基于Valence-Arousal的产品内隐情感表示与推理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统感性工学的研究是利用成对感性词汇(Paired KANSEI Adjectives, PKA)来建立调查表,以期获得用户对产品的感性评价。但是,这种方法仅是利用感性词汇集对事物在感性语义上的一个粗粒度的定性描述,所利用的尺度是离散且线性的;这种方式的感性知识建模存在着极大的不精确与不确定性。
     本文将从基础数据获取、产品内隐情感表示方法及推理模型的建立三个方面入手建立一个全新的产品内隐情感认知模型。首先,利用情绪词库(Affective Norms for English Words, ANEW)所采用的实验方法,开展心理量的人工标定实验;建立起人体在“自然状态”下,直观感知(Valence-Arousal, VA,即Valence表示兴奋或平静的程度, Arousal表示与正面或者负面的程度)与感性词汇之间的联系。其次,利用心理量人工标定实验所获得的Valence-Arousal数据,建立起基于Valence-Arousal的情感细胞元认知模型,包括基于情感细胞元模型的内核和外壳的定义及其度量函数的学习方法,同时对于细胞元的边界模糊性(Fuzziness)进行计算;建立起基于Valence -Arousal情感细胞元的产品内隐情感表示方法;在情感细胞元模型之上,给出了基于模糊集理论(Fuzzy Sets, FS)的相似关系,并通过相似性计算与分析给出了产品内隐情感检索系统设计方法。最后,利用案例式学习技术(Case Based Reasoning, CBR)、贝叶斯变精度粗糙集合成方法及模糊多分类支持向量机(Multi-class Fuzzy Support Vector Machine, MFSVM)技术,分别建立起基于Valence-Arousal的产品内隐知识推理模型,并在手机、汽车等产品的案例研究中验证其有效性。
     本文的研究成果包括:
     (1)建立了基于Valence-Arousal的情感细胞元的产品内隐情感表示模型。这种模型是对“离散”的感性词汇的深入解析,是意图在定性与定量之间寻求一个平衡点,使得每一个感性词汇不再是孤立的、生硬的,而是一个“细胞”。
     (2)建立起基于Valence-Arousal的情感细胞元的内核与外壳的获取方法。包括建立了Valence-Arousal二维情感函数到情感细胞元的映射关系。针对内核的单点集、平面集和圆型集的不同类型分别进行定义;通过单一和混合高斯密度函数来度量情感空间点集的密度,并通过参数估计的方法来获得密度函数的关键参数。
     (3)建立起情感细胞元边界的模糊计算模型。通过模糊集的模糊交、并等逻辑运算建立情感细胞元模糊边界的计算模型。针对单点集、平面集和圆型集分别给出边界的计算模型。情感细胞元的边界计算对于产品内隐情感的精确分类起到重要作用。
     (4)建立基于Valence-Arousal的情感细胞元相似性度量方法。包括相似性度量空间、相似关系的形式化定义和相似度的计算。在IF-THEN规则的知识表达形式中,对相似性计算的结果进行分析,并给出产品内隐情感检索系统的研究内容与设计方法。
     (5)建立起三种基于Valence- Arousal的产品内隐情感推理模型。在模糊案例式推理模型中,以产品造型典型特征集为初始案例,以相应地情感细胞元密度函数生成案例相似度计算公式,通过模糊最邻近算法(Near Neighbor, NN)算法获得产品的整体评价。在贝叶斯学习模型中,通过基于情感细胞元的产生式规则及其度量(LN,LS)并利用可变精度粗糙集理论形成贝叶斯变精度合成推理模型。在多分类器推理技术中,将细胞元的密度分布函数融入多分类模糊支持向量机模型,建立了产品内隐情感的分类模型。
The objective of traditional KANSEI engineering is to create a questionnaire to obtain users' perceptual evaluation of products by using Paired Kansei Adjectives (PKA). However, this approach is only to use the emotional vocabulary of things under a coarse-grained description in the emotional semantic characterization, the use of the scale is discrete and linear; perceptual knowledge modeling in this way exits significant imprecision and uncertainty.
     This thesis proposed a new cognitive model of emotional semantics on three aspects:the basic data acquisition, representation and reasoning model of product implicit emotion.
     First, the emotional thesaurus (Affective Norms for English Words, ANEW) experimental methods was adopted to conduct psychological experiments by artificial calibration and to establish the connections between body's visual perception (Valence-Arousal, which valence denotes the degree of excited or calm, arousal denotes the degree of positive or negative) under the "natural state" and emotional words. Second, the emotional Valence-Arousal based emotional cellular model was established by using Valence-Arousal data which obtained from the manual calibration psychological experiments, including emotional cellular-based kernel and shell definition and its learning methods of measurement functions; at the same time, the boundaries of the ambiguity of a cellular (Fuzziness) was calculated. Third, the representation model of implicit emotion was founded based on Valence-Arousal emotional cellular; a fuzzy similarity analysis of emotional cellular based on fuzzy set was introduced and the design methodology of an implicit emotional retrieval system of product was proposed. Finally, reasoning model of products implicit emotion based on Valence-Arousal was presented respectively by using CBR (Case Based Reasoning), Bayesian synthesis based variable precision Rough Sets method and MFSVM (Multi-classifier Fuzzy Support Vector Machine) techniques are given to demonstrate the effectiveness of the proposed methodology in cases study of mobile phone and vehicle design.
     The main contributions of this thesis include:
     (1) Established the Valence-Arousal based emotion cellular representation model of product implicit emotion which is the intention and in-depth analyzing of these "discrete" KANSEI adjectives that is to find a balance point under the qualitative and quantitative analysis, so that each word is no longer isolated emotional, blunt, but a "cell."
     (2) Established the kernel and shell's definition and its acquisition method of Valence-Arousal based emotion cellular, which included the mapping relations between emotional cellular and the two-dimensional Valence-Arousal emotional space and the definitions of three type kernels (single point type, flat type and circle type). The Gaussian singular and mixture models were applied to describe the density of points on Valence-Arousal space for difference types and the parameters of Gaussian singular and mixture model are acquired by parameters estimation methods.
     (3) Proposed the computing methods of fuzzy boundary of emotional cellular model, which included establishing boundaries and the calculation model by fuzzy set and fuzzy logic operations such as intersection, union; and the calculation process of boundary for the kernels on single-point type, flat type and circle type respectively. It plays an important role for implicit emotion computing to acquire the exact classification of emotions by using boundaries computing of emotional cellular.
     (4) Established similarity measure model between Valence-Arousal based emotional cellulars which included the definition of similarity metric space, the formal definition of similarity relation and similarity calculations; introduced a similarity computing model on IF-THEN rules of knowledge representation and also demonstrated the design methodology of the product's implicit emotional retrieval system by using the proposed similarity computing model.
     (5) Established three kinds of reasoning models on product's implicit emotion retrieving based on Valence-Arousal. In the fuzzy case based reasoning model, a product typical feature set was regarded as the initial case, the corresponding density function of emotion cellular was applied to calculate the similarity degree and obtain the overall evaluation of product by using the fuzzy nearest neighbor algorithm (Near Neighbor, NN). In the Bayesian learning model, rule based representation of production emotion cellular and its measurement (LN, LS) employing variable precision rough set theory was used to this synthesis model. As in multi-classifier model, the multi-classifier fuzzy support vector machine technology combined density distribution function of emotional cellular was applied to build the classification model of product's implicit emotion.
引文
[1]de Noblet J. Industrial Design, Paris, A.F.A.A.1993,182-192.
    [2]苗青,王重鸣.内隐知识:战略决策的一个视角.自然辩证法通讯,2004,26(6):62-66.
    [3]Sternberg RJ, Honrvath JA. Tacit knowledge in profeesinonal practice:Researcher and practinaer pesectives. Edited by Robert J. and Joseh A. USA, Psychology Press,1999,63-126.
    [4]Mitsuo Nagamachi. Kansei engineering as a powerful consumer-oriented technology for product development. Applied Ergonomics,2002,33(3):289-294.
    [5]Mitsuo Nagamachi. Kansei Engineering:A new ergonomic consumer-oriented technology for product development. International Journal of Industrial Ergonomics,1995,15:3-11.
    [6]罗仕鉴,朱上上,孙守迁,潘云鹤.基于集成化知识的产品概念设计技术研究.计算机辅助设计与图形学学报,2004,16(3):261-266.
    [7]Dienes Z, Perner J. A theory of implicit and explicit knowledge. Behav Brain Sci.1999, 22(5):735-755.
    [8]M. Minsky. The Society of Mind. New York, Simon & Schuster,1985,7-17.
    [9]Picard R.W. Affective Computing. USA, MIT Press,1997,3-15.
    [10]黄琦,孙守迁.产品风格计算研究进展.计算机辅助设计与图形学学报,2006,18(11):1629-1636.
    [11]黄琦,孙守迁.基于意象认知模型的汽车草图设计技术研究.浙江大学学报(工学版),2006,40(4):553-559.
    [12]Thayer, R. E. The biopsychology of mood and arousal. UK, Oxford University Press,1988, 10-21.
    [13]Hevner, K. Expression in music:a discussion of ezperimental studies and theories. Psychological Review,1935,42:186-204.
    [14]Mitsuo Nagamachi. Kansei engineering and comfort. International Journal of Industrial Ergonomics,1997,19(2):79-80.
    [15]T.W. JAN R. C., M. Nagamachi. Concepts, method and tools in Kansei Engineering. Theory Issues in Ergonomics Science,2004,5(3):214-231
    [16]S. Shutte, and J. Eklund. Design of rocker switches for work-vehicles-an application of Kansei engineering. Applied Ergonomics,2005,36:557-567.
    [17]C. Tanoue, K. Ishizaka, M. Nagamachi. Kansei engineering:A study of vehicle interior image. International Journal of Industrial Ergonomic,1997,19:115-128.
    [18]Schutte. Engineering Emotional Values in Product Design:Kansei Engineering in Development. Sweden, Linkoping University Press,2005,8-21.
    [19]Koji Okuhara, Matsubara Yukihiro and Ueno Nobuyuki. Extraction of Relationship among Kansei Words by Expert System Using Rough Set Analysis. Proceedings of the 2005 International Conference on Active Media Technology, USA, IEEE,2005,461-466.
    [20]K. Nakada. Kansei engineering research on the design of construction machinery. International Journal of Industrial Ergonomic,1997,19:129-146.
    [21]Shih-Wen Hsiao, Hung-Cheng Tsai. Applying a hybrid approach based on fuzzy neural network and genetic algorithm to product form design. International Journal of Industrial Ergonomics,2005,35(5):411-428
    [22]李桂琴,于明,陆长德等.基于问题的模糊推理方法在造型设计中的应用.机械科学与技术,2002,21(6):1017-1019.
    [23]Hirohide Ushida. Interactive Agents with Artificial mind. International Journal of Computational Intelligence,2004,1(4):323-327.
    [24]Lotfi A. Zadeh. The Concept of a Linguistic Variable and its Application to Approximate Reasoning-Ⅰ. Information Sciences,1975,8:299-249.
    [25]Lotfi A. Zadeh. The Concept of a Linguistic Variable and its Application to Approximate Reasoning-Ⅱ. Information Sciences,1975,8:301-357
    [26]Lotfi A. Zadeh. The Concept of a Linguistic Variable and its Application to Approximate Reasoning-Ⅲ. Information Sciences,1975,9:43-80
    [27]Lotfi A. Zadeh. Test-Score Semantics For Natural Languages. Coling 82, Netherland, North-Holland Publishing Company,1982,425-430.
    [28]Hong-Bin Yan Van-Nam Huynh, Tetsuya Murai, Yoshiteru Nakamori. Kansei evaluation based on prioritized multi-attribute fuzzy target-oriented decision analysis. Information Sciences 2008,178:4080-4093.
    [29]Nadia Bianchi-Berthouze. Kansei-mining:identifying visual impressions as patterns in images. Proceedings-joint 9th IFSA world congress and 20th NAFIPS international conference. Lecture Notes in Computer Science LNCS2822, German, Springer-Verlag,2001,2183-2188.
    [30]Tomofumi Hayashi, Akio Sato. A Hierarchical Model to Support Kansei Mining Process. The Third International Conference of Intelligent Data Engineering and Automated Learning, LNCS 2412, Heidelberg:Springer Berlin,2002,56-61.
    [31]Jianxin (Roger) Jiao, Yiyang Zhang, Martin Helander. A Kansei mining system for affective design. Expert Systems with Applications,2006,30:658-673.
    [32]Chun-Chih Chen, Ming-Chuen Chuang. Integrating the Kano model into a robust design approach to enhance customer satisfaction with product design. Int. J. Production Economics, 2008,114:667-681.
    [33]Khalid, H. M.,& Helander, M. G. A framework for affective customer needs in product design. Theoretical Issues in Ergonomics Science,2004,5(1):27-42.
    [34]E.W.T. Ngai, Li Xiu, D.C.K. Chau. Application of data mining techniques in customer relationship management:A literature review and classification. Expert Systems with Applications 2009,36:2592-2602.
    [35]Qianli Xu, Roger J. Jiao, Xi Yang and Martin Helander. An analytical Kano model for customer need analysis. Design Studies,2009,30:87-110.
    [36]Nathan Crilly, James Moultrie and P. John Clarkson. Shaping things:intended consumer response and the other determinants of product form. Design Studies 2009,30:224-254.
    [37]Y. Akao. Quality Function Deployment (QFD):Integrating customer requirements into product design. Cambridge, MA, Productivity Press,1990,3-17.
    [38]M. Matsubara, and M. Nagamachi, M. Hybrid Kansei engineering system and design support. International Journal of Industrial Ergonomics,2007,19:81-92.
    [39]Mitsuo Nagamach. Kansei Engineering and Rough Sets Model. Lecture Notes in Artificial Intelligence 4259, Berlin, Springer-verlage,2006,27-37.
    [40]Tatsuo Nishino, Mitsuo Nagamach, Hideo Tanaka. Variale Precision Bayesian Rough Set Model and Its Application to Human Evaluation Data. LNAI 3641, Berlin, Springer-verlage, 2005,294-303.
    [41]Lian-Yin Zhai, Li-Pheng Khoo, Zhao-Wei Zhong. A dominance-based rough set approach to Kansei Engineering in product development. Expert Systems with Applications,2009,36: 393-402
    [42]Pawlak Z. Rough sets. International Journal of Computer and Information Sciences,1982, 11:341-356.
    [43]Pawlak Z. Advances in the Dempster-Shafer theory of evidence. New York. NY. John Wiley & Sons, Inc.,1994,251-271.
    [44]Pawlak Z, Ziarko, W Ziarko. Rough sets:probabilistic versus deterministic approach. International Journal of Man-Machine Studies,1988,29,81-95.
    [45]Lian-Yin Zhai, Li-Pheng Khoo, Zhao-Wei Zhong. A rough set based decision support approach to improving consumer affective satisfaction in product design. International Journal of Industrial Ergonomics 2009,39:295-302.
    [46]Pattaraintakorn, N. Cercone and K. Naruedomkul. Rule learning:Ordinal prediction based on rough sets and soft-computing. Applied Mathematics Letters,2006,19(12):1300-1307.
    [47]Likert Rensis. A technique for the measurement of attitudes. Archives of Psychology,1932, 22(140):1-55.
    [48]Osgood, C., Suci, G.& Tannenbaum, P.H. The measurement of Meaning. Urbana, USA, University of Illinois Press,1957,35-50.
    [49]Kosuke Yamamoto, Tomohiro Yoshikawa, Takeshi Furuhashi. Division Method of Subjects by Individuality for Stratified Analysis of SD Evaluation Data. IEEE International Symposium on Micro-NanoMechatronics and Human Science, USA, IEEE,2005.29-34.
    [50]Barclay, A., and F.J. Thumin. A modified semantic differential approach to attitudinal assessment. Journal of Clinical Psychology,1963,19:376-378.
    [51]David R. Heise. The Semantic Differential and Attitude Research Attitude Measurement. Edited by Gene F. Summers, Chicago, Rand McNally,1970,235-253.
    [52]Shang H. Hsu, Ming C. Chuang, Chien C. Chang. A semantic differential study of designers' and users' product form perception. International Journal of Industrial Ergonomics, 2000,25:375-391.
    [53]Lotfi A. Zadeh. Fuzzy Sets. Information Sciences,1965,8:338-353.
    [54]H.-J. Zimmermann. Fuzzy Sets. Decision Making and Expert Systems, Berlin. Springer-verlage,1987,150-180.
    [55]P.J.M. Laarhoven, W. Pedrycz. A fuzzy extension of Saaty's priority theory. Fuzzy Sets and Systems 1983,11 (1-3):229-241.
    [56]石夫乾,孙守迁,徐江.基于模糊关联与BP网络的客户感性知识挖掘.工程设计 学报,2007,14(5):349-353.
    [57]Shimizu, Y.,& Jindo, T. A fuzzy logic analysis method for evaluating human sensitivities. International Journal of Industrial Ergonomics,1995,15:39-47.
    [58]黄崇彬,原田昭.日本感性工学发展现况及其在远端控制介面上应用的可能性.中日设计教育研讨会,云林科技大学,1998,17-26.
    [59]Han, S. H.,& Kim, J. A comparison of screening methods:selecting important design variables for modeling product usability. International Journal of Industrial Ergonomics,2003, 32:189-198.
    [60]Han, S. H.,& Yang, H., Screening important design variables for building a usability model, International Journal of Industrial Ergonomics,2004,33,159-171.
    [61]Huang Tai Shen, Chang Chia Fang. The role of data mining in the product design and development process. The 6th International Computer-Aided and Industrial Design & Concept Design, Beijing:World Publishing Corporation,2005,198-203.
    [62]S. Haddad, P. Moreaux, M. Sereno, M. Silva. Product-form and stochastic Petri nets:a structural approach. Performance Evaluation,2005,59,313-336.
    [63]Hsin-Hsi Lai, Yang-Cheng Lin, Chung-Hsing Yen. Form design of product image using grey relational analysis and neuralnetwork models. Computers & Operations Research,2005,32: 2689-2711.
    [64]Sunkyoung Baek, Myunggwon Hwang, Hyunsook Chung, Pankoo Kim. Kansei factor space classified by information for Kansei image modeling. Applied Mathematics and Computation,2008,205:874-882
    [65]Hung-Yuan Chen, Yu-Ming Chang. Extraction of product form features critical to determining consumers'perceptions of product image using a numerical definition-based systematic approach. International Journal of Industrial Ergonomics,2009,39:133-145.
    [66]Ming C. Chuang, Chien C. Chang, Shang H. Hsu. Perceptual factors underlying user preferences toward product form of mobile phone. International Journal of Industrial Ergonomics,2001,27(2):247-258.
    [67]谭征宇,赵江洪,孙守迁.基于意象尺度的数控机床造型风格意象认知研究.中国机械工程,2006,17(5):519-523.
    [68]Lin, R., Lin, C. An Application of Multidimensional Scaling in Product Semantics. International Journal of Industrial Ergonomics,1996,18(2):193-204.
    [69]Fatma Tiryaki. Beyza Ahlatcioglu. Fuzzy portfolio selection using fuzzy analytic hierarchy process. Information Sciences.2009,179:53-69
    [70]Fuqian Shi, Jianfeng Wu, Xiaodong He, at el. Evaluation on Product Form Image using Linguistic Variables based Fuzzy Analytic Hierarchy Process. Advanced Materials Research, 2010,102-104:905-909.
    [71]Gi oug, Oh, and Dooyeon, Kim and Sungyul Rhew. Selection of the Success Factors of Mobile Commerce and Evaluation using AHP. IJCSNS International Journal of Computer Science and Network Security,2006,6(7B):127-134.
    [72]Ming-Chyuan Lin, Chen-Cheng Wang, Ming-Shi Chen, C. Alec Chang. Using AHP and TOPSIS approaches in customer-driven product design process. Computers in Industry,2008,59: 17-31.
    [73]郭芳明.应用模糊层次分析法探讨行动电话通路产业关键成功因素之研究.义守大学,硕士论文,2005,15-27.
    [74]Tien-Chin Wang, Yueh-Hsiang Chen. Applying fuzzy linguistic preference relations to the improvement of consistency of fuzzy AHP. Information Sciences,2008,178:3755-3765.
    [75]Gorsuch, Richard L. Factor Analysis. Hillsdale, NJ, Psychology Press,1983,4-10.
    [76]Shih-Wen Hsiao and H.C. Huang. A neural network based approach for product form design, Design Studies,2002,23:67-84.
    [77]Yinghsiu Huang. Investigating the cognitive behavior of generating idea sketches through neural network systems. Design Studies,2008,29:70-92.
    [78]Chengqi Zhang, Berno Eugene Heymer, Shichao Zhang. Association Rule Mining:Models and Algorithms. Lecture Notes in Computer Science, Berlin, Springer-Verlag,2002,10-35.
    [79]Fuqian Shi, Shouqian Sun and Jiang Xu. Association Rule Mining of Kansei Knowledge Using Rough Set. Advances in Soft Computing 40, Fuzzy Information and Engneering(ICFIE), 2007,5:949-958.
    [80]Piatetsky-Shapiro G. Discovery, analysis, and presentation of strong rules. G. Piatetsky-Shapiro & W. J. Frawley (Eds), Knowledge Discovery in Databases, Cambridge, MA. AAAI/MIT Press,1997.229-248.
    [81]R. Agrawal, T. Imielinski, A. Swami. Mining Association Rules Between Sets of Items in Large Databases. Peter Buneman, Sushil Jajodia (Eds.), Proc. the 1993 ACM SIGMOD Int. Conf. Management of Data, ACM Press,1993,207-216.
    [82]王婉萤.应用逻辑程式于形状文法的学习.云林科技大学,硕士论文,2005,3-20
    [83]Michael J. Pugliese, Jonathan Cagan. Capturing a rebel:modeling the Harley-Davidson brand through a motorcycle shape grammar, Research in Engineering Design,2002,13:139-156.
    [84]Jay P. McCormack and Jonathan Cagan. Speaking the Buick language:capturing, understanding, and exploring brand identity with shape grammars. Design Studies,2004, 25:1-29.
    [85]Xu Jiang et al. An Interactive Evolutionary Design System with Feature Extraction, LNCS,4553, Berlin, Springer-velarg,2007,1085-1094.
    [86]徐江,孙守迁.基于正交-交互式遗传算法的产品造型设计.计算机集成制造系统,2007,13(8):1470-1475.
    [87]徐江,孙守迁,张克俊.基于遗传算法的产品意象造型优化设计.机械工程学报,2007,,4:53-58.
    [88]Hung-Cheng Tsai, Shih-Wen Hsiao. Evaluation of alternatives for product customization using fuzzy logic, Information Sciences,2004,158:233-262.
    [89]Fong-Ching Yuan, Chaochang Chiu. A hierarchical design of case-based reasoning in the balanced scorecard application. Expert Systems with Applications,2009,36:333-342.
    [90]Sabum Jung, Taesoo Lim, Dongsoo Kim. Integrating radial basis function networks with case-based reasoning for product design, Expert Systems with Applications,2009,36: 5695-5701.
    [91]Hui Wang, Yiming (Kevin) Rong. Case based reasoning method for computer aided welding fixture design. Computer-Aided Design,2008,40:1121-1132.
    [92]Mykola Galushka, David Patterson. Intelligent index selection for case-based reasoning. Knowledge-Based Systems,2006,19(8):625-638.
    [93]He Xiaodong, Wu Jianwu, Shi Fuqian and Cai Haiyan. Apply Fuzzy Case-based Reasoning to Knowledge Acquisition of Product Style. Proc. CAID&CD 2009, USA, IEEE Press,2009, 383-386.
    [94]Russell. J. A. A circumplex model of affect. J. Pers. Soc. Psychol,1980,39:1161-1178.
    [95]Bradley. M. M., Greenwald. M. K., Petry, M. C.& Lang, P. J. J. Exp. Psychol. Learn. Mem. Cognit.1992,18:379-390.
    [96]Christian Stickel, Martin Ebner, Silke Steinbach-Nordmann, et al. Emotion Detection: Application of the Valence Arousal Space for Rapid Biological Usability Testing to Enhance Universal Access. C. Stephanidis (Ed.):LNCS 5614, Berlin, Springer-velarg,2009,615-624.
    [97]Guillaume Chanel, Mien Kronegg, Didier Grandjean, and Thierry Pun. Emotion Assessment:Arousal Evaluation Using EEG's and Peripheral Physiological Signals. B. Gunsel et al. (Eds.):MRCS 2006, LNCS 4105, Berlin, Springer-velarg,2006,530-537.
    [98]J. Moura~o-Miranda, E. Volchan,J. Moll, et al. Contributions of stimulus valence and arousal to visual activation during emotional perception. NeuroImage,2003,20:1955-1963.
    [99]Jose Leon-Carrion, Juan Francisco Martin-Rodriguez, Jesus Damas-Lopez, et al. A lasting post-stimulus activation on dorsolateral prefrontal cortex is produced when processing valence and arousal in visual affective stimuli. Neuroscience Letters,2007.422:147-152.
    [100]E. A. Kensinger and S. Corkin. Two routes to emotional memory:Distinct neural processes for valence and arousal. PNAS,2004,101(9):3310-3315.
    [101]Elizabeth A. Kensinger and Daniel L. Schacter. Processing emotional pictures and words: Effects of valence and arousal. Cognitive, Affective,& Behavioral Neuroscience,2006,6(2): 110-116.
    [102]P.A. Lewis, H.D. Critchley, P. Rotshtein and R.J. Dolan. Neural Correlates of Processing Valence and Arousal in Affective Words. Cerebral Cortex March,2007, (17):742-748.
    [103]刘长江,李纾.神经经济学:迈向脑科学的决策科学.心理科学,2007,30(2):482-484.
    [104]龚栩,黄宇霞,罗跃嘉.情绪调节神经基础的研究进展.中华行为医学与脑科学杂志,2010,19(2):190-192.
    [105]Bhavin R. Sheth. Thuan Pham. How emotional arousal and valence influence access to awareness. Vision Research,2008,48:2415-2424.
    [106]Helena M. Purkis, Ottmar V. Lipp, Mark S. Edwards. Rebecca Barnes. An increase in stimulus arousal has differential effects on the processing speed of pleasant and unpleasant stimuli. Motiv Emot,2009.33:353-361.
    [107]Wundt, W. Gundriss der Psychologie [Outlines of psychology]. Leipzig. Germany:The American Journal of Psychology,1922,33(2):298-300.
    [108]Mehrabian A., and Russell J. A. An approach to environmental psychology. Cambridge, MA:MIT Press.1974,3-20.
    [109]Russell J. A. and Mehrabian A. Evidence for a three-factor theory of emotions. Journal of Research in Personality,1977,11:273-294.
    [110]Tellegen, A. Structures of mood and personality and their relevance to assessing anxiety, with an emphasis on self-report. In A. H. Tuma & J. D. Maser (Eds.), Anxiety and the anxiety disorders, Hillsdale, NJ:Lawrence Erlbaum,1985,681-706.
    [111]Ryan A. Stevenson, Joseph A. Mikels and Thomas W. James. Characterization of the Affective Norms for English Words by discrete emotional categories. Behavior Research Methods,2007,39 (4):1020-1024
    [112]Alan Mislove. Pulse of the Nation:U.S. Mood throughout the Day inferred from Twitter, http://www.ccs.neu.edu/home/amislove/twittermood/
    [113]邓铸,黄荣.情绪与创造力关系研究的新进展.南京师大学报(社会科学版),2007,4:92-97.
    [114]赵迎春,张劲松.7-14岁儿童情绪识别特点初步分析.上海交通大学学报(医学版),2009,29(7):778-781.
    [115]王莹,许晶,张炳蔚等.国际情绪图片系统在116名中国老年人中的试用.中国心理卫生杂志,2008,22(12):903-907.
    [116]Bradley M. M. and Lang P. J. Measuring emotion:The selfassessment manikin and the semantic differential. Journal of Behavioral Therapy and Experimental Psychiatry,1994,25: 49-59.
    [117]Kjetil Grimsath. Kanssei Engineering. http://www.ntnu.no/design/forskning/artikkel
    [118]Lotfi A. Zadeh. Toward a generalized theory of uncertainty (GTU)-an outline. Information Sciences,2005,172:1-40.
    [119]Jonathan Lawry. Inexact Reasoning. Phd Thesis, UK, University Of Manchester,1994, 66-80
    [120]Jonathan Lawry. Modelling and Reasoning with Vague Concepts. Studies in Computational Intelligence, Volume 12, Berlin, Springer-velarg,2005,3-20
    [121]Jonathan Lawry, Yongchuan Tang. Uncertainty modelling for vague concepts:A prototype theory approach. Artificial Intelligence,2009,173:1539-1558.
    [122]Yongchuan Tang, Jonathan Lawry. Linguistic modelling and information coarsening based on prototype theory and label semantics. Int. J. Approx. Reasoning,2009.50:1177-1198.
    [123]Yongchuan Tang. A rpototype based rule inference system incorporating linear functions. Fuzzy Sets and System,2010,161:2831-2853.
    [124]Olvi Mangasarian & Edward Wild. Feature Selection in Nonlinear Kernel Support Vector Machines. Workshop on Optimization-Based Data Mining Techniques with applications, IEEE International Conference on Data Mining, Omaha Nebraska, USA, IEEE,2007,231-236
    [125]Wang, W.. Xu, Z.,& Lu, W. Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing,2003,55:643-663.
    [126]Li Dengfeng, Cheng Chuntian. New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions. Pattern Recognition Letters,2002,23(1-3):221-225.
    [127]Vahid Khatibi, Gholam Ali Montazer. Intuitionistic fuzzy set vs. fuzzy set application in medical pattern recognition. Artificial Intelligence in Medicine,2009,47(1):43-52.
    [128]Peng Jing, Tang Chang-jie, Yang Dong-qing, et al. Similarity computing model of high dimension data for symptom classification of Chinese traditional medicine. Applied Soft Computing 2009.9:209-218.
    [129]Daisuke Deguchi, Kensaku Mori, Marco Feuerstein, et al. Selective image similarity measure for bronchoscope tracking based on image registration. Medical Image Analysis,2009, 13:621-633.
    [130]Haeseong Jee, Yong Se Kim. Similarity assessment of design behavior data. Computer-Aided Design,2010,42(12):1059-1068.
    [131]C.-B. Cheng. A fuzzy inference system for similarity assessment in case-based reasoning systems:An application to product design. Mathematical and Computer Modelling,2003, 38(3-4):385-394.
    [132]Chien-Cheng Chang, Jun-Chieh Wu. The underlying factors dominating categorical perception of product form of mobile phones. International Journal of Industrial Ergonomics, 2009,39(5):667-680.
    [133]Debashree Guha, Debjani Chakraborty. A new approach to fuzzy distance measure and similarity measure between two generalized fuzzy numbers. Applied Soft Computing,2010,10: 90-99
    [134]Shi-Jay Chen. Measure of similarity between interval-valued fuzzy numbers for fuzzy recommendation process based on quadratic-mean operator. Expert Systems with Applications, 2011,38:2386-2394.
    [135]Shyi-Ming Chen, Ming-Shiow Yeh, Pei-Yung Hsiao. A comparison of similarity measures of fuzzy values. Fuzzy Sets and Systems,1995.72:79-89.
    [136]Tomasa Calvo. On fuzzy similarity relations. Fuzzy Sets and Systems,1992, 47(1):121-123.
    [137]Hyung Lee-Kwang, Yoon-Seon Song, Keon-Myung Lee. Similarity measure between fuzzy sets and between elements. Fuzzy Sets and Systems,1994,62(3):291-293.
    [138]Thomas Sudkamp. Similarity, interpolation, and fuzzy rule construction. Fuzzy Sets and Systems,1993,58(1):73-86.
    [139]Jorg Petersen, Similarity of fuzzy data in a case-based fuzzy system in anaesthesia. Fuzzy Sets and Systems,1997,85:247-262.
    [140]Hui Li, Scott Dick. A similarity measure for fuzzy rulebases based on linguistic gradients. Information Sciences,2006,176:2960-2987.
    [141]Yongchuan Tang, Jiacheng Zheng. Linguistic Modeling based on Semantic Similarity Relation among Linguistic Labels. Fuzzy Sets and Systems,2006,157 (12):1662-1673.
    [142]Del Jensen, Christophe Giraud-Carrier, Nathan Davis. A method for computing lexical semantic distance using linear functionals,Journal of Web Semantics,2008,6:99-108.
    [143]Dongrui Wu, Jerry M. Mendel. A vector similarity measure for linguistic approximation: Interval type-2 and type-1 fuzzy sets. Information Sciences,2008,178:381-402.
    [144]Lotfi A. Zadeh. Fuzzy Probabilities, Informarion Processing & Mnnagemenr,1984,20(3): 363-372.
    [145]汪培庄.模糊集合论及其应用.上海,上海科技出版社,1983,3-50
    [146]De-Gang Wang, Yan-Ping Meng, Hong-Xing Li. A fuzzy similarity inference method for fuzzy reasoning. Computers and Mathematics with Applications 2008,56:2445-2454.
    [147]石夫乾,孙守迁,徐江.产品感性评价系统的模糊D-S推理建模方法与应用.计算机辅助设计与图形学学报,2008,20(3):361-365.
    [148]Petra Perner. Case-Based Reasoning and the Statistical Challenges. K.-D. Althoff et al. (Eds.):ECCBR 2008, LNAI 5239, Berlin, Springer-velarg,2008,430-443.
    [149]David Patterson, Niall Rooney, Mykola Galushka, at el. SOPHIA-TCBR:A knowledge discovery framework for textual case-based reasoning. Knowledge-Based Systems.2008.21(5): 404-414.
    [150]Maria Salamo and Maite Lopez-Sanchez. Rough set based approaches to feature selection for Case-Based Reasoning classifiers. Pattern Recognition Letters,2011,32(2):280-292.
    [151]Aasia Khanum, Muid Mufti, M. Younus Javed at el. Fuzzy case-based reasoning for facial expression recognition. Fuzzy Sets and Systems,2009,160(2):231-250.
    [152]Sheng-Tun Li, Hei-Fong Ho. Predicting financial activity with evolutionary fuzzy case-based reasoning. Expert Systems with Applications,2009,36(1):411-422.
    [153]Ya-jun Jiang, Jun Chen, Xue-yu Ruan. Fuzzy similarity-based rough set method for case-based reasoning and its application in tool selection. International Journal of Machine Tools and Manufacture,2006,46(2):107-113.
    [154]T. Y. Slonim, M. Schneider. Design issues in fuzzy case-based reasoning. Fuzzy Sets and Systems,2001,117(2):251-267.
    [155]Pei-Chann Chang, Chin-Yuan Fan, Wei-Yuan Dzan. A CBR-based fuzzy decision tree approach for database classification. Expert Systems with Applications,2010,37(1):214-225.
    [156]Roger Schank. Dynamic Memory:A Theory of Learning in Computers and People. New York, Cambridge University Press,1982,1-35.
    [157]Janet Kolodner. Reconstructive Memory:A Computer Model. Cognitive Science,1983, 7(4):281-328.
    [158]Michael Lebowitz. Memory-Based Parsing. Artificial Intelligence,1983,21:363-404.
    [159]Eyke H'ullermeier, Ilya Vladimirskiy, Belen Prados Suarez, et al. Supporting Case-Based Retrieval by Similarity Skylines:Basic Concepts and Extensions. K.-D,/Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, Berlin, Springer-velarg,2008,240-254.
    [160]Muh-Cherng Wu. Ying-Fu Lo, Shang-Hwa Hsu. A fuzzy CBR technique for generating product ideas. Expert Systems with Applications,2008,34(1):530-540.
    [161]Min-Yuan Cheng, Hsing-Chih Tsai, Yi-Hsiang Chiu. Fuzzy case-based reasoning for coping with construction disputes. Expert Syst. Appl.,2009,36(2):4106-4113.
    [162]Ruth Mugge. The development and testing of a product personality scale. Design Studies, 2009,30:287-302.
    [163]Hongming Cai, Weiping He, Dinghua Zhang. A semantic style driving method for products' appearance design. Journal of Materials Processing Technology,2003,139:233-236
    [164]Han, S. H., Kim, K. J.,& Yun, M. H. Identifying mobile phone design features critical to user satisfaction. Human Factors and Ergonomics in Manufacturing,2004,14(1):15-29.
    [165]Watson I. Case-based reasoning is a methodology not a technology. Knowledge-Based Systems,1999,12(5):303-308.
    [166]Zuliang Shen, Ho Chung Lui and Liya Ding. Approximate case-based reasoning on neural networks. International Journal of Approximate Reasoning,1994,10(1):75-98.
    [167]David W. Aha. The omnipresence of case-based reasoning in science and application. Knowledge-Based Systems,1998,11(5-6):261-273.
    [168]E. Fix, J.L. Hodge Jr. Discriminatory analysis, nonparametric discrimination, consistency properties. U.S. Air Force Sch. Aviation Medicine, Randolf Field, Texas, Project 21-49-004, Contract AF 41 (128)-31, Rep.4,1951.
    [169]G. Glass, T. S. Bhatia, J. C. Hiebert,et al. The measurement of KNN and KLL in pp->nx at 800 MeV. Physics Letters B,1983,129(1-2):27-30.
    [170]P.A. Devijver, J. Kittler. Pattern Recognition:A Statistical Approach. Prentice-Hall, London,1982,10-35.
    [171]D.L. Wilson. Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. System Man Cybernet,1972,2:408-421.
    [172]L.I. Kuncheva. Fitness functions in editing k-NN reference set by genetic algorithms. Pattern Recognition,1997,30:1041-1049.
    [173]Yi-Ching Liaw, Maw-Lin Leou, Chien-Min Wu. Fast exact k nearest neighbors search using an orthogonal search tree. Pattern Recognition,2010,43(6):2351-2358.
    [174]Duda, R. O.& P. E. Hart. Pattern Classification and Scene Analysis. New York:John Wiley & Sons,1973,1-45.
    [175]Langley, P., W. Iba,& K. Thompson. An analysis of Bayesian classifiers. In Proceedings, Tenth NationalConference on Artificial Intelligence, Menlo Park, CA:AAAI Press,1992, 223-228.
    [176]Nir Friedman, Dan Geiger, Moises Goldszmidt. Bayesian Network Classifiers. Machine Learning,1997,29:131-163.
    [177]Buntine, W. Theory refinement on Bayesian networks. In B. D. D'Ambrosio, P. Smets,& P. P. Bonissone(Eds.),Proceedings of the Seventh Annual Conference on Uncertainty Artificial Intelligence, San Francisco, CA:Morgan Kaufmann,1991,52-60.
    [178]Cooper, G. F.& E. Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning,1992,9,309-347.
    [179]Brian J. Ross, Eduardo Zuviria. Evolving dynamic Bayesian networks with multi-objective genetic algorithms. Application Intelligence,2007,26:13-23.
    [180]D Yearling and D J Hand. A Bayesian network data mining approach for modelling the physical condition of copper access networks. BT Technology Journal,2003,21(2):90-100.
    [181]Kevin Patrick Murphy. Dynamic Bayesian Networks:Representation, Inference and Learning. USA, University of California, Berkeley,2002,57-80.
    [182]Shi-Jung Wang. Applying Association Rule Technique to Product Design. Taipei, Yuan-ze University,2002,17-40.
    [183]Sun-mo Yang, Mitsuo Nagamachi and Soon-yo Lee. Rule-based inference model for the Kansei Engineering System. International Journal of Industrial Ergonomics,1999,24(5): 459-471.
    [184]Pawlak and Andrzej Skowron. Rough sets and Boolean reasoning. Information Sciences, 2007,177(1):41-73.
    [185]Jhieh-Yu Shyng, Fang-Kuo Wang, Gwo-Hshiung Tzeng et al. Rough Set Theory in analyzing the attributes of combination values for the insurance market, Expert Systems with Applications,2007,32(1):56-64.
    [186]Kyungmee Choi, Changrim Jun. A systematic approach to the Kansei factors of tactile sense regarding the surface roughness. Applied Ergonomics,2007,38(1):53-63.
    [187]Slezk D, Ziarko W. The investigation of the Bayesian rough set model. International Journal of Approximate Reasoning,2005,40:81-89.
    [188]Hsiao, S.W. Fuzzy set theory applied to car style design. International Journal of Vehicle Design,1994,15(3):255-278.
    [189]Vapnik, V. The Nature of Statistical Learning Theory. Springer-Verlag, New York,1995
    [190]Nello Cristianini And John Shawe-Taylor. An Introduction to Support Vector Machines and other kernel-based learning methods. UK, Cambridge University Press,2000,15-37.
    [191]Bradley, P. S.& Mangasarian, O. L. Feature selection via concaveminimization and support vector machines. In Proceedings of 15th international conference on machine learning, San Francisco, IEEE.1998,82-90.
    [192]Hsu, C. W.,& Lin, C. J. A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks,2002,49(13):415-425.
    [193]Hsu, C. W., Chang, C. C.& Lin, C. J. Technical report:A practical guide to support vector classification. Taipei, National Taiwan University,2003,1-10.
    [194]Rakotomamonjy A. Variable selection using SVM-based criteria. Journal of Machine Learning Research,2003,3:1357-1370.
    [195]Duan, K. B., Rajapakse, J. C., Wang, H., et al. Multiple SVM-RFE for gene selection in cancer classification with expressiondata. IEEE Transactions of Nanobioscience,2005,4(3): 228-234.
    [196]Meng-Dar Shieh. Multiclass SVM-RFE for product form feature selection. Expert Systems with Applications,2008,35:531-541.
    [197]Jun-Ki Min, Jin-Hyuk Hong, and Sung-Bae Cho. Ensemble Approaches of Support Vector Machines for Multiclass Classification, proceedings of 2nd International Conf. on Pattern Recognition & Machine Intelligence, A. Ghosh, R.K. De, and S.K. Pal (Eds.):, LNCS 4815, Berlin, Springer-velarg,2007,1-10.
    [198]Jin-Hyuk Hong, Sung-Bae Cho. A probabilistic multi-class strategy of one-vs.-rest support vector machines for cancer classification. Neurocomputing,2008,71(16-18):3275-3281.
    [199]Tai-Yue Wang, Huei-Min Chiang. Fuzzy support vector machine for multi-class text categorization. Information Processing & Management,2007,43(4):914-929.
    [200]Yu-Chieh Wu, Yue-Shi Lee, Jie-Chi Yang. Robust and efficient multiclass SVM models for phrase pattern recognition. Pattern Recognition,2008,41 (9):2874-2889.
    [201]Lin, C. F.,& Wang, S. D. Fuzzy support vector machines. IEEE Transactions on Neural Networks,2002,13(2):464-471.
    [202]Li Xuehua and Shu Lan. Fuzzy Theory Based Support Vector Machine Classifier. FSKD '08, Fifth International Conference on Fuzzy Systems and Knowledge Discovery, USA, IEEE, 2008,600-604
    [203]Shigeo Abe and Takuya Inoue. Fuzzy Support Vector Machines for Multiclass Problems. ESANN'2002 proceedings-European Symposium on Artificial Neural Networks Bruges (Belgium), d-side publi., Rokkodai, Nada, Kobe, Japan,2002,113-118.
    [204]Mao, Y., Zhou, X., Pi, D., Sun. Y.,& Wong, S. T. C. Multiclass cancer classification by using fuzzy support vector machine and binary decision tree with gene selection. Journal of Biomedicine and Biotechnology,2005,2:160-171.
    [205]张翔.基于样本之间紧密度的模糊支持向量机方法.软件学报,2006,17(5):951-958.
    [206]Lingras, P.; Butz. C. Interval set representations of 1-v-r support vector machine multi-classifiers. Proceedings of 2005 IEEE International Conference on Granular Computing, USA, IEEE,2005,193-198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700