17-induced GCP-2, GRO-alpha and interleukin-8 release in human bronchial epithelial cells [J]. Eur J Pharmacol, 2003, 462(1-3): 193-198.
    51. Chen Y, Thai P, Zhao YH, et al. Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/pautocrine loop [J]. Biol Chem, 2003, 278(19): 17036-17043.
    52. Takaya H, Andoh A, Makino J, et al. Interleukin-17 stimulates chemokine (Interleukin-8 and monocyte chemoattractant protein-1) secretion in human pancreatic periacinar myofibroblasts [J]. Scand J Gastroenterol, 2002, 37(2): 239-245.
    53. Hata K, Andoh A, Shimada M, et al. IL-17 stimulates inflammatory responses via NF-kappaB and MAP kinase pathways in human colonic myofibroblasts [J]. Am J Physiol Gastrointest Liver Physiol, 2002, 282(6): G1035-1044.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700