盐生植物耐盐结构特性及植物晶体生物学特征与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用光学显微技术和石蜡切片相结合的研究方法及其利用晶体的折光方法,对埃及红海沿岸的沙漠地区极端盐渍环境(东经34 o 12′-35 o 27′o,北纬25 o 31′-27 o 22′)的大洋州滨藜(Atriplex nummularia Lindl.)、节状假木贼(Anabasis articulate (Forssk.) Moq.)、藜(Chenopodium album L.)等12种植物,中国吉林松嫩平原一般盐渍环境(东经123o31′-124 o 10′,北纬44 o 30′-44 o 45′)的藜(Chenopodium album L.)、碱地肤(Kochia sieversiana (Pallas) C.A. Mey.)、紫花地丁(Viola yedoensis Makino.)等6种植物,中国吉林长春中生环境(东经125o11′-125 o 32′,北纬43 o 45′-44 o 12′)的碱地肤(Kochia sieversiana (Pallas) C.A. Mey.)、灰绿藜(Chenopodium glaucum L.)、藜(Chenopodium album L.)等19种植物进行植物颉颃盐逆境演化结构比较研究。
     结果发现,晶体是植物颉颃盐逆境演化特征,与抗盐成正相关。数理统计量化分析验证了晶体、粘液细胞、贮水组织、发达的角质层等与植物颉颃盐渍逆境关系密切:极端盐渍环境中的大洋洲滨藜皮层具有2-5层连续的晶体,一般盐渍环境中含有晶体最多的滨藜茎皮层中最多只形成接近1层连续的含晶细胞环;极端盐渍环境中的波斯骆驼刺茎表皮下有一层连续的大型粘液细胞层,一般盐渍环境中的植物没发现粘液细胞;极端盐渍环境中的四蕊猪毛菜茎具有发达的贮水组织,一般盐渍环境中的植物没发现贮水组织;极端盐渍环境中生长的中国柽柳茎表皮细胞角质层厚度达6.02μm,一般盐渍环境中碱地肤茎表皮角质层最厚为1.98μm。实验结果显示出极端盐渍环境植物都具有颉颃盐逆境的特殊演化结构。
     盐生植物颉颃逆境的演化结构可分为五大类型、两小类型。五大类型为:大多植物具有盐腺、晶体、粘液细胞、贮水结构和发达的同化组织;两小类型为:具有发达的输导组织和机械组织。
     研究中发现一种未见报道的可能与物质运输有关的新型复合结构,即:“光芒转运小体”,其结构和功能还有待于进一步研究。
     实验结果表明,植物晶体是极端环境盐生植物的典型特征;晶体的存在和含量,为极端盐渍环境、一般盐渍环境和中生环境植物呈递减的趋势;晶体以草酸钙晶体为主,多以大型晶簇的形式存在于薄壁细胞的液泡中;一个细胞一般只形成一个植物晶体。在营养器官中茎是晶体聚集的首要部位,其次是叶,最后是根;根一般不存在植物晶体;植物晶体在盐生植物中的分布具有非均一性,呈典型的多级别区域化形式分布;耐盐植物晶体的分布遵循外向性和功能最优化原则;植物晶体的含量与环境的盐浓度、胁迫时间和生长时间成正相关;以植物晶为耐盐特性的盐生植物,植物晶体区域化的级别越高其耐盐能力越强;改良的天然抗氧化剂类似物显著提高了盐生植物的耐盐水平,但对植物晶体等组织水平的耐盐结构影响不显著。
     目前有关晶体的观察只是停留在透射光学显微镜和扫描电镜的观察之中,但是这两种方法都掩盖了晶体的折光特点,本论文首次改革了光学显微镜的晶体观察方法,首次使晶体在细胞内呈现出很强的折光性。
     晶体是植物颉颃盐逆境的一种有效的鉴定方法。利用晶体在植物体中存在与否,可缩短抗盐植物的鉴定时间,提高筛选抗盐植物的准确率。
     因为具有晶体的植物能有效的改良盐渍生态环境,是生物治理盐渍环境的有效方法。应用具有植物晶体的植物改良盐碱地,既省工、省钱又省力,因此,具有晶体的抗盐植物的开发利用意义重大。
The combination of research methods i.e. optical microscopy, paraffin section and crystal refraction method was carried out to comparative study the evolutive structure of plants antagonism salt adversity. These plants are, Atriplex nummularia Lindl., Anabasis articulate (Forssk.) Moq., Chenopodium album L. etc. 12 kinds of plants on the extreme saline nvironment of the Red Sea coast in the Egypt's desert areas(East longitude 34 o 12′-35 o 27′o,North latitude 25 o 31′-27 o 22′).Chenopodium album L., Kochia sieversiana (Pallas) C.A. Mey., Viola yedoensis Makino., etc. 6 kinds of plants in general saline environment of Songnen plain in Jilin of China(East longitude 123o31′-124 o 10′,North latitude 44 o 30′-44 o 45′). Kochia sieversiana (Pallas) C.A. Mey., Chenopodium glaucum L., Chenopodium album L., etc. 19 kinds of plants in common environment of Changchun in Jilin of China (East longitude 125o11′-125 o 32′,North latitude 43 o 45′-44 o 12′)
     It was found that plant crystals are the evolution characteristics of plants antagonism salt, and it is positive correlative with resistance salt. Statistics quantitative analysis verify the crystal, mucous cells, storage, developed corneum were closely relative with plant antagonism saline adversity:There are 2-5 layers of consecutive crystals in the cortex of Atriplex nummularia Lindl. in the extreme saline environment, but in the general saline environment, there is 1 layer of consecutive crystals in the cortex of Chenopodium album L.. There is a layer of consecutive mucus cells under the epidermal of stem of Alhagi maurarum Medic. in the extreme saline environment, on the contrary, in the general saline environment, there is no. There is developed water storage tissues in the stem of Salsola tetrandra Forssk. in the extreme saline environment, on the contrary, in the general saline environment, there is no. The thickness of epidermic cutin cell in the stem of Tamarix chinensis Lour. in the extreme saline environment was up to 6.02μm, but in the general saline environment, the thickness of Kochia sieversiana (Pallas) C.A. Mey. was 1.98μm. The results show that there are special evolution structures in the plants of extreme saline environment to resist the salt adversity.
     The structures with typical salt-tolerant features of plant can be divided into five major types and two minor types. The five major types: the salt gland is most, and mainly contains large quantities of plant crystals, a lot of mucus cells, a large number of water storage cells and organizations, developed assimilation organizations. The two minor types are: developed transporting organizations and developed machinery organization.
     In addition, a new type of composite structure was found. It was named“light transit body”according to the morphological characteristics and possible function. It maybe implement the function of transport materials. Its structure and function will be further studied.
     The results showed that plant crystal is the typical characteristics in extreme environment of halophyte; The existence and content of plant crystal decreased according to the extreme salinity environment, the general salinity environment and the normal environment; Plant crystals, most are oxalate calcium crystals, were mainly in the form of large clusters of crystal in the thin-walled cells; A cell can normally form only one plant crystal. In the vegetative organs, the stem is the most important part of gathering crystals, followed by leaf, and finally the root; Generally, there is no crystal in root; the presence of massive crystal cells in halophytes was a representative structural feature and the salt in plants displayed multi-level compartmentation; The distribution of plant crystals follows the principle of typical outward and optimize function. The content of plant crystal was positively related with the content of environmental salt, the time of salt stress and the age of plant; Halophytes, their characteristics were salt resistance, the higher the level of multi-level compartmentation, the stronger the ability of salt-resistance.
     At present, observing the crystals stayed in the level of transmission optical microscope and scanning electron microscopy observation, but these two methods both conceal the refraction characteristics of crystal. This paper for the first time reformed the observing crystal method with optical microscope, so that the crystals in the cells showed strong refraction. The thesis studied in-depth on the chemical structure of crystal. Modified the nalogues of natural anti-oxidants increase salt-tolerant level of halophytes significantly, but it has no significant effect on salt-tolerant structure of plant crystals or other organization.
     Crystal is an effective method of identifying the plant antagonism salt stress. According to the crystals exist in the plant or not, the time to identify salt-tolerant plants can be shorten, and the accuracy to choose salt-tolerant plants can be improved.
     Because crystal plants can effectively improve the salinity ecological environment, is an effective way to biologically control saline environment.
     Application with the crystal plant to improve saline-alkali land can save money and effort, so utilizing the salt-resistant plant with crystals is of great significance.
引文
[1][13][31]林大义.土壤学[M].北京:中国林业出版社,2002.366-367、367-369、369.
    [2][6][35]钦佩,周春霖,安树青,等.海滨盐土农业生态工程[M].北京:化学工业出版社,2002.1、1、2.
    [3][32][174]赵福庚,何龙飞,罗庆云.植物逆境生理生态学[M].北京:化学工业出版社,2004.137、140-143、142.
    [4][30][33][34][37][98]赵可夫,范海.盐生植物及其对盐渍生境的适应生理[M].北京:科学出版社,2005.1-3、iii、23-24、4、29-31、21-22.
    [5][8][36][73]赵可夫,李法曾.中国盐生植物[M].北京:科学出版社,1999.1-76、17-22、26-41.
    [7][9]张学杰,李法曾.中国盐生植物区系研究[J] .西北植物学报,2001,21(2): 360-367.
    [10]张殿发,林年丰.吉林西部土地退化成因分析与防治对策[J] .长春科技大学学报, 1999,29(4):355-359.
    [11][12]张殿发,王世杰.吉林西部土地盐碱化的生态地质环境研究[J] .土壤通报, 2002,33(2):90-93.
    [14]赵可夫,张万钧,范海,等.改良和开发利用盐渍化土壤的生物学措施[J] .土壤通报,2001(32):90-93.
    [15]王生力,裘平一,冯朝军.盐渍土资源综合利用的可持续发展观[J] .北京地质, 2001,13(3):21-24.
    [16]旭莲华.种植碱茅草治理盐渍土效益分析[J] .青海科技,1999,6(2):18-20.
    [17]赵可夫,范海,江行玉,等.盐生植物在盐渍土改良中的作用[J] .应用与环境生物学报,2002,8(10):31-35.
    [18]贾恢先.内陆盐渍土生物防治研究[J] .甘肃农业,2002(9):42-44.
    [19]田丰,史兴山,江旭德,等.松嫩草地的盐渍化是改良的主攻方向[J] .黑龙江畜牧兽医,1998(8):11-12.
    [20][22]李培夫.盐碱地的生物改良与抗盐植物的开发利用[J] .垦殖与稻作,1999(3): 38-40.
    [21]孙国荣,阎秀峰,李晶,等.星星草对盐碱化土壤化学性质的影响[J] .草地学报,2002,10(3):179-183.
    [23]张士功,邱坚军,张华.我国盐渍土资源及其综合治理[J] .中国农业资源与区划, 2000,21(1):52-56.
    [24]杨静,唐薇,申贵芳,等.滨海盐渍土棉花丰产配套栽培技术[J] .山东农业科学,2002(4):20-21.
    [25]赵婷婷,孙家灵,毛仁钊.近滨海缺水盐渍区冬小麦返青期灌水对土壤脱盐及产量的影响[J] .干旱地区农业研究,2001,18(4):31-35.
    [26]朱兴运,阎顺国,沈禹颖.河西走廊盐渍化草地的生产模式研究[J] .中国草地, 1998(2):1-4.
    [27]张文渊.新垦盐渍土种稻灌溉技术措施[J] .中国稻米,1998(3):25-26.
    [28]于雷.滨海盐渍土防护林树种选择的研究[J] .辽宁林业科技,2001(2):7-9, 46.
    [29]杨运立.海滩盐土木麻黄造林技术探讨[J] .林业科技通讯,1998(6):24.
    [38]陆静梅,刘友良,胡波,等.中国野生大豆盐腺的发现[J] .科学通报,1998, 43(19):2074-2078.
    [39]Campbell C J , Strong J E . Salt gland anatomy in Tamarix pentandra ( Tamaricaceae ) [J]. Southwest Wat, 1964(9):232-238.
    [40]Levering C A , Thomson W W .The ultrastructure and mechanism of secretion of the salt gland of the gress Spartina [J]. Foliosa Plant, 1991(97):183-196.
    [41]Mozafar A , Goodin J R . Vesiculated hairs :A mechanis m for salt tolerance in Atriplex holi mus L[J]. Plant pHysiol ,1970(45):62-65.
    [42]Pollack G , Waisel Y . Salt Secretion in Aeluropus litoralis (Willd) Parl [J]. Ann Botan , 1970(34):879-888.
    [43]韩军丽,赵可夫.植物盐腺的结构、功能和泌盐机理的探讨[J] .山东师大学报(自然科学版),2001,16(2):194-198.
    [44]肖雯,张振霞,贾恢先.几种盐生植物根解剖结构的研究[J] .甘肃农业大学学报,1998,33(1):90-93.
    [45]辛华,曹玉芳,辛红婵.山东滨海盐生植物根结构及通气组织的比较研究[J] .植物学通报,2002,19(1):98-102.
    [46]辛华,曹玉芳,周启河,等.山东滨海盐生植物根结构的比较研究[J] .西北农业大学学报,2000,28(5):49-53.
    [47]史刚荣.环境胁迫下的植物细胞程序性死亡及其意义[J] .生物学通报,2003,38(5):3-5.
    [48][175] [183]王虹,邓彦斌,许秀珍,等.新疆10种旱生、盐生植物的解剖学研究[J] .新疆大学学报(自然科学版),1998(11):67-73.
    [49][176] [180] [184]周玲玲,冯元忠,吴玲,等.新疆6种盐生植物的解剖学研究[J] .石河子大学学报(自然科学版),2002,6(3):217-221.
    [50][177] [181] [185]邓彦斌,姜彦成,刘健.新疆10种藜科植物叶片和同化枝的旱生和盐生结构研究[J] .植物生态学报,1998,22(2):164-170.
    [51]王桂芹,王秀艳,段亚军.野葵营养器官的盐生结构研究[J] .昭乌达蒙族师专学报,2002,23(3):38-39.
    [52]郑文菊,张承烈.盐生种中生环境中宁枸杞叶显微和超微结构的研究[J] .草业学报,1998,7(3):72-76.
    [53]章英才,张晋宁.白茎盐生草叶片结构与盐生环境关系的研究[J] .宁夏农学院学报,2002,23(1):30-32.
    [54]章英才,张晋宁.两种不同盐浓度环境中盐地碱蓬叶的形态结构特征研究[J] .宁夏大学学报(自然科学版),2001,22(1):70-76.
    [55]祝建,张泓.旱生植物驼绒藜茎的次生结构及其发育[J] .西北植物学报,1992,12(2):135.
    [56][182][191][193]陆静梅,李建东,周道伟,等.松嫩平原5种盐生牧草结构研究[J] .草业学报,1996,5(2):9-13.
    [57]陆静梅,李建东,胡阿林,等.二色补血草叶片泌盐结构的扫描电镜观察[J] .应用生态学报,1995,6(4):355-358.
    [58]郝治安,吕有军.植物耐盐机制研究进展[J] .河南农业科学,2004(11):30-33.
    [59]陈阳,王贺,张福锁,等.盐渍生境下野生琵琶柴盐分分布及泌盐特点[J] .土壤学报,2004,41(5):774-779.
    [60] [74]韦存虚,王建波,陈义芳,等.盐生植物星星草叶表皮具有泌盐功能的蜡质层[J] .生态学报,2004,24(11):2452-2456.
    [61]刘志华,时丽冉,赵可夫.獐茅盐腺形态结构及其泌盐性[J] .植物生理与分子生物学学报,2006,32(4):420-426.
    [62]弋良朋,马健,李彦. 3种荒漠盐生植物根系及根毛形态特征的比较研究[J] .植物研究,2007,27(2):204-211.
    [63]章英才.不同盐浓度环境中几种植物叶的比较解剖研究[J] .安徽农业科学,2006,34(21):5473-5474,5509.
    [64]王文和,许玉凤.肥叶碱蓬叶和茎的解剖结构研究[J] .植物研究,2005,25(1):45-48.
    [65]章英才,张晋宁.两种盐浓度环境中的黑果枸杞叶的形态结构特征研究[J] .宁夏大学学报(自然科学版),2004,25(4):365-367.
    [66]Apse M P, Aharon G S, Snedden W, et al.Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis[J]. Science,1999,285:1256-1258.
    [67]Cheeseman J M. Mechanisms of salinity tolerance in plants[J]. Plant physiol, 1988,87: 547-550.
    [68]Foolad M R and Jones R A. Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis[J]. Theor Appl Genet,1993, 87:184-192.
    [69]Ramadan T. Ecophysiology of salt excretion in the xero-halophytes Reaumuria hirtella[J]. New phytologist,1998,139:273-281.
    [70]Storey R, Thomson W W. An x-ray microanalysis study of the salt glands and intracellular calcium crystals of Tamarix[J]. Annals of Botany,1994,73:307-313.
    [71]Waisel Y, Eshel A, Agami M. Salt balance of leaves of the mangrove Avicennia marina[J]. Physiologia Plantarum,1986, 67: 67-72.
    [72]Yeo A R, Flowers T J. Accumulation and localization of sodium ions within the stems of rice (Oryza sativa) varieties differing in salinity resistance[J]. Physiol Plant,1982,56:343-348.
    [75]孙兰菊,岳国峰,王金霞,等.植物耐盐机制的研究进展[J] .海洋科学,2001,25(4):28-31.
    [76]张新春,庄炳昌,李自超.植物耐盐性研究进展[J] .玉米科学,2002,10(1):50-56.
    [77]冯立田,卢无芳.盐胁迫下灰绿藜叶片光合特性与叶绿体离子调解的研究[J] .曲阜师范大学学报,1998,24(3):57-61.
    [78]刘成敏,李国旗,郑学平.不同盐分条件下甜菜的光合特性[J] .宁夏大学学报(自然科学版),1998,19(2):149-155.
    [79]惠红霞,许兴,李前荣. NaCl胁迫对枸杞叶片甜菜碱、叶绿素荧光及叶绿素含量的影响[J] .干旱地区农业研究,2004,22(3):109-114.
    [80]戴蒲英.盐胁迫对主要造林树种种子活力及幼苗生理特性的影响[J] .广西科学,1998,5(1):62-65,70.
    [81]郑海雷,林鹏.培养盐度对海莲和木榄幼苗膜保护系统的影响[J] .厦门大学学报(自然科学版),1998,37(2):278-282.
    [82]张海燕.盐胁迫下盐地碱蓬体内无机离子的含量分布特点的研究[J] .西北植物学报,2002,22(1):129-13.
    [83]肖雯,贾恢先,蒲陆梅.几种抗盐植物抗盐生理指标的研究[J] .西北植物学报,2000,20(5):818-825.
    [84]刘家栋,翟兴社,王东平.植物抗盐机理的研究[J] .农业与技术,2001,21(1):26-29.
    [85]赵可夫.植物对盐渍逆境的适应[J] .生物学通报,2002,37(6):7-10.
    [86]马建华,郑海雷,赵中秋,等.植物抗盐机理研究进展[J] .生命科学研究,2001,5(3):175-179,226.
    [87]杨富裕,周禾.草坪草抗盐性研究进展[J] .草原与草坪,2001(1):10-13.
    [88]於丙军,刘友良.大豆耐盐性研究进展[J] .大豆科学,2000,19(2):154-159.
    [89]马焕成,蒋东明.木本植物抗盐性研究进展[J] .西南林学院学报,1998,18(1):52-59.
    [90]郑国琦,许兴,徐兆桢.耐盐分胁迫的生物学机理及其基因工程研究进展[J] .宁夏大学学报(自然科学版),2002,23(1):79-85.
    [91]付莉,孙玉峰,褚继芳,等.耐盐植物研究概述[J] .林业科技,2001,26(4):16-17.
    [92]吉云秀,黄晓东.植物促生菌对燕麦初生苗盐分胁迫下的促生效应[J] .大连海事大学学报,2007,33(3):86-89.
    [93]薛焱,王迎春.光照、温度和盐分对长叶红沙种子萌发的影响[J] .植物生理学通讯,2007,43(4):708-710.
    [94]卜庆梅,柏新富,朱建军,等.盐胁迫条件下三角滨藜叶片中盐分的积累与分配[J].应用与环境生物学报,2007,13(2):192-195.
    [95]孟祥泽,吕玉泽,李玉花.盐分含量对棉种萌发及幼苗生长的影响[J].中国种业,2007(4):44-45.
    [96]王娅,李利,钱翌,等.盐分与水分胁迫对两种猪毛菜种子萌发的影响[J].干旱区地理,2007,30(2):217-222.
    [97]应天玉,刘国生,姜中珠.植物耐盐的分子机理[J] .东北林业大学学报,2003,31(1),31-33.
    [99]乔凤云,陈欣,余柳青.抗氧化因子与天然抗氧化剂研究综述[J].科技通报,2006,22(3):332-336.
    [100][212]郝治安,吕有军.植物耐盐机制研究进展[J].河南农业科学,2004,(11):30-33.
    [101][115]葛颖华,钟晓明.维生素C和维生素E抗氧化机制及其应用的研究进展[J].吉林医学,2007,(28)5:707-708.
    [102] BIELSKIB H J. Ascorbic acid: chemistry,metabolism, and use[M]. Washington D C:American ChemicalSociety, 1982: 81-100.
    [103]杜毅,孙传花.维生素C的临床应用进展[J].中华实用中西医杂志,2005,18 (16):749.
    [104]刘淮玉,吴建华,姚宗蓓,等.补充维生素C和E对中老年人机体抗氧化功能的影响[J].疾病控制杂志,2007,(11)5:505-507.
    [105]朱长林,张文彬,孙鹏,等.维生素E与维生素C的联合免疫调节及抗氧化作用[J].中国临床康复,2006,10(36):120-122.
    [106]崔乃杰,崔乃强,傅强,等.维生素C抗氧化促氧化双向作用的研究[J].中国中西医结合外科杂志,2004,10(6):419-421.
    [107][206]何文亮,黄承红,杨颖丽,等.盐胁迫过程中抗坏血酸对植物的保护功能[J].西北植物学报,2004,24(12):2196—2201.
    [108][207]冯玉龙,马永双,冯志立. 6-苄(基)腺嘌呤和抗坏血酸对渗透胁迫时杨树光合作用光抑制的影响[J].应用生态学报,2004,15(12):2233-2236.
    [109][208]刘正鲁,朱月林,魏国平,等. NaCl胁迫对茄子嫁接幼苗叶片抗坏血酸和谷胱甘肽代谢的影响[J].西北植物学报,2007,27(9):1795-1800.
    [110][209]魏国平,朱月林,刘正鲁,等.硝酸钙胁迫对营养液栽培嫁接茄子叶片抗坏血酸-谷胱甘肽循环的影响[J].植物生态学报,2008,32(5):1023-1030.
    [111]庞勇,马锋旺,徐凌飞.抗坏血酸对苹果组培苗耐热性的生理效应[J].果树学报,2005,22(2):160-162.
    [112]孙燕,徐伟君.高温胁迫对不同黄瓜品种幼苗中抗坏血酸代谢的影响[J].西北农业学报,2007,16(6):164-169.
    [113]耶兴元,范宏伟,汪新娥.抗坏血酸对高温胁迫下猕猴桃苗抗热性相关生理指标的影响[J].植物生理学通讯,2009,45(3):267-269.
    [114]郑启伟,王效,谢居清,等.外源抗坏血酸对臭氧胁迫下水稻叶片膜保护系统的影响[J].生态学报2006,26(4):1132-1137.
    [115][116]王丰玲,张英锋,郑向美,等.天然维生素E的制备、抗氧化机理及应用前景[J].化学教育,2007,(12):10-12.
    [117]曲娴,方文娟,李冰,等.维生素E对D-半乳糖诱致衰老小鼠脑抗氧化能力、钙稳态和线粒体DNA(mtDNA)损伤的影响[J].中国病理生理杂志,2008,24(3): 523-526.
    [118]孙设宗,王秀云,官守涛,等.镁离子、维生素E抗氧化作用的研究[J].广东微量元素科学,2005,12(3):22-25.
    [119]郭瑞敏,赵国东.维生素E修饰的透析膜抗氧化作用的研究[J].山东医药,2008,48(5):84-85.
    [120][127][132][201][210]许东晖,王胜,金晶,等.姜黄素的药理作用研究进展[J].中草药,2005,36(11):1737-1740.
    [121] Grandjean-Laquerriere A, Gangloff S C, Le Naour R, et al. Relative contribution of NF-KB and AP-1 in the modulation by curcumin and pyrrolidine dithiocarbamate of the UVB-induced cytokine expression by keratinocytes[J]. Cytokine, 2002, 18 :168-177.
    [122] Gautam S C, Gao X, Dulchavsky S. Immunomodulation by curcumin[J]. Adv. Exp. Med. Biol, 2007, 595: 321-341.
    [123] Hsu H Y, Chu L C, Hua K F, et al. Hemeoxygenase-1 mediatesthe anti-inflammatory effect of curcumin within LPS-stimulated human monocytes[J]. J. Cell. Physiol, 2008, 215: 603-612.
    [124] Hsu C H, Cheng A L. Clinical studies with curcumin[J]. Adv. Exp. Med. Biol, 2007, 595 : 471-480.
    [125]陈婧,刘彩霞,朱晓薇.总姜黄素在不同介质中的稳定性考察[J].中草药,2006,37(10):1508-1510.
    [126] Anand P, Thomas S G, Kunnumakkara A B, et al. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature[J]. Biochemical Phannaeology, 2008,76(11):1590-1611.
    [128][202]池爱平,熊正英,陈锦屏.补充不同剂量姜黄素对运动大鼠心肌和骨骼肌组织自由基损伤及力竭运动时间的影响[J].中国运动医学杂志,2006,25(3):342-343.
    [129][203]池爱平,熊正英,陈锦屏.服用姜黄素对过度运动大鼠部分组织及红细胞膜损伤保护研究[J].中国体育科技,2006,42(3):72-74.
    [130][204]陈巍峰.姜黄素及其类似物的抗氧化活性研究[D]:[博士学位论文].兰州:兰州大学,2006.
    [131][205]Weber W M,Hunsaker L A,Roybal C N,et al. Activation of NFkB is inhibited by curcumin and related enones[J]. Bioorganic & Medicinal Chemistry , 2006, 14(7):2450-2461.
    [133]王舒然,陈炳卿,王朝旭,等.姜黄素降血脂及抗氧化作用的研究[J].中国公共卫生学报,1999,18(5):263-265.
    [134][137][149][199]龙明智,陈磊磊,杨季明,等.姜黄素抗炎抗氧化作用与血管损伤后内膜增生[J].江苏医药杂志,2003,29(10):735-737.
    [135]周玮,周波,杨雪,等.转SOD基因烟草中SOD酶活力对逆境的耐性及其遗传学特征[J].广西植物,2006,26(2):200– 203.
    [136]裴红蕾,朱愉恒,陈秀瑾,等. SOD对放疗癌患者的保护作用[J].中华放射医学与防护杂志,2004,24(3):269-270.
    [138] BharatB A, Anushree K, Manoj S A,et al.Curcumin Derivedfrom Turmeric (Curcuma longa): a Spice for All Seasons[ J]. Phytopharmaceut Cancer Chemopreven, 2005 by CRC Press LLC:349-350.
    [139] Sharma R A, McLelland H R, Hill K A, et al.Pharmacodynamic and pharmacokinetic study of oral curcuma extractin patients with colorectal cancer[ J]. Clin. Cancer Res, 2001,7: 1894-1900.
    [140] Nurfinaan.Synthesis of some symmetrical curcumin derivatives and their anti innammatory accivity [J]. Eur J Med Chem, 1997,32:321-328.
    [141] Venkateswarlu S, Ramachandra M S, Subbaraju G V. Synthesis and biological evaluation of Polyhydroxycurcuminoids[J]. Bioorg Med Chem,2005,13(23):6374-6380.
    [142]李满妹,杜志云,刘忠,等.姜黄素类化合物对体外非酶糖基化的抑制作用[J].中山大学学报(自然科学版),2005,44(3):63-66.
    [143]凌关庭.氧化·疾病·抗氧化(三十八)[J].粮食与油脂,2006,10:50-53.
    [144]温彩霞,郑婷婷,许建华.姜黄素衍生物FM02的溶解度、抗抑郁和抗炎作用[J].福建医科大学学报,2006,40(4):341-343.
    [145]邹怀波,周蓉,丁伟.姜黄素及其衍生物的杀螨活性测定[J].湖北农业科学,2007,46(6):1019-1020.
    [146][159][162][196]Liang G, Li X K, Chen L, et al. Synthesis and anti-inflammatory activitiesof monocarbonyl analogues of curcumin[J]. Bioorg. Med. Chem. Lett, 2008,18:1525-1529.
    [147][160][163][165][197]Liang G, Yang S L, Jiang L J, et al. Synthesis and anti-bacterial properties of monocarbonyl analogues of curcumin[J]. Chem. Pharm. Bull, 2008,56 :162-167.
    [148][161][164][198]Liang G, Shao L L, Wang Y, et al. Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents[J]. Bioorg.Med.Chem, 2009, 17:2623-2631.
    [150][200]李彦,张英鹏,孙明,等.盐分胁迫对植物的影响及植物耐盐机理研究进展[J].中国农学通报,2008,24(1):258-265.
    [151]马淑英,王萍,张秀荣,等.鸭跖草营养器官的解剖学研究[J].吉林农业大学学报,1996,18(1),34-37.
    [152]薛智德,韩蕊莲,侯庆春,等.延安地区5种灌木叶旱性结构的解剖研究[J] .西北植物学报,2004,24(7),1200-1206.
    [153]周桂玲,魏岩,阿依吐尔汉,等. 8种短命植物营养器官的解剖学观察[J] .新疆农业大学学报,2004,27(2),12-18.
    [154][194]严巧娣,苏培玺.植物含晶细胞的结构与功能[J] .植物生理学通讯,2006,42(4),761-766.
    [155]阿吉赫·尤南·加尔吉斯.红海[M].北京:世界知识出版社,1984.1-15.
    [156]李建东,杨允菲.松嫩平原盐生群落植物的组合结构[J].草业学报,2004,13(1):32-38.
    [157]杜红梅,王德利,孙伟.松嫩草地全叶马兰夏季与秋季光合及蒸腾作用的比较[J] .应用生态学报,2002,13(12):1600-1604.
    [158]杜怀静.吉林省地图册[M ] .北京:中国地图出版社,2003.5-6.
    [166] Sheldrick G M. SHELXS-97. Program for the Solution of Crystal Structures.University of G?ttingen, Germany 1997.
    [167] Sheldrick G M. SHELXL-97. Program for the Refinement of Crystal Structures. University of G?ttingen, Germany 1997.
    [168] Sheldrick G M. SHELXTL. Structure Determination Software Suite. Version 6.14. Bruker AXS, Madison, Wisconsin, USA 2000.
    [169]李正理.植物组织制片学[M] .北京:北京大学出版社,1996.122.
    [170]石德成,盛艳敏.不同盐浓度的混合盐对羊草苗的胁迫效应[J].植物学报,1998,40(12):1136-1142.
    [171]张志良.植物生理学实验指导[M].北京:高等教育出版社,1990(2月第2版):318-319.
    [172]王旗,王夔.姜黄素的代谢研究[J].中国药理学通报,2003,19(10):1097-1100.
    [173]王勋陵.植物形态结构与环境[M] .兰州:兰州大学出版社,1981.99-100.
    [178][187][188][190][192]屠骊珠.内蒙古西部地区九种旱生植物叶的解剖观察[J].内蒙古大学学报,1982,13(4):35-40.
    [179]刘家琼.我国荒漠不同生态类型植物的旱生结构[J].植物生态学和地植物学丛刊,1982,6(4):314-319.
    [186]胡正海,张泓.植物异常结构解剖学[M] .北京:高等教育出版社,1993.1-132.
    [189]郑慧莹,李建东.松嫩平原盐生植物与盐碱化草地的恢复[M] .北京:科学出版社,1999.1-188.
    [195]谷瑞升,蒋湘宁,郭仲琛.胡杨细胞和组织结构与其耐盐性关系的研究[J] .植物学报,1999,41(6):576-579.
    [211]仲明远,全山丛,胡晋红.姜黄素制剂学研究进展[J].中成药,2007,29(2):255-258

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700