两亲性聚合物胶束的制备及其在毛细管电泳中应用的探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛细管电动色谱(EKC)是毛细管电泳的一种分离模式,因其采用胶束、微乳等作为假固定相,将毛细管电泳的分析对象从荷电物质扩展到中性、脂溶性物质。目前已有新型表面活性剂胶束如生物表面活性剂和双子表面活性剂、脂质体、离聚物等作为假固定相用于EKC的分离分析中,但未见把两亲性聚合物自组装后的胶束作为假固定相应用于毛细管电泳中的文献报道。本论文首次尝试将两亲性无规聚合物P(MMA-co-MAA)自组装后的胶束应用于毛细管电泳,一方面是解决传统表面活性剂SDS形成的胶束应用于MEKC对于高亲脂性物质分离选择性的局限;另一方面是解决经典微乳体系中因高浓度表面活性剂造成的焦耳热过大,时间过长等问题。本论文的主要研究共有三个部分:
     1.用单体甲基丙烯酸甲酯(MMA)和甲基丙烯酸(MAA)、溶剂1,4-二氧六环及引发剂偶氮二异丁腈(AIBN)无规共聚,通过改变单体投料的摩尔比和改变引发剂的百分含量,分别合成了一系列聚合物链上MMA和MAA配比不同和分子量不同的无规共聚物甲基丙烯酸甲酯甲基丙烯酸(P(MMA-co-MAA))。用傅里叶红外光谱(FTIR)和核磁共振仪(HNMR)表征了合成的产物P(MMA-co-MAA)的结构,结果表明无规共聚的聚合物链上基团MMA和MAA比例与投料单体摩尔比基本符合;凝胶渗透色谱(GPC)测定了P(MMA-co-MAA)分子质量及其分布,实验结果说明采用改变引发剂含量来控制聚合物的分子量,测得其分子量在2万到10万之间且聚合物的分子量分布较窄。
     2.利用两亲性聚合物的特性,发明了一种快速、简单、绿色的制备聚合物胶束的方法。制备两亲性无规聚合物P(MMA-co-MAA)胶束的方法是把一定质量的该聚合物溶解于碱性溶液(本实验用氢氧化钠溶液),并根据实验需要调节其溶液的pH值。通过TEM和DLS及Zeta电位分别表征了胶束的形貌、大小及表面电荷密度,实验考察了聚合物浓度、溶液pH、聚合物不同基团摩尔配比及聚合物分子量对胶束的影响,研究结果表明聚合物浓度主要影响胶束的形貌,共聚物不同基团摩尔配比主要影响胶束的粒径,而胶束表面的电荷密度主要受溶液的pH值影响。当聚合物的单体MMA:MAA投料摩尔比为6:4,Mn=88924,Mw=104213,Mw/Mn=1.17时,浓度为0.048 mmol/L,溶液pH为9.2时,得到大小均一的球形胶束,优化得到的此聚合物胶束作为假固定相应用于MEKC中。
     3.首次采用两亲性无规聚合物P(MMA-co-MAA)胶束溶液成功应用于胶束毛细管电动色谱快速分离了化妆品中三种结构相似的皮质类激素氢化可的松、泼尼松龙和泼尼松。实验考察了聚合物浓度、溶液pH、聚合物基团配比、聚合物分子量、分离条件(如温度、电压等)对分离效果的影响。其体系的最佳分离条件为:聚合物单体MMA与MAA的投料比为6:4,聚合物浓度为0.048 mmol/L,硼砂缓冲液(100 mmol/L,pH 9.2);电泳的最佳分离条件:分离电压20 kV,分离温度20℃,电动进样3 s/20 kV条件时,氢化可的松、泼尼松龙和泼尼松可在7.4 min内成功分离。三种激素的线性范围是2~100 mg/L,且重复7次进样,迁移时间RSD小于0.17%,迁移峰面积RSD小于3.7%,检出限依次为0.63、0.94和1.2 mg/L (S/N=3)。该法用于化妆品样品中糖皮质激素的测定,样品的平均回收率在97.7%和113%之间。相对于传统的胶束体系、离子液体修饰的胶束体系和经典的微乳体系,聚合物胶束用于EKC,分析速度更快,分离效果更好和选择性更多。从分析物流出顺序,得出两亲性无规聚合物自组装胶束应用于EKC的分离机制是反相色谱机制。
Electrokinetic chromatography (EKC) is one mode of capillary electrophoresis (CE). Based on pseudostationary phase (PSP), such as micelle and microemulsion, EKC could extend analytes from charged substances to neutral, water-insoluble molecules. Recently, a large number of novel surfactants such as biosurfactant and gemini surfactant, dendrimers, liposomes, vesicles, ionic polymers have been used as PSP in EKC. However, to my knowledge, self-assembly of amphiphilic polymer micelles as PSP in MEKC has not been reported. The present work firstly used polymeric micelle as PSP in CE to attempt to overcome difficulties in MEKC or MEEKC. On the one hand, conventional SDS micelles as PSP in MEKC the is limited to separate highly lipophilic substances.On the other hand, high concentration of ionic surfactant to form microemulsion results in high joule heating, longer analysis time. The thesis mainly included the following three parts.
     1. A series of random copolymers poly(methyl methacrylate-co-methacrylic acid) (P(MMA-co-MAA)) with different feed monomer ratio and different molecular weight were synthesized by radical polymerization, using methyl methacrylate (MMA) and methacrylic acid (MAA) as monomers, 2,2-Azobis (isobutyronitrile) (AIBN) as initiator, 1,4-dioxane as solvent. The random copolymers P(MMA-co-MAA) were characterized by means of FTIR, 1H NMR and Gel Permeation Chromatography (GPC). The results show that the proportion of the MMA and MAA groups on the chain of random copolymer is similar as the feed monomer molar ratio and the molecular weight of the polymer was controlled by changing the initiator content, its molecular weight is between 20000 and100000 and distribution was narrow.
     2. A fast, simple and green method of the preparation of polymeric micelles has been invented, according to the characteristics of the amphiphilic polymer. The micelle of amphiphilic random polymer P (MMA-co-MAA) is prepared by dissolving certain quantity of the polymer in alkaline solution (sodium hydroxide solution used in this experiment) and the pH is adjusted in light of the experiment. The aqueous self-assembly of the random polymers were investigated by using transmission electron microscopy (TEM), dynamic laser light scattering (DLS) and Zeta potential. The effects of concentration of polymer, pH of the running buffer, molecular weight of polymer and different feed monomer ratio of MMA and MAA were investigated. Results showed the shape and the size of polymeric micelle were mainly influenced by the concentration of polymer and different feed monomer ratio of MMA and MAA, respectively. The Zeta potential of micelle was controlled by pH of the running buffer. At the concentration of 0.048 mmol/L, feed monomer ratio of 6:4 (MMA to MAA) and pH 9.2, the polymeric micelles were of monodispersity and perfect spheres. The optimum conditions of preparation polymeric micelle were utilization of the polymeric micelle as a pseudostationary phase to improve MEKC performance.
     3. The polymeric micelle with amphiphilic random copolymer P (MMA-co-MAA) via neutralization in aqueous medium was firstly applied as a pseudostationary phase (PSP) in electrokinetic chromatography (EKC) in the present work. Three structurally similar corticosteroids namely hydrocortisone, prednisolone and prednisone were separated with EKC using polymeric micelle as PSP to assess the separation performance. The concentration of polymer, pH of the running buffer, molecular weight of polymer and different feed monomer ratio of MMA to MAA on EKC performances have been investigated, and the optimum condition is at the concentration polymer( MMA:MAA 6:4 and Mn=88924, Mw=104213, Mw/Mn=1.17) of 0.048 mmol/L and pH 9.2. With separation voltage of 20 kV, electrokinetic injection of 3s/20 kV and capillary temperature of 20℃, prednisone, hydrocortisone and prednisolone were baseline separated within 7.4 min. The RSDs of migration time for three analytes were all less than 0.17% and peak area were less than 3.7% (n=7). Excellent linearity was obtained ranged from 2 to 100 mg/L, the detection limits based on ratio of signal to noise of 3 were 0.63, 0.94 and 1.2 mg/L for three analytes respectively. Compared with typical MEKC, MEEKC and MEKC modified with IL ([Bmim]BF4), the developed method was more rapid, efficient and higher selective. The separation mechanism using polymeric micelle as PSP was reverse-phase interaction. The method has been applied to determination of the three corticosteroids in actual cosmetic samples, the recoveries of three analytes were between 97.7% and 113%.
引文
[1]陈义.《毛细管电泳技术及应用》[M].化学工业出版社.
    [2] Terabe S, Otsuka K, Ichikawa K I, et al. Electrokinetic separations with micellar solutions and open-tubular capillaries[J]. Analytical Chemistry, 1984, 56(1):111-113.
    [3] Terabe S. Micellar Electrokinetic Chromatography[J]. Analytical Chemistry, 2004, 674(1~2):241-246.
    [4]关福玉.表面活性剂在高效毛细管电泳中的作用[J].色谱, 1995,13(1): 30-32.
    [5] Shang X Y, Yuan Z B. Determination of effective constituents in rhubarb byβ-Cyclodextrin modified micellar electrokinetic chromatography [J]. Chinese Journal of Analytical Chemistry 2002, 30(7): 853-856.
    [6]唐俊,张晓丽,刘二保.胶束电动毛细管电泳法测定维生素B4[J].天津师范大学学报, 2009, 2(3): 46-50.
    [7] Juan M S, Victoria S. Comparison of micellar and microemulsion electrokinetic chromatography for the analysis of water- and fat-soluble vitamins [J]. Journal of Chromatograhy A, 2002, 950 (1~2): 241-247.
    [8] Bob S, Kevin A, Trent K, etal. Separation and determination of closely related lantibiotics by micellar electrokinetic chromatography[J]. Journal of Separation Science, 2009, 32 (17): 2993-3000.
    [9]王金妍.毛细管电泳一安培检测在食品及化妆品分析中的应用研究[D].[硕士论文],上海:华东师范大学化学系, 2010.
    [10] Susanne K W, Juho H J, Heikki H, et al. Optimization of selectivity and resolution in micellar electrokinetic capillary chromatography with a mixed micellar system of sodium dodecyl sulfate and sodium cholate [J]. Electrophoresis, 1996, 17(12): 1931-1937.
    [11]余美娟,杭栋,曹玉华.离子液体对胶束电动色谱胶束微结构以及分离效果的影响色谱[J].色谱, 2011, 29(2): 131-136.
    [12] Heli S, Tuulikki S L, Matej O. Capillary electrophoresis with UV detection and mass spectrometry in method development for profiling metabolites of steroid hormone metabolism[J]. Journal of Chromatography B, 2008, 871(2): 375-382.
    [13] Erika T, Oscar N, Javier S, et al. 5-Hydroxymethylfurfural content in foodstuffs determined by micellar electrokinetic chromatography[J].Food Chemistry, 2011, 126(4): 1902-1908.
    [14] Juan G A. Capillary electrophoresis for analyzing pesticides in fruits and vegetables using solid-phase extraction and stir-bar sorptive extraction[J]. Journal of Chromatograhy A, 2005, 1073(1~2):229 -236.
    [15] Suzuki S. Determination of synthetic food dyes by CE[J]. Journal of Chromatograhy A, 1994, 680(2): 541-547.
    [16] Jager A V, Tonin F G, Tavares M F M. Optimizing the separation of food dyes by capillary electrophoresis[J]. Journal of Separation Science, 2005, 28(9-10): 957-965.
    [17] Guan Y, Chu Q, Fu L, et al. Determination of phenolic antioxidants by micellar electrokinetic capillary chromatography with electrochemical detection[J]. Food Chemistry, 2006, 94(1):157-162.
    [18]吴美剑,颜流水,江鑫,等.胶束毛细管电泳快速分离八种农药类环境内分泌干扰物[J].江西化工, 2009 (2): 53-57.
    [19]刘姜.利用胶束毛细管电泳对茶叶中拟除虫菊醋类农药分离检测的研究[D].[硕士论文],江苏大学, 2007.
    [20] Braden C G, Dean S B, Greg E C. Direct injection of seawater for the analysis of nitroaromatic explosives and their degradation products by micellar electrokinetic chromatography[J]. Journal of Chromatography A, 2010, 1217(26): 4487-4493.
    [21] Yang H, Lei Z, Chen X G. Analysis of ammonia and aliphatic amines in environmental water by micellar electrokinetic chromatography and QSPR modeling of electrophoretic migration time [J]. Talanta 2010,80(5): 1619-1625.
    [22]汪小亚.鼠李糖脂在微乳毛细管电动色谱中的应用[D].[硕士学位论文],无锡:江南大学, 2010.
    [23] Palmer C P, Tanaka N. Selectivity of polymeric and polymer-supported pseudo-stationary phases in micellar electrokinetic chromatography[J]. Journal of Chromatography A, 1997, 792(1~2):105-124.
    [24] Hou J G, Rizvi S A A, Zheng J, etal. Application of polymeric surfactants in micellar electrokinetic chromatographyelectrospray ionization mass spectrometry of benzodiazepines and benzoxazocine chiral drugs[J]. Electrophoresis, 2006, 27(5~6):1263-1275.
    [25] Palmer C P. Electrokinetic chromatography with polymeric pseudostationary phases[J]. Journal of Separation Science, 2008, 31(5): 783-793.
    [26] Terabe S, Ozaki H, et al. New pseudostationary phases for electrokinetic chromatography: a high-molecular surfactant and proteins[J]. Journal of the Chinese Chemical Society, 1994, 41(3): 252-257.
    [27] Palmer C P, Khaled M Y, Nair H M. A monomolecular pseudostationary phase formicellar electrokinetic capillary chromatography[J]. Journal of High Resolution Chromatography, 1992, (15): 756-762.
    [28] Palmer C P, McNair H M. Novel pseudostationary phase for micellar electrokinetic capillary chromatography[J]. Journal of Microcolumn Separation, 1992,4(6): 509-512.
    [29] Yang H, Lei Zh, Chen X G. Analysis of ammonia and aliphatic amines in environmental water by micellar electrokinetic chromatography and QSPR modeling of electrophoretic migration time [J]. Talanta, 2010, 80(5): 1619-1625.
    [30] Edwards S H, Shamsi S A. Micellar electrokinetic chromatography of polychlorinated biphenyl congeners using a polymeric surfactant as the pseudostationary phase[J]. Journal of Chromatography A, 2000, 903(1~2): 227-236.
    [31] Shamsi A S, Palmer C P, Warner I M. Molecular miceller: novel pseudostationary for CE[J]. Analytical Chemistry, 2001,73(5): 141A-149A
    [32] Hou J G, Zheng J, Shamsi S A. Separation and determination of warfarin enantiomers in human plasma using a novel polymeric surfactant for micellar electrokinetic chromatography–mass spectrometry[J]. Journal of Chromatography A, 2007, 1159(1~2):208-216.
    [33] Palmer C P, Jonathan P. McCarney. Developments in the use of soluble ionic polymers as pseudo-stationary phases for electrokinetic chromatography and stationary phases for electrochromatography[J]. Journal of Chromatography A, 2004, 1044(1~2): 159-176.
    [34] Palmer C P. Recent progress in the use of ionic polymers as pseudostationary phases for EKC[J]. Electrophoresis, 2007, 28(1~2): 164-173.
    [35] Palmer C P. Micelle polymers, polymer surfactants and dendrimers as pseudostationary phases in micellar electrokinetic chromatography[J]. Journal of Chromatography A, 1997, 780(1~2): 75-92.
    [36] Nilsson C, Nilsson S. Nanoparticle-based pseudostationary phases in capillary electrochromatography[J]. Electrophoresis, 2006, 27(1):76-83.
    [37] Gerhard B, Leopold K, Dieter B, et al. Analysis of liposomes by capillary electrophoresis and their useas carrier in electrokinetic chromatography[J]. Journal of Chromatography B, 2006,841 (1~2): 38-51.
    [38] Pascoe R J, Folcy J P. Characterization of surfactant and phospholipid vesieles for use as pseudostationary phases in electrokinetic chmatography[J]. Electrophoresis, 2003, 24(9):4227-4240.
    [39] Harino H, Tanaka M, Araki T, et al. Double-chain surfactants with two sulfonate groups as micelleforming reagents in micellar electrokinetic chromatography of naphthalene derivatives[J]. Journal of Chromatography A, 1995, 715(1): 135-141.
    [40]刘倩,李燕清,杨艳敏,等.双子表面活性剂及其保护的纳米金作为缓冲添加剂用于毛细管电泳蛋白质分离[J].中国科学, 2009, 39 (10): 1251-1261.
    [41] HamLey I W. Block copolymers in solution: fundamentals and applications[M]. 2005 (Chichester: Wiley).
    [42] Can T, Munk P, Ramireddy C. et al. Fluorescence studies of amphiphilic poly(methacrylic acid)-block-polystyrene-block-poly(methaerylic acid) micelles[J]. Maeromolecules, 1991,24(23):6300-6305.
    [43] Bronich T K, Kabanov A v, Kabanov V A, et al. Soluble complexes from poly(ethylene oxide)-block-polymethaerylate anions and N-alkylpyridinium cations[J]. Maeromolecules, 1997, 30(12):3519-3525.
    [44] Murthy V S, Cha J N, Stucky G D, et al. Charge-driven flocculation of poly(L-lysine)-gold nanoparticle assemblies leading to hollow mierospheres[J]. Journal of the American Chemical Society, 2004, 126(16): 5292-5299.
    [45] Nishiyama N, Yoko yama M, Aoyagl T, et al.Preparation and characterization of self-assembled polymer-metal complex micelle from cis-dichlorodiamminepl atinum(II) and poly(ethylerie glyc01)-poly(α,β-aspartic acid) block copolymer in an aqueous medium[J]. Langmuir,1999, 15(2):377-383.
    [46] Wang M, Zhang G, Cheng D. Noncovalently connected polymeric micelles based on a homopolymer pair in solutions[J]. Macromolecoles, 2001, 34(20): 7172-7178.
    [47] Duan H, Chen D, Jiang M, et al. Self-assembly of unlike homopolymers into hollow spheres in nonselective solvent[J]. Journal of the American Chemical Society, 2001, 123(48): 12097-12098.
    [48] Wu C, Niu A, Leung L M, et al. Preparation of narrowly distributed stable and soluble polyacetylene block copolymer nanoparticles[J]. Journal of the American Chemical Society, 1999, 121(9):1954-1955.
    [49] Wang M, Jiang M, Ning F, et al. Nanoscale confinement and temperature effects on associative polymers in thin films: fluorescence study of a telechelic pyrene-labeled poly(dimethylsiloxane)[J]. Maeromolecules, 2002, 35(15):5980-5989.
    [50] Forder C, Patrickios C S, Billingham N C, et al. Novel hydrophilie-hydrophilic block polymers based on poly(vinylalcohol)[J]. Chemical Communations, 1996,7: 883-884.
    [51] Martin T J, Prochazka K P, et al. pH-Dependent micellization of poly(2-vinylpyridine)-block-poly(ethylene oxide)[J]. Macromolecules, 1996, 29(18): 6071-6073.
    [52] Butun V, Billingham N C, AITnes S P. Unusual aggregation behavior of a novel tertiary amino methacrylate-based diblock copolymer: formation of micelles and reverse micelles inaqueous solution[J]. Journal of the American Chemical Society, 1998, 120(45): 11818-11819.
    [53] Shen H, Eisenberg A. Control of architecture in block eopolymer vesicles[J]. Angewandte Chemie International Edition, 2000, 39(18): 3310-3312.
    [54] Chong B Y K, Le T P T, Moad G, et al. A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization:The RAFT process[J]. Macromolecules, 1999, 32(6): 2071-2074.
    [55] Shen H, Eisenberg A. Block length dependence of morphological phase diagrams of the ternary system of PS-b-PAA/Dioxane/H2O[J]. Macromolecules, 2000, 33(7): 2561-2572.
    [56] Dhembre G N, Moon R S, Kshirsagar R V. A review on polymeric micellar nanocarriers[J]. International Journal of Pharmacy and Biological Sciences, 2011, 2(2): 109-116.
    [57] Marie C J, Hui G, Jean C L. Reverse polymeric micelles for pharmaceutical applications[J]. Journal of Controlled Release, 2008, 132(3): 208-215.
    [58]杨春长,裴一蓉,朱吉凯,等.两亲性二嵌段刚柔分子的合成及水中自组装作为纳米反应[J].延边大学学报, 2010, 36(4): 331-335.
    [59] Henselwood F. Liu G. Water-soluble nanospheres of poly(2-cinnamoylethyl methacrylate)-block-poly(acrylic acid)[J]. Macromoleeules, 1997, 30(3): 488-493.
    [60] Billiot F H, McCarroll M, Billiot E J, et al. Comparison of the aggregation behavior of 15 polymeric and monomeric dipeptide surfactants in aqueous solution[J]. Langmuir, 2002, 18(8): 2993-2997.
    [61] Martina S R, Gerhard F P, Christian S. Synthesis and self assembly of eosin functionalized amphiphilic block-random copolymers prepared by ring opening metathesis polymerization[J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2008, 46(2):401-413.
    [62] Christof S, Ahmed M, Helmut K, et al. Synthesis and aggregation behaviour of amphiphilic block opolymers with random middle block[J]. Colloid and Polymer Science, 2009, 287(10):1183–1193.
    [63]葛治伸.环境响应性聚合物超分子组装体的构筑和结构调控[D]. [博士学位论文],北京:中国科学技术大学, 2009.
    [64] Carelli V, Colo G D, Nannipieri E, et al. Serafini polyoxyethylene- poly(methacrylic acid-co-methylmethacrylate) compounds for site-specific peroral delivery[J]. International Journal of Pharmaceutics, 2000,202(1~2):103-112.
    [65] Adams M L, Lavasanifar A, Kwon G S. Amphiphilic block copolymers for drug delivery[J]. Journal. Pharmaceutical Sciences, 2003, 92(7): 1343-1355.
    [66] Wang F, Bronich T K, Kabanov A V, et al. Synthesis and evaluation of a star amphiphilic block copolymer from Poly(epsilon-caprolactone) and Poly(ethylene glycol) as a potential drug delivery carrier[J]. Bioconjugate Chemistry, 2005, 16(2): 397-405.
    [67] York A W, KirklandS E, McCormick C L. Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: Stimuli-responsive drug and gene delivery[J]. Advanced Drug Delivery Reviews, 2008, 60(9):1018-1036.
    [68]袁建军,程时远,封麟先.嵌段共聚物自组装及其在纳米材料制备中的应用(下) [J].高分子通报, 2002, (2): 9-18.
    [69]程建丽.“V型”两亲性聚合物接枝的纳米材料的制备及其性能研究[D]. [博士学位论文],上海:复旦大学, 2009 .
    [70] Wang, R G, Wang J F, Li W H, et al. Preparation of amphiphilic acrylic acid copolymer and its application in humidity-sensitive coatings[J]. Journal of Applied Polymer Science, 2011, 120(5): 3109-3117.
    [71] Palermo E F, Lee D K, Ramamoorthy A, et al. Role of cationic group structure in membrane binding and disruption by amphiphilic copolymers[J]. Journal of Physical Chemistry B, 2011, 115(2): 366-375.
    [72] Yuan J, Shi Y, Fu Z F, Yang W T, et al. Synthesis of amphiphilic poly(methyl metha-crylate)-block-poly(methacrylic acid) diblock copolymers by atom transfer radical polymerization [J]. Polymer International, 2006, 55(3): 360-364.
    [73] Huang C F. Comparison of hydrogen bonding interaction between PMMA/PMAA blends and PMMA-co-PMAA copolymers[J]. Polymer, 2003, 44(10): 2965-2974.
    [74] Rufino E S, Monteiro E E C. Infrared study on methyl methacrylate–methacrylic acid copolymers and their sodium salts [J]. Polymer, 2003, 44(23): 7189-7198.
    [75] Telma B, Márcio T, Teresa C, et al. Development of pH-responsive poly(methylmethacrylate-co-methacrylic acid) membranes using scCO2 technology. Application to protein permeation[J]. Journal of Supercritical Fluids, 2009, 51(1): 57-66.
    [76] Rémi G, Stéphane M H, Béatrice A B, et al. Structural characterization of a poly(methacrylic acid)–poly(methylmethacrylate) copolymer by nuclear magnetic resonance and mass spectrometry[J]. Analytica Chimica Acta, 2009, 654(1):49-58.
    [77]魏德卿,宋艳,金勇,等.驱油用双亲聚合物的研究进展[J].精细化工, 2004, 21(9):662-666.
    [78] Marianna P, Nathalie B, Ronald Lange, et a1. Use of amphiphilic copolymers as solubilizing agents in foods, cosmetics, and pharmaceuticals. PCT Int. Appl. 2006, WO, 2006018135, A1.
    [79] Wong, W K, Cabalka T, Leanne M. Method of using amphiphilic multiblock copolymers in food. PCT Int. Appl. 2008, WO, 2008034082, A2.
    [80] Kawata T, Hashidzume A, Sato T. Micellar structure of amphiphilic statistical copolymers bearing dodecyl hydrophobes in aqueous media[J]. Macromolecules 2007, 40(4):1174-1180.
    [81] Liu X Y, Kim J S, Wu J, et a1. Bowl-shaped aggregates from the self-assembly of an amphiphilic random copolymer of poly(styrene-co-methacrylic acid)[J]. Macromolecules, 2005, 38(16):6749-6751.
    [82] Li Y B, Deng Y H, Tong X L, et a1. Formation of photoresponsive uniform colloidal spheres from an amphiphilic azobenzene containing random copolymer[J]. Macromolecules, 2006, 39(3): l108-1115.
    [83]朱丽芳,马崇峰,刘晓亚,等.双亲性聚(丙烯酸-co-苯乙烯)的制备及其自组装行为[J].石油化工, 2007, 36(4): 388-392.
    [84]邓联东,孙多先,姚芳莲,等.聚乙二醇甲醚-聚(D,L-乳酸)嵌段共聚物纳米胶束的制备[J].应用化学, 2004, 21(3):248-250.
    [85] Yao J, P Ravi, Tam K C, et a1. Association behavior of poly(methyl methacrylate-block-methacrylic acid) in aqueous medium[J]. Langmuir, 2004, 20(6): 2157-2163.
    [86] Leibler, L, Orland H, Wheeler J. C. Theory of critical micelle concentration for solutions of block copolymers[J]. Journal Chemical Physics, 1983, 79(7): 3550-3557.
    [87]翁优灵,沙爱民.多普勒电泳光散射Zeta电位分析新技术[J].中国测试技术, 2005, 31(4): 20-23.
    [88]赵同刚.化妆品卫生规范[M].北京:军事医学科学出版社, 2007: 34-34.
    [89] Wiedmer S K, Siren H, Riekkola M L. Determination of serum corticosteroids by mixed micellar electrokinetic capillary chromatography with sodium dodecyl sulfate and sodium cholate[J]. Electrophoresis, 1997, 18(10): 1861-1864.
    [90] Wu C H, Chen T H, Huang K P, et al. Separation of corticosteroids by microemulsion EKC with diethyl L–tartrate as the oil phase[J]. Electrophoresis, 2007, 28(20): 3691-3696.
    [91] Pomponio R, Gotti R, Fiori J, et al. Microemulsion electrokinetic chromatography of corticosteroids effect of surfactants and cyclodextrins on the separation selectivity[J]. Journal of Chromatography A, 2005, 1081(1): 24-30.
    [92]杭栋,汪小娅,倪鑫炯,等.鼠李糖脂应用于微乳毛细管电动色谱快速测定化妆品中激素类物质[J].分析化学, 2011, (39): 168-172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700