语义驱动的三维形状分析及建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字几何处理技术的快速发展对三维几何模型这一新兴数字媒体的发展和应用起到了巨大的推动作用。随着模型数量和质量的不断提高,如何分析和理解三维模型中蕴含的语义信息,以便更加有效地处理和使用三维模型,以及利用语义信息合成新的三维模型,逐渐成为几何处理领域所关注的最新热点。目前,数字几何处理研究正由低层次的几何属性度量与分析逐步转向高层次的面向语义的结构分析与处理上来。
     形状语义描述了人类关于物体外形、结构、功能以及它们之间联系的知识。形状分析是将形状知识与几何处理技术相结合,通过智能分析和学习等手段从三维模型中自动提取形状语义知识的过程。在形状分析方面,本文首先基于对称性与形状语义的关联,研究了基于对称性的单个模型有意义分割。然后基于同类物体功能部件的语义一致性,研究了同类物体的三维模型集合的一致分割。基于分析得到的语义信息,本文研究了两种语义驱动的三维几何建模方法。论文主要创新点包括:
     1.局部内蕴反射对称性分析:对称性是连接三维形状低层几何属性和高层语义信息的桥梁。因此,对称性分析是形状分析的核心问题之一。以往的工作研究了全局外蕴、局部外蕴和全局内蕴对称的检测。局部内蕴对称在三维几何体中更具一般性,其检测对形状分析具有重要意义。但由于参数化表示的复杂性,局部内蕴对称的检测非常困难。本文首次研究了闭合2-流形上局部内蕴反射对称的检测问题。基于极大内蕴反射对称生成集,给出了闭合2-流形上局部内蕴反射对称的定义。并以此为基础,提出了一种基于选举策略的内蕴反射对称变换的计算方法。为显式地计算离散曲面上的局部内蕴反射对称轴,提出了一种迭代式区域生长算法。基于得到的反射对称轴及相应的对称生成集,本文研究了基于内蕴反射对称的三维模型有意义分割。
     2.模型集的联合语义分析:一组同类物体的三维模型比单个模型包含更丰富的语义信息:同类物体往往共享相同的功能部件。因此,对同类物体模型集合的一致分割可以反映该组模型的功能部件分解与对应,这对于分析和理解模型的结构和功能具有重要意义。本文首次研究了同类人造物体的三维模型集合的联合语义分析,提出了一种基于形状风格分析的联合分析框架。该框架将形状风格定义为模型部件的各向异性尺度,基于无监督学习方法对输入模型集合进行形状风格聚类,然后通过风格类内模型的一致分割以及类间模型的部件对应,实现了模型“风格”(功能部件的相对尺度比例)与“内容”(模型的几何外形和部件构成等)的分离,并得到输入模型集合的一致分割。
     3.基于风格转移的模型自动合成:本文提出了基于形状风格转移的几何模型自动合成算法。该方法以联合分析后的同类物体模型集为输入,通过对应部件尺度缩放实现模型之间的形状风格转移,以自动生成新的三维模型。尺度缩放可能会导致模型各部件的分离,因此,我们研究了部件的重新组装和拼接。为实现部件的重新对准,本文提出了一种基于连接点集的迭代式优化算法。为实现部件之间的自然拼接,提出了一种连接曲线敏感的部件连接方法。
     4.图像启发的数据驱动几何建模:基于联合分析得到的模型集语义信息,本文进一步提出了图像启发的数据驱动几何建模方法。该方法由单幅图像中的物体得到建模启发,并以预先经过语义分析的候选三维模型集为基础,通过生成候选模型集的几何变种,得到与图像中物体相近的三维模型。在预处理阶段,我们首先对候选模型集进行联合分析和基于形变控制单元的结构约束分析。为实现基于图像的三维建模,本文提出了模型驱动的交互式图像分割方法,基于图像标注分割信息的候选模型检索方法,以及二维轮廓驱动下的三维模型结构保持形变算法。本文提出的建模方法具有以下特点:1)充分利用候选模型集的结构信息,解决了基于单幅图像的三维重建中的二义性问题;2)结构保持形变使结果模型继承了候选模型的结构信息,该信息可直接用于后续编辑和造型,因此建模结果具有立即可用的特性;3)结构保持使结果模型具有视点无关的结构一致性。
The rapid development of digital geometry processing technique has been greatly boosting the growth of digital geometry. As a newly emerging digital multimedia, geometry is populating the internet with a remarkably speed. The significant growing of digital geometry in terms of both quantity and quality calls for more effective ways of processing and utilization. To this end, geometry processing is currently moving towards high-level shape analysis and understanding, aiming at discovering the underlying semantic information of a 3D shape. This gives the birth of the recent trend of high-level geometry processing, which has been widely recognized by the graphics community.
     Shape semantics reflects human knowledge about shape’s geometry, structure, functionality, and their relationship. The goal of shape analysis is to automatically extract such knowledge from a shape with the help of both geometry processing and input knowledge. Effective integration of the input shape knowledge is important to shape analysis. We first study the symmetry analysis of a single shape and develop symmetry-driven mesh segmentation for structural analysis. We then study the consistent analysis of semantics of a 3D model set. The pre-analyzed semantics greatly facilitate 3D modeling driven by a model set. The main contributions of this thesis include:
     1. Detection of partial intrinsic reflectional symmetry. Symmetry bridges the gap between low level geometry and high level semantics. Therefore, symmetry analysis is one of the central problems of shape analysis. Previous works have studied the detection of global extrinsic, partial extrinsic, and global intrinsic symmetries. Partial intrinsic symmetry is more general in 3D shapes, although its detection is more difficult due to the complexity of its parametric representation. This thesis, for the first time, studies the problem of automatic detection of partial intrinsic reflectional symmetry (PIRS) on a closed 2-manifold. We begin with a formal definition of PIRS on a closed 2-manifold using the maximal generating set of intrinsic reflectional symmetry. Based on the definition, we propose a robust, voting-based detection algorithm for PIRS over a 3D triangle mesh. To explicitly extract a set of intrinsic reflectional symmetry axis (IRSA) curves, we propose an iterative grass-fire region growing method. With the IRSA curves and their corresponding regions of generating set, we achieve symmetry-aware segmentation.
     2. Co-analysis of a model set. A set of models belonging to the same class often contains more semantic information than a single one; they often share the same functional parts, which may help better understanding the structure of the shape class. We study the problem of co-analysis of a set of man-made objects belonging to a certain class and present a framework for shape style analysis. Shape style is defined based on the anisotropic part scales. We perform an unsupervised style clustering. Through intra-style co-segmentation and inter-style part correspondence, we achieve style-content separation for the input shapes, where content refers to part composition and geometry and style represents scale proportion between functional parts. With such separation, we arrive at a consistent segmentation of the input set.
     3. Shape synthesis based on style transfer. With the consistent segmentation of a set of 3D shapes, we propose shape synthesis by style transfer between any two shapes in the set. Style transfer is achieved by part scaling according to the part correspondence implied by consistent segmentation. However, part scaling may detach neighboring parts. To re-align and stitch the detached neighboring parts, we propose an iterative re-alignment approach based joining point set between the two parts, as well as a joining curve aware method for natural part stitching.
     4. Photo-inspired data-driven shape modeling. Co-analysis augments a 3D model set with rich semantics. With the help of this, we introduce an algorithm for 3D object modeling where the modeling inspiration is drawn from an object captured in a single photograph. The modeling process is supported by an available set of candidate models, which have been pre-analyzed to possess useful high-level structural information. Our method creates a digital 3D model as a geometric variation from the candidate that best resembles target object in the photograph. To facilitate modeling from image, we propose image-space object segmentation, candidate model retrieval using labeled segmentation of the input image, together with a silhouette driven structure-preserving shape deformation. The main features of our method are three folds. First, the whole modeling pipeline makes heavy use of the semantics pre-analyzed for the candidate set, which helps to compensate for the ill-posedness of the 2D-to-3D reconstruction from a single image. Second, the structural information is preserved by the geometric variation so that the final product is coherent with its inherited structural information readily usable for subsequent model refinement. Third, also due to structure preservation, the resulting 3D model, although built from a single view, is structurally coherent from all views.
引文
[1] Schr?der P., Sweldens W. Digital Geometry Processing [C]. Proceedings of 6th Annual Symposium on Frontiers of Engineering, 2001:1~44.
    [2]胡事民,杨永亮,来煜坤.数字几何处理研究进展[J].计算机学报,2009, 32(8):1451~1469.
    [3]周昆,鲍虎军,石教英.统一的数字几何处理框架[J].计算机学报,2002, 25(9):904~909.
    [4] Levoy M., Pulli K., Curless B., Rusinkiewicz S., Koller D., Pereira L., Ginzton M., Anderson S., Davis J., Ginsberg J., Shade J., Fulk D. The Digital Michelangelo Project: 3D Scanning of Large Statues [C]. Proc. of ACM SIGGRAPH’00, 2000:131~144.
    [5]来煜坤.特征敏感几何处理[D].北京:清华大学计算机科学与技术系,2008.
    [6] Grinspun E., Desbrun M., Polthier K., Schr?der P., Stern A. Discrete Differential Geometry: An Applied Introduction [R]. SIGGRAPH Course, 2006.
    [7] Taubin G. A Signal Processing Approach to Fair Surface Design [C]. Proc. ACM SIGGRAPH '95, 1995:351~358.
    [8] Zhang H., van Kaick O., Dyer R. Spectral Mesh Processing [J]. Computer Graphics Forum, 2010, 29(6):1865~1894.
    [9] Guskov I., Sweldens W., Schr?der P. Multiresolution Signal Processing for Meshes [C]. Proc. ACM SIGGRAPH '99, 1999: 325~334.
    [10] Alliez P., Attene M., Gotsman C., Ucelli G. Recent Advances in Remeshing of Surfaces. In "Shape Analysis and Structuring", L. De Floriani, M. Spagnuolo, (Eds.), Springer, 2007.
    [11] Simari P., Kalogerakis E., Singh K. Folding meshes: Hierarchical mesh segmentation based on planar symmetry [C]. Proc. of the 4th Eurographics Symposium on Geometry Processing, 2006:111~119.
    [12] Podolak J., Shilane P., Golovinskiy A., Rusinkiewicz S., Funkhouser T. A Planar-Reflective Symmetry Transform for 3D Shapes [J]. ACM Trans. Graph., 2006, 25(3):549~559.
    [13] Fu H., Cohen-Or D., Dror G., Sheffer A. Upright Orientation of Man-Made Objects [J]. ACM Trans. Graph., 2009, 27(3):1~7.
    [14] Xu W., Wang J., Yin K., Zhou K., van de Panne M., Chen F., Guo B. Joint-Aware Manipulation of Deformable Models [J]. ACM Trans. Graph., 2009, 28(3):1~10.
    [15] Gal R., Sorkine O., Mitra N. J., Cohen-Or D. iWIRES: An Analyze-and-Edit Approach to Shape Manipulation [J]. ACM Trans. Graph., 2009, 28(3):1~10.
    [16] Zheng Y., Fu H., Cohen-Or D., Au O. K.-C., Tai C.-L. Component-WiseControllers for Structure-Preserving Shape Manipulation [J]. Computer Graphics Forum (Special Issue of Eurographics 2011), 2011, to appear.
    [17] Wang Y., Xu K., Li J., Zhang H., Shamir A., Liu L., Cheng Z., Xiong Y. Symmetry Hierarchy of Man-Made Objects [J]. Computer Graphics Forum (Special Issue of Eurographics 2011), 2011, to appear.
    [18] K?hler W., Gestalt Psychology [M]. Liveright, 1929.
    [19] Igarashi T., Matsuoka S., Tanaka H. Teddy: A Sketching Interface for 3D Freeform Design [C]. Proceedings of ACM SIGGRAPH'99, 1999:409~416.
    [20] Nealen A., Igarashi T., Sorkine O., and Alexa M. FiberMesh: Designing Freeform Surfaces with 3D Curves [J]. ACM Trans. Graph., 2007, 26(3):1~9.
    [21] Gingold Y., Igarashi T., Zorin D. Structured Annotations for 2D-to-3D Modeling [J]. ACM Trans. Graph., 2009, 28(5):1~8.
    [22] Rivers A., Durand F., Igarashi T. 3D Modeling with Silhouettes [J]. ACM Trans. Graph., 2010, 29(4):1~8.
    [23] Botsch M., Sorkine O. On Linear Variational Surface Deformation Methods [J], IEEE Trans. Vis. & Computer Graphics, 2008, 14(1):213~230.
    [24] Igarashi T., Moscovich T., Hughes J. F. As-Rigid-As-Possible Shape Manipulation [J]. ACM Trans. Graph., 2005, 24(3):1134~1141.
    [25] Müller P., Wonka P., Haegler S, Ulmer A., van Gool L. Procedural Modeling of Buildings [J]. ACM Trans. Graph., 2006, 25(3):614~623.
    [26] Hoppe H., Derose T., Duchamp T., Mcdonald J., Stuetzle W. Surface Reconstruction from Unorganized Points [C]. Proc. ACM SIGGRAPH '92, 1992:71~78.
    [27] Amenta N., Choi S., Kolluri R. The Power Crust [C]. Proceedings of 6th ACM Symposium on Solid Modeling, 2001:249~260.
    [28] Sharf A., Lewiner T., Shamir A., Kobbelt L., Cohen-Or D. Competing Fronts for Coarse-to-Fine Surface Reconstruction [J]. Computer Graphics Forum (Special Issue of Eurographics 2006), 2006, 25(3):389~398.
    [29] Gal R., Shamir A., Hassner T., Pauly M., Cohen-Or D. Surface Reconstruction Using Local Shape Priors [C]. Proc. of 5th Eurographics symposium on Geometry processing, 2007:253~262.
    [30] Zhang R., Tsai P., Cryer J. E., Shah M. Shape-from-Shading: a Survey [J]. IEEE Trans. Pattern Anal. Machine Intell., 1999, 21(8):609~706.
    [31] SketchUp [EB/OL]. sketchup.google.com.
    [32] Cook M. T., Agah A. A survey of sketch-based 3-D modeling techniques [J]. Interacting with Computers, 2009, 21(3):201~211.
    [33] Stava O., Benes B., Mech R., Aliaga D. G., Kristof P. Inverse Procedural Modeling by Automatic Generation of L-systems [J]. Computer Graphics Forum (Special Issue of Eurographics 2010), 2010, 29(2):665~674.
    [34] Bokeloh M., Wand M., Seidel H. P. A connection between partial symmetry and inverse procedural modeling [J]. ACM Trans. Graph., 2010, 29(4): 1~10.
    [35] van Kaick O., Tagliasacchi A., Sidi O., Zhang H., Cohen-Or D., Wolf L., Hamarneh G. Prior Knowledge for Part Correspondence [J]. Computer Graphics Forum (Special Issue of Eurographics 2011), 2011, to appear.
    [36] Kalogerakis E., Hertzmann A., Singh K. Learning 3D Mesh Segmentation and Labeling [J]. ACM Trans. on Graph., 2010, 29(3):1~12.
    [37] Simari P., Nowrouzezahrai D., Kalogerakis E., Singh K. Multi-Objective Shape Segmentation and Labeling [J]. Computer Graphics Forum, 2009, 28(5):1415~1425.
    [38] Tangelder J., Veltkamp R. A Survey of Content Based 3D Shape Retrieval Methods [J]. Multimedia Tools and Applications, 2008, 39(3):441~471.
    [39] Shamir A. A Survey on Mesh Segmentation Techniques [J]. Computer Graphics Forum, 2006, 27(6):1539~1556.
    [40] van Kaick O., Zhang H., Hamarneh G., Cohen-Or D. A Survey on Shape Correspondence [J]. Computer Graphics Forum, 2011, in press.
    [41] Kazhdan M., Funkhouser T., Rusinkiewicz S. Symmetry Descriptors and 3D Shape Matching [C]. Proc. of Symp. on Geom., 2004:115~123.
    [42] Kazhdan M., Chazelle B., Dobkin D., FinkelsteinI A., Funkhouser T. A Reflective Symmetry Descriptor [C]. Proc. Euro. Conf. on Comp. Vis., 2002 :642~656.
    [43] Kazhdan M., Chazelle B., Dobkin D., FinkelsteinI A., Funkhouser T., Rusinkiewicz S. A Reflective Symmetry Descriptor for 3D Models [J]. Algorithmica, 2003, 38(1):201~225.
    [44] Sundar H., Silver D., Gagvani N., Dickinson S. Skeleton based shape matching and retrieval [C]. Proc. Shape Modeling International, 2003:130~139.
    [45] Tagliasacchi A., Zhang H., Cohen-Or D. Curve Skeleton Extraction from Incomplete Point Cloud [J]. ACM Trans. on Graphics, 2009, 28(3):1~9.
    [46] Lee Y., Lee S., Shamir A., Cohen-Or D., Seidel H. P. Mesh Scissoring with Minima Rule and Part Salience [J]. Comput. Aided Geom. Des., 2005, 22(5):444~465.
    [47] Ji Z., Liu L., Chen Z., Wang G. Easy Mesh Cutting [J]. Computer Graphic Forum (Proceedings of Eurographics), 2006, 25(3):283~291.
    [48] Zheng Y., Tai C.-L. Mesh Decomposition with Cross-Boundary Brushes [J]. Computer Graphics Forum (Proc. Eurographics), 2010, 29(2):527~535.
    [49] Fan L., Liu L., Liu K. Paint Mesh Cutting [J]. Computer Graphics Forum (Special Issue of Eurographics 2011), 2011, to appear.
    [50] Hoffman D., Richards W. Parts of Recognition. Cognition [J], 1984, 18(1-3):65~96.
    [51] Hoffman D., Signh M. Salience of Visual Parts [J]. Cognition, 1997, 63(1):29~78.
    [52] Zhang H., Sheffer A., Cohen-Or D., Zhou Q., van Kaick O., Tagliasacchi A. Deformation-Driven Shape Correspondence [J]. Computer Graphics Forum (Special Issue of Symposium of Geometry Processing), 2008, 27(5):1393~1402.
    [53] Lipman Y., Funkhouser Thomas. Mobius Voting for Surface Correspondence [J]. ACM Transactions on Graphics, 2009, 28(3):1~12.
    [54] Golovinskiy A., Funkhouser T. Consistent segmentation of 3D models [J]. Computers & Graphics, 2009, 33(3):262~269.
    [55]潘翔,张三元,叶修梓.三维模型语义检索研究进展[J].计算机学报,2009,32(6): 1069~1079.
    [56] Leyton M. Symmetry, Causality, Mind [M]. MIT Press, 1999.
    [57] Leyton M. A Generative Theory of Shape [M]. Lecture Notes in Computer Science, Vol. 2145. Springer Press, 2001.
    [58] Lakoff G., Johnson M. Philosophy in the Flesh: The Embodied Mind and Its Challenge to Western Thought [M], Chapter 1. New York: Basic Books, 1999.
    [59] Brunetti G., Grimm S. Feature Ontologies for the Explicit Representation of Shape Semantics [J]. International Journal of Computer Applications in Technology, 2005, 23(2-4):192~202.
    [60] Camossi E., Giannini F., Monti M. Deriving Functionality from 3D Shapes: Ontology Driven Annotation and Retrieval [J]. Computer-Aided Design & Applications, 2007, (4)6:773~782.
    [61] Attene M., Robbiano F., Spagnuolo M., Falcidieno B. Characterization of 3D Shape Parts for Semantic Annotation [J]. Computer-Aided Design, 2009, 41(10):756~763.
    [62] Jun H. J., Gero J. S. Emergence of Shape Semantics of Architectural Shapes [J]. Environment and Planning B: Planning and Design, 1998, 25(4):577~600.
    [63] Attene M., Falcidieno B., Spagnuolo M. Hierarchical Mesh Segmentation based on Fitting Primitives [J]. The Visual Computer, 2006, 22(3):181~193.
    [64] Lien J.-M., Keyser J., Amato N. M. Simultaneous Shape Decomposition and Skeletonization. Proc. ACM Solid and Physical Modeling Symp., 2006:219~228.
    [65] Arizona State Univ, 3D Knowledge Project [EB/OL]. http://3dk.asu.edu/.
    [66] Aim@Shape Network of Excellence, Advanced and innovative models and tools for the development of semantic-based systems for handling, acquiring, and processing knowledge embedded in multidimensional digital objects.
    [67] AIM@SHAPE Shape Repository [EB/OL]. http://shapes.aim-at-shape.net/
    [68] Liu Y., Hel-Or H., Kaplan C. S., van Gool L. Computational Symmetry in Computer Vision and Computer Graphics [J]. Foundations and Trends in Computer Graphics and Vision, 2009, 5(1-2):1~195.
    [69] Funkhouser T., Kazhdan M., Shilane P., Min P., Kiefer W., Tal A., RusinkiewiczS., Dobkin D. Modeling by Example [J]. ACM Trans. Graph., 2004, 23(3):652~663.
    [70] Lee J., Funkhouser T. Sketch-Based Search and Composition of 3D Models [C]. Proc. EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling, 2008.
    [71] Shlafman S., Tal A., Katz S. Metamorphosis of Polyhedral Surfaces Using Decomposition [C]. Proc. Eurographics, 2002:219~228.
    [72] Katz S., Tal A. Hierarchical Mesh Decomposition using Fuzzy Clustering and Cuts [J]. ACM Trans. Graph., 2003, 22(3):954~961.
    [73] Shapira L., Shamir A., Cohen-Or D. Consistent Mesh Partitioning and Skeletonisation Using the Shape Diameter Function [J]. The Visual Computer, 2008, 24(4):249~259.
    [74] Liu R., Zhang H. Mesh Segmentation via Spectral Embedding and Contour Analysis [J]. Computer Graphics Forum (Special Issue of Eurographics 2007), 2007, 26(3):385~394.
    [75] Lai Y.-K., Hu S.-M., Martin R. R., Rosin P. L. Rapid and Effective Segmentation of 3D Models using Random Walks [J]. Computer Aided Geometric Design, 2009, 26(6):665~679.
    [76] Golovinskiy A., Funkhouser T. Randomized Cuts for 3D Mesh Analysis [J]. ACM Trans. Graph., 2008, 27(5):1~12.
    [77] Chen X., Golovinskiy A., Funkhouser T. A Benchmark for 3D Mesh Segmentation [J]. ACM Trans. Graph., 2009, 28(3):1~12.
    [78] Atallah M. J. On Symmetry Detection [J]. IEEE Trans. Comput, 1985, 34(7):663~666.
    [79] Wolter J. D., Woo T. C., Volz R. A. Optimal Algorithms for Symmetry Detection in Two and Three Dimensions [J]. The Visual Computer, 1985 1(1): 37~48.
    [80] Zabrodsky H., Weinshall D. Using Bilateral Symmetry to Improve 3D Reconstruction from Image Sequences [J]. Computer Vision and Image Understanding, 1997, 67(1):48~57.
    [81] Golovinskiy A., Podolak J., Funkhouser T. Symmetry-Aware Mesh Processing [R]. Princeton University TR-782-07, 2007.
    [82] Bronstein A. M., Bronstein M. M., Kimmel R. Generalized multidimensional scaling: A Framework for Isometry-Invariant Partial Surface Matching [J]. Proc. National Academy of Sciences (PNAS), 2006, 103(5):1168~1172.
    [83] Gal R., Cohen-Or D. Salient Geometric Features for Partial Shape Matching and Similarity [J]. ACM Trans. on Graph., 2006, 25(1):130~150.
    [84] Rustamov R. M. Augmented Planar Reflective Symmetry Transform [J]. The Visual Computer, 2008, 24(6):423~433.
    [85] Bronstein A. M., Bronstein M. M., Kimmel R. Calculus of Non-Rigid Surfacesfor Geometry and Texture Manipulation [J]. IEEE Trans. Vis. & Comp. Graphics, 2007, 13(5):902~913.
    [86] Chaouch M., Verroust-Blondet A. A Novel Method for Alignment of 3D Models [C]. Proc. IEEE Int. Conf. on Shape Modeling and Applications, 2008:187~195.
    [87] Podolak J., Golovinskiy A., Rusinkiewicz S. Symmetry-Enhanced Remeshing of Surfaces [C]. Proc. Symp. on Geom., 2007:235~242.
    [88] Riklin-Raviv T., Kiryati N., Sochen N. Segmentation by Level Sets and Symmetry [C]. Proc. IEEE Conf. on Comp. Vis. and Pat. Rec., 2006:1015~1022.
    [89] Berner A., Wand M., Mitra N. J., Mewes D., Seidel H.-P. Shape Analysis with Subspace Symmetries [J]. Computer Graphics Forum (Special Issue of Eurographics 2011), 2011, to appear.
    [90] Martinet A., Soler C., Holzschuch N., Sillion F. X. Accurate Detection of Symmetries in 3D Shapes [J]. ACM Trans. on Graph., 2006, 25(2):439~464.
    [91] Thrun S., Wegbreit B. Shape from Symmetry [C]. Proc. Int. Conf. on Comp. Vis., 2005:1824~1831.
    [92] Mitra N. J., Guibas L. J., Pauly M. Partial and Approximate Symmetry Detection for 3D Geometry [J]. ACM Trans. on Graph., 2006, 25(3):560~568.
    [93] Loy G., Eklundh J.-O. Detecting Symmetry and Symmetric Constellations of Features [C]. In Proc. Euro. Conf. on Comp. Vis., 2006:508~521.
    [94] Mitra N. J., Guibas L. J., Pauly M. Symmetrization [J]. ACM Trans. on Graph., 2007, 26(3):1~8.
    [95] Lipman Y., Chen X., Daubechies I., Funkhouser T. Symmetry Factored Embedding and Distance [J]. ACM Trans. Graph., 2010, 29(4):1~12.
    [96] Pauly M., Mitra N. J., Wallner J., Pottmann H., Guibas L. Discovering Structural Regularity in 3D Geometry [J]. ACM Trans. on Graph., 2008, 27(3):1~11.
    [97] Bokeloh M., Berner A., Wand M., Seidel H.-P., Schilling A. Symmetry Detection Using Line Features [J]. Computer Graphics Forum, 2009, 28(2):697~706.
    [98] Liu S., Martin R., Langbein F. C., Rosin P. L., Segmenting Periodic Reliefs on Triangle Meshes [C]. Proc. of the 12th IMA international conference on Mathematics of surfaces XII, 2007:290~306.
    [99] Yeh Y.-T., Mech R. Detecting Symmetries and Curvilinear Arrangements in Vector Art [J]. Computer Graphics Forum (Special Issue of Eurographics), 2009, 28(2):707~716.
    [100] Ben-Chen M., Butscher A., Solomon J., Guibas L. On Discrete Killing Vector Fields and Patterns on Surfaces [J]. Computer Graphics Forum (Special Issue of SGP), 2010, 29(5):1701~1711.
    [101] Raviv D., Bronstein A.M., Bronstein M.M., Kimmel R. Symmetries of non-rigid shapes [C]. Proc. ICCV’2007. 2007:1~7.
    [102] Rustamov R. M. Laplace-Beltrami Eigenfunctions for Deformation InvariantShape Representation [C]. Proc. SGP’2007, 2007:225~233.
    [103] Ovsjanikov M., Sun J., Guibas L. Global Intrinsic Symmetries of Shapes [J]. Computer Graphics Forum (Proc. of SGP), 2008, 27(5):1341~1348.
    [104] Chertok M., Keller Y. Spectral Symmetry Analysis [J]. IEEE Trans. Pattern Anal. Machine Intell., 2010, 32(7): 1227~1238.
    [105] Kim V., Lipman Y., Chen X., Funkhouser T. Mobius Transformations For Global Intrinsic Symmetry Analysis [J]. Computer Graphics Forum (Proc. of SGP), 2010, 29(5):1689~1700.
    [106] Bronstein A. M., Bronstein M. M., Bruckstein A. M., Kimmel R. Partial Similarity of Objects, or How to Compare a Centaur to a Horse [J]. Int. J. Comp. Vis. 2009, 84(2):163~183.
    [107] Solomon J., Ben-Chen M., Butscher A. Guibas L. Discovery of Intrinsic Primitives on Triangle Meshes [J]. Computer Graphics Forum (Special Issue of Eurographics 2011), 2011, to appear.
    [108] Martinek M., Grosso R., Greiner G. A Shape Descriptor for 3D Objects Based on Rotational Symmetry [J]. Computer Graphics Forum, 2010, 29(8):2328~2339.
    [109] Simari P., Nowrouzezahrai D., Kalogerakis E., Singh K. Multi-Objective Shape Segmentation and Labeling [J]. Computer Graphics Forum (Proc. SGP’2009), 2009, 28(5):1415~1425.
    [110] Lau M., Ohgawara A., Mitani J., Igarashi T. Converting 3D Furniture Models to Fabricatable Parts and Connectors [J]. ACM Trans. on Graph., 2011, to appear.
    [111] Sunkel M., Jansen S., Wand M., Eisemann E., Seidel H.-P. Learning Line Features in 3D Geometry [J]. Computer Graphics Forum (Proc. Eurographics), 2011, to appear.
    [112] Bar-Aviv E., Rivlin E. Functional 3D Object Classification Using Simulation of Embodied Agent [C]. Proc. BMVC, 2006.
    [113] Saul G., Lau M., Mitani J., Igarashi T., SketchChair: An All-in-one Chair Design System for End-users. Proc. the 5th International Conference on Tangible, Embedded and Embodied Interaction (TEI2011), 2011.
    [114] Blanz V., Vetter T. A Morphable Model for the Synthesis of 3D Faces [C]. Proc. SIGGRAPH’99, 1999:187~194.
    [115] Allen B., Curless B., Popovi? Z. The Space of Human Body Shapes: Reconstruction and Parameterization from Range Scans [J]. ACM Trans. on Graph., 2003, 22(3):587~594.
    [116] Shin H., Igarashi T. Magic Canvas: Interactive Design of a 3D Scene Prototype from Freehand Sketches [C]. Proc. of Graphics Interface, 2007:63~70.
    [117] Lee J., Funkhouser T. Sketch-Based Search and Composition of 3D Models [C]. Proc. of EG Workshop on Sketch-Based Interfaces and Modeling, 2008.
    [118] Kraevoy V., Julius D., Sheffer A. Model Composition from InterchangeableComponents [C]. Proc. of Pacific Graphics, 2007:129~138.
    [119] Chaudhuri S., Koltun V. Data-Driven Suggestions for Creativity Support in 3D Modeling, [J]. ACM Trans. on Graph., 2003, 29(6):1~9.
    [120] Burton F. W., Kollins J. G., Alexandridis N. A. An Implementation of the Exponential Pyramid Data Structure with Application to Determination of Symmetries in Pictures [J]. Computer Vision, Graphics, and Image Processing, 1984, 25(2):218~225.
    [121] Krahe J. L. Detection of Symmetric and Radial Structures in Images [C]. Proc. International Conference on Pattern Recognition, 1986:947~950.
    [122] Glachet R., Dhome M., Lapreste J. T. Finding the Perspective Projection of an Axis of Revolution [J]. Pattern Recognition Letters, 1991, 12(1):693~700.
    [123] Yodogawa E. Symmetropy, an Entropy-Like Measure of Visual Symmetry [J]. Perception and Psychophysics, 1982, 32(3):230~240.
    [124] Hu M.-K. Visual Pattern Recognition by Moment Invariants [J]. IRE Transactions on Information Theory, 1962, IT-20:179~187.
    [125] Blum H., Nagel R. N. Shape Description Using Weighted Symmetric Axis Features [J]. Pattern Recognition, 1978, 10(3):167~180.
    [126] Brooks R. A. Symbolic Reasoning among 3D Models and 2D Images [J]. Artificial Intelligence, 1981, 17(1-3) :285~348.
    [127] Gatzke T., Grimm C., Garland M., Zelinka S. Curvature Maps for Local Shape Comparison [C]. Proc. IEEE Int. Conf. on Shape Modeling and Applications, 2005:246~255.
    [128] Ester M., Kriegel H.-P., Sander J., Xu X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise [C]. Proc. of Int. Conf. on Knowledge Discovery and Data Mining, 1996:226~231.
    [129] Surazhsky V., Surazhsky T., Kirsanov D., Gortler S. J., Hoppe H. Fast Exact and Approximate Geodesics on Meshes [J]. ACM Trans. on Graph., 2005, 24(3):553~560.
    [130] Raviv D., Bronstein A. M., Bronstein M. M., Kimmel R. Full and Partial Symmetries of Non-rigid Shapes [J]. International Journal of Computer Vision, 2010, 89(1):18~39.
    [131] Havemann S., Fellner D. W. Seven Research Challenges of Generalized 3D Documents [J]. IEEE Computer Graphics and Applications, 2007, 27(3):70~76.
    [132] Tanenbaum J. B., Freeman W. T. Separating Style and Content with Bilinear Models [J]. Neural Computation, 2000, 12(6):1247~1283.
    [133] Brand M., Hertzmann A. Style Machines [C]. Proc. SIGGRAPH, 2000:183~192.
    [134] Ng A. Y., Jordan M. I., Weiss Y. On Spectral Clustering: Analysis and an Algorithm [C]. Proc. NIPS 14, 2001:849~856.
    [135] Everitt B. S., Landau S., Leese M. Cluster Analysis [M]. Wiely, 2009.
    [136] Chung F. R. K. Spectral Graph Theory [M]. AMS, 1997.
    [137] Kazhdan M. An Approximate and Efficient Method for Optimal Rotation Alignment of 3D Models [J]. IEEE PAMI, 2007, 29(7):1221~1229.
    [138] Chung F. R. K., Langlands R. P. A Combinatorial Laplacian with Vertex Weights [J]. J. Comb. Theory Ser. A, 1996, 75(2):316~327.
    [139] Besl P. J., Mckay N. D. A Method for Registration of 3D Shapes [J]. IEEE PAMI, 1992, 14(2):239~256.
    [140] Zhang H., Sheffer A., Cohen-Or D., Zhou Q., van Kaick O., Tagliasacchi A. Deformation-Driven Shape Correspondence [J]. Computer Graphics Forum (Special Issue of SGP), 2008, 27(5):1393~1402.
    [141] Kilian M., Mitra N. J., Pottmann H. Geometric Modeling in Shape Space [J]. ACM Trans. on Graph., 2007, 26(3):1~8.
    [142] Kraevoy V., Sheffer A. Cross-Parameterization and Compatible Remeshing of 3D Models [J], ACM Trans. on Graph., 2004, 23(3):861~869.
    [143] Ju T., Schaefer S., Warren J. Mean Value Coordinates for Closed Triangular Meshes [J]. ACM Trans. on Graph., 2005, 24(3):561~566.
    [144] Kraevoy V., Sheffer A., Cohen-Or D., Shamir A. Non-homogeneous Resizing of Complex Models [J], ACM Trans. on Graph., 2008, 27(5):1~9.
    [145] Müller M., Heidelberger B., Teschner M., Gross M. Meshless Deformations Based on Shape Matching [J]. ACM Trans. on Graph., 2005, 24(3):471~478.
    [146] Kraevoy V., van de Panne M., Sheffer A. Modeling from Contour Drawings [C], Proc. Sketch-Based Interfaces and Modeling, 2009:37~44.
    [147] Nealen A., Sorkine O., Alexa M., Cohen-Or D. A Sketch-Based Interface for Detail-Preserving Mesh Editing [J]. ACM Trans. on Graph., 2005, 24(3):1142~1147.
    [148] Tan G., Chen W., Liu L. Image Driven Shape Deformation Using Styles [J]. Journal of Zhejiang University (SCIENCE C), 2010, 11(1):27~35.
    [149] Princeton 3D Model Search Engine [EB/OL]. http://shape.cs.princeton.edu/
    [150] 3D Warehouse [EB/OL]. http://sketchup.google.com/3dwarehouse/
    [151] Rother C., Kolmogorov V., Blake A. Grabcut: Interactive Foreground Extraction Using Iterated Graph Cuts [J]. ACM Trans. on Graph., 2004, 23(3):309~314.
    [152] Delong A., Osokin A., Isack H., Boykov Y. Fast Approximate Energy Minimization with Label Costs [C]. Proc. IEEE CVPR, 2010:2173~2180.
    [153] Zhang D., Lu G. An Integrated Approach to Shape Based Image Retrieval [C]. Proc. Asian Conference on Computer Vision, 2002:652~657.
    [154] Chen D.-Y., Tian X.-P., Shen Y.-T., Ouhyoung M. On Visual Similarity Based 3D Model Retrieval [J]. Computer Graphics Forum (Proc. Eurographics), 2003, 22(3):223~232.
    [155] Cour T., Srinivasan P., Shi J. Balanced Graph Matching [C]. Proc. Advanced inNeural Information Processing Systems (NIPS’06), 2006:313~320.
    [156] Duchenne O., Bach F., Kweon I., Ponce J. A Tensor-Based Algorithm for High Order Graph Matching [C]. Proc. IEEE Conference on Computer Vision and Pattern Recognition(CVPR’09), 2009:1980~1987.
    [157] Wang A., Li S., Zeng L. Multiple Order Graph Matching [C]. Proc. ACCV, 2010: 471~482.
    [158] L. Shapiro, G. Stockman, Computer Vision [M]. Prentice Hall, 2001.
    [159] Shimshoni I., Moses Y., Lindenbaum M. Shape Reconstruction of 3D Bilaterally Symmetric Surfaces [J]. Int. J. of Comp. Vis., 2000, 39(2):97~110.
    [160] Jelinek D., Taylor C. Reconstruction of Linearly Parameterized Models from Single Images with a Camera of Unknown Focal Length [J]. IEEE Trans. Pat. Ana. & Mach. Int. (PAMI), 2001, 23(7):767~774.
    [161] Hong W., Yang A., Huang K., Ma Y. On Symmetry and Multiple-View Geometry: Structure, Pose, and Calibration from a Single Image [J]. Int. J. of Comp. Vis., 2004, 60(3):241~265.
    [162] Jiang N., Tan P., Cheong L.-F. Symmetric Architecture Modeling with a Single Image [J]. ACM Trans. on Graph., 2009, 28(5):1~8.
    [163] Gill P. E., Murray W., Wright M. H. Practical Optimization [M]. London: Academic Press, 1989.
    [164] Kavan L., Collins S., Zara J., O'Sullivan C. Geometric Skinning with Approximate Dual Quaternion Blending [J]. ACM Trans. on Graph., 2008, 27(4):1~23.
    [165] Google Images [EB/OL]. http://www.google.com/imghp?hl=en&tab=wi.
    [166] Krecklau L., Kobbelt L. Procedural Modeling of Interconnected Structures [J]. Computer Graphics Forum (Special Issue of Eurographics 2011), 2011, to appear.
    [167] Fisher M., Hanrahan P. Context-Based Search for 3D Models [J]. ACM Trans. on Graph., 2010, 29(5):1~10.
    [168] Fisher M., Savva M., Hanrahan P. Characterizing Structural Relationships in Scenes Using Graph Kernels [J]. ACM Trans. on Graph., 2011, to appear.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700