混合型缓冲回填材料膨胀特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高放废物是一种含有强放射性核素的特殊废物,它具有毒性大、核素半衰期长、发热量大的特点,需要与人类生存环境长期可靠地隔离。高放性废物的处置难度极大,目前认为最可行的处置方法是深部地质处置法,即将废物深埋在地下。埋藏高放废物的地下工程称为地质处置库,处置库一般采用“多重屏障体系”的概念模型进行设计。多重屏障体系中,缓冲回填材料是阻隔放射性核素向地下水环境迁移的最主要包封设施。
     近二十多年来,我国就缓冲回填材料的选择进行了大量的研究工作。高庙子膨润土因其优越的吸附性能、膨胀自愈性能以及极低的渗透性被确认为我国理想的缓冲回填材料。但是仅用纯膨润土做缓冲材料存在热传导性能低和可施工性差两个难以克服的弊端,纯膨润土过高的塑性使得加水制样过程中“团粒化”及不均匀湿化现象非常明显,土的可调理性差,试样难以压实到所需的干密度。纯膨润土较低的热传导性不利于将放射性核素衰变产生的热量散发到周围的洞室围岩中去,可能导致缓冲层温度升高超过100℃,液态水气化后产生过大的水汽压力,还有可能导致膨润土的性质改变。膨润土中添加一定量的辅料,比如石英砂或者碎石,既能满足力学强度、热传导性能和防渗阻隔能力,又能优化回填设计与施工性能。开发膨润土-砂混合物作为缓冲回填材料,是世界高放废物地质处置领域的主流方向。在国内,开发膨润土-砂混合型缓冲回填材料,是兰州大学的创新研究方向,也是世界高放废物地质处置领域的主流方向。
     混合型缓冲回填材料研究的根本目标,是确定最优掺砂率,使膨润土-砂混合物的的化学吸附性能、力学性能、防渗性能、膨胀自愈性能等尽最大可能地同时得到满足。本研究的具体目标是从膨胀性质方面,研究高庙子(GMZ)膨润土-砂混合物的膨胀性质与掺砂率、干密度以及孔隙液的关系,为最终的掺砂率和干密度优化提供基础数据。
     孔隙液为蒸馏水时,对掺砂率分别为0、10、15、20、25、30、35、40和50%的膨润土-砂混合物进行液塑限试验,研究液塑限随掺砂率的变化规律;对掺砂率分别为0、10、20、30、40和50%的膨润土-砂混合物采用动力击实和静力压实两种方法制成的初始干密度不同的一系列试样进行膨胀试验,研究掺砂率和初始干密度对膨胀特性的影响规律。
     孔隙液为NaCl-Na2SO4溶液(NaCl与Na2SO4按干质量比2:1配置)时,对掺砂率分别为0、10、15、20、25、30、35、40和50%的膨润土-砂混合物在溶液的总溶解性固体(TDS)分别是0.5、1.0、3.0、6.0和12.0g/L(pH=7.1)进行液塑限试验,研究孔隙液浓度对液塑限的影响规律。对掺砂率为0、20、30和50%,初始干密度为1.50-1.90g/cm3的一系列膨润土-砂混合物的静力压实试样进行膨胀试验,研究孔隙液浓度对混合物膨胀特性的影响规律。
     所得试验结果如下:
     混合物的液限、塑限随掺砂率的增大线性降低,塑性指数线性降低;膨胀的发生分为三个阶段:孔隙间膨胀,初始膨胀和二次膨胀,膨胀力和膨胀率随时间的曲线都呈S型。当初始含水率一定时,随着初始干密度的增大,最大膨胀力指数增长,最大膨胀率线性增长。随着掺砂率的增大,最大膨胀力指数降低,最大膨胀率呈二次函数降低。
     随着NaCl-Na2SO4溶液总溶解性固体(TDS)的增大,GMZ膨润土-砂混合物的液限、塑限、塑性指数、膨胀时间、最大膨胀力和最大膨胀率均降低。其中,随着溶液TDS的增大,液限,塑性指数和最大膨胀率均呈指数降低:当TDS<3.0g/L时,各参数值降低速率都很大;当TDS=3.0-6.0g/L时,各参数值降低速率减慢;当TDS>6.0g/L时,随着TDS的增大,各参数值降低缓慢,基本保持不变。随着溶液TDS的增大,膨润土-砂混合物和纯膨润土的最大膨胀力均线性降低,但是纯膨润土比掺砂30%的膨润土-砂混合物对溶液的敏感性更高。与纯膨润土相比,膨润土-砂混合物中一部分具有膨胀性质的粘土被不具膨胀性的石英砂替代了,从而导致膨润土-砂混合物对地下水化学溶液的侵蚀具有更好的耐受性,
     根据中国预选处置库甘肃北山的地下水水文资料并综合考虑之前试验结果,以NaCl-Na2SO4(TDS=0.5g/L)作为孔隙液,对于初始干密度为1.70g/cm3的试样,随着掺砂率的增大,最大膨胀力指数降低最大膨胀率线性降低;对于掺砂率30%的试验,随着初始干密度的增大,最大膨胀力指数增长最大膨胀率线性增长。说明增大掺砂率会抑制膨润土的膨胀性质而增大初始干密度会提高其膨胀性质。
     引入了有效粘土的密度的概念,ρb。有效粘土密度可以将初始干密度和掺砂率两个参数统一起来,并且通过对试验数据的分析回归,建立了一定初始含水率条件下,任意掺砂率和初始干密度的GMZ膨润土-砂混合物最大膨胀力/最大膨胀率与有效粘土密度一一对应的归一化模型,从而实现了膨胀性质同时与初始干密度和掺砂率对应的函数关系式,通过数据验证,该方程式与试验数据能够很好的吻合。在一定的掺砂率和初始干密度方位内,利用这些方程式可以实现对GMZ膨润土-砂混合物膨胀行为的预测和人为控制。
     结合实际处置情况和要求,通过对试验数据的分析,综合考虑膨胀力和膨胀率,本研究认为基于满足膨胀性质的要求,GMZ膨润土-砂混合物的最优掺砂率范围为20-30%,初始干密度范围为1.60-1.80g/cm3。
High-Level Radioactive Waste (HLW) is a waste very difficult to be disposed, which contains strong radioactive, heat, toxicity, and long half-life nuclides. It must be long-term and reliably isolated with the living environment of the human. The deep geological disposal is currently believed to be the best feasible disposition way, which means that the waste was deeply buried in the ground. A multiple barrier system was accepted as the repository conceptual, in which the buffer/backfill material is the most important barrier to prevent the migration of radionuclides by groundwater.
     In the past20years, many researches have been done on the select of backfill/buffer materials in China, and GMZ bentonite is considered to be a reliable buffer/backfill material in HLW repositories because of its high absorption and high swelling properties and low permeability. However, because the plasticity of pure bentonite is very high, a tendency of "pelletization" will present during the process of water-soil mixed, this will cause an obvious inhomogeneous wetting of bentonite, and then give trouble to the block making process of buffer/backfill material. In addition, the heat conductivity of pure bentonite is very low, if the heat produced by radioactive waste can not be sent out to the surrounding rock promptly and effectively, the temperature of the buffer layer will rise. When the temperature exceeds100℃, liquid gasification will produce too much water vapor pressure and affect the stability of the repository. Moreover, montmorillonite in bentonite will be converted into illite when the temperature exceeds100℃, so that the function of the buffer/backfill material changes. For bentonite-and, bentonite-crushed rock or bentonite-ballast mixtures possess higher structural integrity, thermal conductivity. As a modern trend in backfill/buffer material development, bentonite is optimized by addition of certain content of quart sand to improve the strength and heat conductivity without obvious lowering of permeability. Following the recent development trend in deep geological disposal of HLW, compacted bentonite-sand mixtures is recommended by Lanzhou University, China as an innovative buffer/backfill material for its enhanced thermal conductivity and workability.
     The final research aim to the compacted bentonite-sand mixtures is to investigate the optimum sand addition, under which the mixtures will provide a best adsorption to radionuclides, impermeability, swelling sealing at same time. As a specific research, objectives of this study is to reveal the swelling characteristics, study on the swelling behavious of compacted GMZ bentonite-sand mixtures with different initial dry density and sand content with different pore water, providing a basal data for final optimum ratio of sand content of the mixtures.
     GMZ bentonite-sand mixtures as backfill/buffer material in China for high level radioactive waste (HLW) were mixed with quartz sand in a ratio of0,10,20,30,40and50%(w/w) and compacted to a series of specimens in different dry density. By distilled water as pore water, liquid limit,,plastic limit and swelling tests were conduced on bentonite-sand mixtures pressure and the influence of sand content, initial dry density on the characteriscice of compacted mixtures were analyzed and reported. Liquid limit, plastic limit and the swelling behaviors of compacted GMZ bentonite-sand mixtures inundated in NaCl-Na2SO4solutions are investigated and the influence of chemical solutions on the swelling behaviors of GMZ bentonite-sand mixtures is investigated. The sand content ratios of the bentonite-sand mixtures are0,20,30and50%, and the total dissolved solids (TDS) of the NaCl-Na2SO4(NaCl:Na2SO4=2:1by mass) solution are0.5,1.0,3.0,6.0and12.0g/L (pH=7.1). The specimens of bentonite-sand mixtures for swelling tests are prepared by static-compaction to various dry densities, ranging from1.50-1.90g/cm3.
     Results received by these tests were as follows:
     Liquid limit and plastic limit of the mixture decrease linearly with the increase of sand addition percentage. Swell occurs in three distinct phases:inter-void swelling, primary swelling and secondary swelling, both swelling pressure and swelling strain follow a sigmoid relationship with time. With constant initial water content, the maximum swelling pressure presents an exponential increase with increased initial dry density, and the maximum swelling strain increases linearly. With the increase of sand content ratio, the maximum swelling pressure decreases exponentially and the maximum swelling strain follow a quadratic decrease.
     Liquid limit (wL), plasticity limit (wP), swell time, maximum swelling pressure and maximum swelling strain decrease with the increase of TDS for GMZ bentonite-sand mixtures. All of the LL, PI and maximum swelling strain are decreased exponentially with TDS increase:very quickly as TDS<3.0g/L, slowly as TDS=3.0-6.0g/L and almost stabilized as TDS>6.0g/L. The maximum swelling pressure shows a linear reduction with the TDS increasing, but the pure bentonite indicates a high sensitivity than the bentonite-sand mixtures with30%sand content ratio. Compared with the pure bentonite, bentonite-sand mixtures show a better tolerance withstanding the chemical attack to ground water chemistry because of the replacement of some quantity of expansive clay by quartz sand in the mixtures.
     As NaCl-NaoSO4(TDS=0.5g/L) solution was used according to the ground water, with initial dry density of1.70g/cm3, the maximum swelling pressure of specimens decrease exponentially while the maximum strain decrease linearly with the increase of sand addition. With30%sand addition in0.5g/L NaCl-Na2SO4solution, the maximum swelling pressure increase exponentially while the maximum strain increase linearly with the increase of initial dry density. This means that the increase of sand would restrain the swelling properties of bentonite while the increase of initial dry density can enhance that.
     By the introduction of the concept, effective clay density pb, equations include both initial dry density and sand content ratio are proposed, they produce a good satisfaction with the experimental data. And these equations can predict the swelling characteristics of GMZ bentonite-sand mixtures with sand content ratio and initial dry density designed in certain range.
     Based on the data obtained from experimental tests, considering both swelling pressure and swelling strain comprehensively, the optimal sand content ratio and initial dry density are20-30%and1.60-1.80g/cm3.
引文
[1]GB/9133-1995,放射性废物的分类[S].北京:国家环境保护局.1995.
    [2]谢运棉,刘春秀,俞军,等译Neil Chapman, Ian McKinley.核废物的地质处置[M].北京:原子能出版社.1990.
    [3]National Research Council of the United States. The Disposal of Radioactive Waste on land. National Academy Sciences[C]. Washington, USA.1957.
    [4]王驹,范显华,徐国庆,等.中国高放废物地质处置十年进展[C].北京:原子能出版社.2004.
    [5]王驹,张铁岭译.国际放射性废物地质处置十年进展.北京:原子能出版社.2001.
    [6]SKB.Sea disposal of radioactive wastes (Technical Report TR-01-30)[R]. Vienna:IAEA Bulletin 2/1994, IAEA.2001.
    [7]Witherspoon, P.A. Geological Challenges in Radioactive Waste Isolation, Third Word Review. California US A.2001.
    [8]Witherspoon, P.A. Geological Problems in Radioactive Waste Isolation, Second World Review[C]. California USA.1996.
    [9]Borje, T., Bert, A. Migration of fission roducts and actinides in compacted bentonite (SKB Technical Report 86-140)[R]. Sweden:SKB.1986.
    [10]Borje, T. Radionuclide diffusion and mobilities in compacted bentonite (SKB Technical Report 83-84)[R]. Sweden:SKB.1983.
    [11]Pusch, R. Required physical and mechanical properties of buffer masses (KBS-TR-33)[R]. Sweden:SKB.1977.
    [12]Radhokrishra, H.S., Chan, H.T. Ther mal and physical properties of candidate buffer-backfill material for a nuclear fuel waste disposal vault[J]. Can. Geotech.1989,26(6):629-639.
    [13]O'flaherty, C.A., Gray, M.N. The influence of alkali compounds on the compaction and early strength properties of lime-soil mixtures[J]. Road Res. Board.1974,5(5):4-15.
    [14]Oldfild, S.N. Influence of clay mineralogy and clay content on lime-soil stabilization process [Ph. D. Thesis][D]. Leeds:The University of Leeds,1974.
    [15]Pusch, R. Use of clays as buffers in radioactive repositories[R]. [S.1.]:[s. n.],1983:46-83.
    [16]Dixon, D.A., Gray, M.N., Thomas, A.W. A study of the compaction properties of potential clay-sand buffer mixtures for use in nuclear fuel waste disposal[J]. Engineering geology.1985, 21(3-4):247-255.
    [17]Mitchell, J.K. Fundamentals of Soil Behavior.2ed[M]. University of California, Berkeley. 1993.
    [18]梁健,张虎元,崔素丽等.混合型缓冲回填材料的压实和渗透特性[J].环境污染与防治,2008:1-6.(网络版第9期).
    [19]Japan Nuclear Cycle Development Institute. H12 Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan[R]. Tokyo:JNC TN 1410,2000.
    [20]Boonsinsuk, P., Pulles, B.C., Kjartanson, B.H., and Dixon, D.A. Prediction of compactive effort for a bentonite-sand mixture[A]. In:Canadian Geotechnical Society.44th Canadian Geotechnical Conference[C]. Alberta, Canada:Canadian Geotechnical Society.1991: 64.1-64.12.
    [21]NEA, Engineered Barrier Systems and the Safety of Deep Geological Repositories, OECD Nuclear Energy Agency, France.2003.
    [22]王驹,苏锐,陈伟明等.中国高放废物深地质处置[J].岩石力学与工程学报.2006,25(4):649-658.
    [23]温志坚.中国高放废物处置库缓冲材料物理性能[J].岩石力学与工程学报.2006,25(4):794-800.
    [24]温志坚.中国高放废物深地质处置的缓冲材料选择及其基本性能[J].岩石矿物学杂志.2005,24(6):583-586.
    [25]刘月妙,温志坚.用于高放射性废物深地质处置的粘土材料研究[J].矿物岩石.2003,23(4):4245.
    [26]刘月妙,徐国庆,刘淑芬.高放废物地质处置库缓冲/回填材料性能测试[J].辐射防护.1998,18(4):290-295.
    [27]Pusch, R. Highly compacted sodium bentonite for isolating rock-deposited radioactive waste products[J]. Nuclear Technology.1979,45(9):153-157.
    [28]Pusch, R. Minerel-water interactions and their influence on the physical behavior of highly compacted Na-bentonite[J]. Canadian Geoteclhnical Journal.1982,19:381-387.
    [29]Komine, H., Ogata, N. Experimental study on swelling characteristics of compacted bentonite[J]. Canadion Getechnical Journal.1994,31:478-490.
    [30]Chapuis, R.P. Sand-bentonite liners:Predicting permeability from laboratory tests[J]. Canadian Getechnical Journal.1990,27:47-57.
    [31]Lingnau, B.E., Graham, J., Yarechewski, D., et al. Effects of temperature on strength and compressibility of sand bentonite buffer[J]. Engineering Geology.1996,41:103-115.
    [32]Arifin, Y.F., Agus, S.S., Schanz, T. Temperature effects on suction charateristic curve of bentonite-sand mixtures [A]. Proceedings of the 4th International Conference on Unsaturated soil[C]. Carefree,Arizona.2006,1314-1325.
    [33]Graham, J., Saadat, F., Gray, M.N., et al. Strength and volume change behavior of sand-bentonite mixtures[J]. Canadion Getechnical Journal.1988,26:292-305.
    [34]Wan, A.W., Graham, J., Gray, M.N. Influence of soil structure on the stress-strain behavior of sand-bentonite mixtures [J]. Geotechnical Testing Journal.1990,13(3):179-187.
    [35]Wiebe, B., Graham, J., Tang, G.X., et al. Influence of pressure, saturation and temperature on the behavior of unsaturated sand-bentonite[J]. Canadian Geotechnical Journal.1998, 35:194-205.
    [36]Agus, S.S., and Schanz, T. Effect of shrinking and swelling on microstructures and fabric of a compacted bentonite-sand mixture[A]. Proceedings of International Conference on Problematic soils[C].Cyqrus.2005,543-550.
    [37]Romero, E., Alonso, E.E., Hoffman, C. Behavior of bentonite-sand mixtures subjected to cyclic drying and wetting[A]. Proceeding of the 4th International Conference on Unsaturated soils[C].Carefredd, Arizona.2006,1005-1016.
    [1]庄文寿,洪锦雄,董家宝.深层地质处置技术研究[J].核研季刊.2000,37:44-54.
    [2]Komine, H., and Ogata, N. A trial design of buffer materials from the viewpoint of self-sealing." Proceeding of Radioactive Waste Management and Environmental Remediation, ASME.1999.
    [3]Japan Nuclear Cycle Development Institute[R]. Second Progress Report on Research and Development forthe Geological Disposal of HLW in Japan Support Report 2 Repository Design and Engineering Technology. JNC TN 1410 2000-003.2000.
    [4]Japan Nuclear Cycle Development Institute[R]. Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan Support Report 2 Repository Design and Engineering Technology. JNC TN 1410 2000-001.2000.
    [5]NEA, Engineered Barrier Systems and the Safety of Deep Geological Repositories, OECD Nuclear Energy Agency, France.2003.
    [6]Radhokrishra, H.S., and Chan, H.T. Thermal and physical properties of candidate buffer-backfill materials for a nuclear fuel waste disposal vault[J]. Can. Geotech.1989.26(6): 629-639.
    [7]Borje, T. Radionuclide diffusion and mobilities in compacted bentonite (SKB Technical Report 83-84)[R]. Sweden:SKB.1983.
    [8]Borje, T., Bert, A. Migration of fission products and actinides in compacted bentonite (SKB Technica Report 86-140)[R]. Sweden:SKB.1986.
    [9]Pusch, R. Required physical and mechanical properties of buffer masses (KBS-TR-33)[R]. Sweden:SKB.1977.
    [10]Japan Nuclear Cycle Development Institute. H12 Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan. JNCTN 1410 2000-003.2000.
    [11]Boonsinsuk, P., Pulles, B.C., Kjartanson, B.H., and Dixon, D.A. Prediction of compactive effort for a bentonite-sand mixture.44th Canadian Geotechnical Conference[C]. Volume 2, Alberta, Canada.1991:64.1-64.12.
    [12]Clemente, M.M. Hydraulic behaviors of bentonite based mixtures in engineered barriers [D]. Technical University of Catalonia.2003:56-57.
    [13]Vaunat, J., and Gens, A. Analysis of the hydration of a bentonite seal in a deep radioactive waste repository Engineering [J]. Geology.2005,81:317-328.
    [14]Alain, Lajudie, et al. Clay-based Materials for Engineered Barriers:A Review [A]. Takash Murakawi (eds.) Scientific Basis for Nuclear Waste Management XVIII [C].1994:221-230.
    [15]Pusch, R. Is montmorillonite-rich clay of MX-80 type the ideal buffer for isolation of HLW [A]. Stockholm. Swedish Nuclear Fuel and Waste Management Co.1999:6-58.
    [16]OECD. Engineered Barrier Systems and the Safety of Deep Geological Repositories. State-of-the-art Report. In co-operation with the European commission.2003:21-22.
    [17]刘月妙,徐国庆,刘淑芬.高放废物地质处置库缓冲/回填材料性能测定[J].辐射防护.1998,18(4):290-295.
    [18]刘月妙,陈璋如.内蒙古高庙子膨润土作为高放废物处置库回填材料的可行性[J].矿物学报.2001,21(3):541-543.
    [19]温志坚.中国高放废物深地质处置的缓冲材料选择及其基本性能[J].岩石矿物学杂志.2005,24(6):583-586.
    [20]崔玉军,陈宝.高放核废物地质处置中工程屏障研究新进展[J].岩石力学与工程学报.2006,25(4):842-847.
    [21]Liu, Q., Zhang, C. and Liu, X. Numerical Modelling and Simulation of Coupled THM Processes in TASK-D of Decovalex-IV[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(4):709-720.
    [22]Kondo, M. Story Bentonite, Bentonite-Its Unique Properties. Hojun Kogyo Co. Ltd (in Japanese).1994.
    [23]Shirozu, H. Basics of Clay Mineral Engineering-Clay Science[M]. Asakura Shoten.1988.
    [24]Meyer, D., and Howard, J.J. Evaluation of clays and clay minerals for application to repository sealing, Office of Nuclear Waste Isolation Technical Report ONWI-486.1983: 12-30.
    [25]Grim, R.E. Clay Mineralogy, Second Edition[M], McGraw-Hill Book Company.1968.
    [26]Suzuki, H., Shibata, M., Yamagata, J., Hirose, I., and Terakado, K. Characteristic Test of Buffer Material (I), Power Reactor and Nuclear Fuel Development Corporation, PNC TN8410 92-057 (in Japanese).1992.
    [27]Matsuda, T., Yoshida, M., Hamada, Y., and Kosaka, T. Hydrothermal Change of 2 Octahedron Type Smectite, Mineral Society Journal, No.19 Volume, Special Edition.1990: 107-111 (in Japanese)
    [28]Yong, R.N., and Warkentin, B.P. Soil properties and behaviour[M], Amsterdam Oxford, New York.1975.
    [29]Collins, K., and McGown, A. "The form and function of microfabric features in a variety of natural soils."[J]. Geotechnique.1974,24(2):223-254.
    [30]Iupac. Manual of symbols and terminology, appendix 2, point 1, colloid and surface chemistry[J]. Pure Applied Chemistry.1972,31:578.
    [31]Barden, L., and Sides, G. Sample disturbance in the investigation of clay structure[J]. Geotechnique.1971,31(3):211-222.
    [32]Van, O.H. An introduction to clay colloid chemistry.2nded[M]. Wiley Interscience, New York. 1977.
    [33]Quirk, J.P., and Aylmore, L.A.G. Domains and quasi-crystalline regions in clay systems[J]. Proceedings of Soil Science Society America.1971,35:652-654.
    [34]Rengasamy, P. Dispersion of calcium clay[J]. Australian Journal Soil Research.1982,20: 153-157.
    [35]Huang, W.H., and Chen, W.C. Swelling behavior of a buffer material under simulated near field environment[J]. Journal of Nuclear Science and Technology.2004,41(12):1271-1279.
    [36]Sposito, G., Holtzclaw, K.M., Charlet, L., Jouany, C., and Page, A.L. Sodium-calcium and sodium-magnesium exchange on Wyoming bentonite in perchlorate and chloride background ionic media[J]. Soil Science Society American Journal.1983,47:51-56.
    [37]Bohn, H.L., McNeal, B.L., and O'Connor, G.A. Soil Chemistry,2nded[M]. John Wiley & Sons Inc, New York.1985.
    [38]Fukue, M., Kato, Y, and Komatsuda, S. Principle of Contaminant Transport in Soils, Tokai University Publishing Group.1995.
    [39]Westsik, J.H. Permeability, swelling and radionuclide retardation properties of candidate backfill materials, Scientific basis for nuclear waste management 5, Material Research.1982: 329.
    [40]Fukue, M., Kato, Y., and Komatsuda, S. Principle of Contaminant Transport in Soils, Tokai University Publishing Group.1995.
    [41]Shibutani, T., Yoshikawa, H., Sato, H., and Yui, M. Research on Adsorbing Behavior of Cs and Se to Kunigel V1, Atomic Energy Society of Japan "1992 Autumn Meeting" F45 (in Japanese).1992.
    [42]Cheung, S.C.H. Methods to measure apparent diffusion coefficients in compacted bentonite clays and data interpretation[J]. Canadian Journal of Civil Engineering.1989,16:434-443.
    [43]Cheung, S.C.H. A new interpretation of measured ionic diffusion coefficient in compacted bentonite-based materials[J]. Engineering Geology.1990,28:369-378.
    [44]Nagy, N.M., and Konya, J. The interfacial processes between calcium-bentonite and zinc ion[J]. Colloids and Surfaces.1988:223-235.
    [45]Yong, R.N., Boonsinsuk, P., and Wong, G Formulation of backfill material for a nuclear fuel waste disposal vault[J]. Canadian Geotechnical Journal.1986,23(2):216-228.
    [46]闵茂中.放射性废物处置原理[M].北京:原子能出版社,1998.
    [47]JNC. H12. Project to establish the Scientific and Technical Basis for HLW Disposal in Japan, Supplementary Report[R]. Tokyo:1-1-2 Marunouchi Chiyoda-ward 100-8245.
    [48]温志坚.高放废物地质处置中的工程材料问题[C].第260次香山科学会议论文集.北京:2005:141-151.
    [49]王驹,范显华,徐国庆,等.中国高放废物地质处置十年进展[C].北京:原子能出版社,318-328.
    [50]Xu, G.Q., Wang, J, Zheng, H.L., et al. Deep geological disposal of High-level radioactive waste in China [M]. USA:Lawrence Berkeley National Laboratory.1996.
    [51]Japan Nuclear Cycle Development Institute. H12 Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan [R]. Tokyo:JNC TN 1410,2000.
    [52]Gleason, M.H., Daniel, D.E., and Eykholt, G.R. Calcium and sodium bentonite for hydraulic contaminment applications [J]. Journal of Geotechnical and Geoenvironmental Engineering. ASCE,1997,123(5):438-445.
    [53]Achari, G., Joshi, L.R., Bentley, L.R., and Chatteiji, S. Prediction of the hydraulic conductivity of clays using the electric double layer theory[J]. Canadian Geotechnical Journal. 1999,36:783-792.
    [54]Komine, H., and Ogata, N. Prediction for swelling characteristics of compacted bentonite[J]. Canadian Geotechnical Journal.1996,33:11-22.
    [55]Sridharan, A., and Venkatappa, R.G. Mechanisms controlling volume change of saturated clays and the role of the effective stress concept [J]. Geotechnique.1973,23:359-382.
    [56]Mitchell, J.K. Fundamentals of Soil Behavior.2nd ed]M]. University of California, Berkeley. 1993.
    [57]Yeung, A.T. Diffuse double-layer equations in SI units[J]. Journal of Geotechnical Engineering.1992,118(12):2000-2005.
    [58]Israelachvili, J.N., and Adams, G.E. Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range of 0-100 nm[J]. Journal of Chemistry Society. Faraday Transactions. Ⅰ.1978,74:975-1001.
    [59]Pusch, R., and Hokmark, H. Basic model of water- and gas- flow through smectite clay buffers[J]. Engineering Geology.1990,28:379-389.
    [60]Israelachvili, J.N. Intermolecular and Surface Forces, Academic Press, Orlando, Fla.1985.
    [61]Lide, D.R. CRC Handbook of Chemistry and Physics:A Ready-reference Book of Chemical and Physical Data,82nd ed.[M]. CRC Press, New York.2001.
    [62]Thomas, G.W. Historical developments in soil chemistry:ion exchange[J]. Soil Science Society American Journal.1977,41:230-238.
    [63]Bohn, H.L., McNeal, B.L., and O'Connor, G.A. Soil Chemistry,2nd ed., John Wiley & Sons Inc, New York.1985.
    [64]Kerr, H.W. The nature of base exchange and soil acidity[J]. Journal of American Society Agronomy.1928,20:309-335.
    [65]Vanselow, A.P. Equlibria of the base-exchange of bentonites, permutites, soil colloids, and zeolites[J]. Soil Science.1932,33:95-113.
    [66]Gapon, Y.N. On the theory of exchange adsorption in soils[J]. Gen. Chem. USSR 3.1933: 144-160.
    [67]Bower, C.A. Cation exchange equilibria in salt affected soils[J]. Soil Science.1958,88: 32-35.
    [68]Pratt, P.F., Whittig, L.D., and Grover, B.L. Effect of pH on the sodium-calcium exchange equilibria in soils[J]. Soil Science Society American Journal.1962,26:227-230.
    [69]Oster, J.D., and Sposito, G. The Gapon coefficient and the exchangeable sodium percentage-sodium adsorption ratio relation[J]. Soil Science Society America Journal.1980, 44:258-260.
    [70]Evangelou, V.P. and Phillips, R.E. Comparison between the Gapon and Vanselow exchange selectivity coefficients[J]. Soil Science Society American Journal.1988,52:379-382.
    [71]Krishnamoorthy, C., and Overstreet, R. Theory of ion exchange relationships[J]. Soil Science. 1949,68:307-315.
    [72]Eriksson, E. Cation-exchange equilibria on clay minerals[J]. Soil Science.1952,74:103-113.
    [73]Jo, H.Y., Katsumi, T., Benson, C.H., and Edil, T.B. Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-species salt solutions[J]. Journal of Geotechnical and Geoenvironmental Engineering.2001,127(7):557-567.
    [74]Norrish, K., and Quirk, J. Crystalline swelling of montmorillonite, use of electrolytes to control swelling[J]. Nature.1954,173:255-257.
    [75]McBride, M. Environmental chemistry of soils. Oxford University Press, New York.1994.
    [76]Zhang, F., Low, P.F., and Roth, C.B. Effects of monovalent, exchangable cations and electrolytes on the relation between swelling pressure and interlayer distance in montmorillonite[J]. Journal of Colloid and Interface Science.1995,173:34-41.
    [77]Johnston, R.M., and Miller, H.G. Hydrothermal stability of bentonite-based buffer materials, Atomic Energy of Canada Limited, AECL-8376.1985.
    [78]Johnston, R.M., and Miller, H.G. The effect of pH on the stability of smectite, Atomic Energy of Canada Limited, AECL-8366.1984.
    [79]Egloffstein, T. "Bentonite as sealing material in geosynthetic clay liners." in Geosynthetics: Applications, Design and Construction, De Groot, M.B., Den Hoedt, G,& Termaat, R.J., (eds).1996:799-806.
    [80]Abdullah, W.S., Alshibli, K. A., and Al-Zou'bi, M. S. Influence of pore water chemistry on the swelling behavior of compacted clays[J]. Applied Clay Science.1999,15:447-462.
    [81]Greenland, D.J., and Hayes, M.H.B. The chemistry of soil constituents, John Wiley & Sons, New York.1978.
    [82]沈珍瑶.世界各国高放废物地质处置最新进展[J].中国地质.2001,28(12):19-21.
    [83]刘特洪.工程建设中的膨胀土问题[M].北京:中国建筑工业出版社.1997:35-37.
    [84]Nakano, M., Amemiya, Y., Fujii, K., Ishida, T. and Ishii, A. Infiltration and Expansive Pressure in the Confined Unsaturated Clay, Transactions of the Japanese Society of Irrigation, Drainage and Reclamation Engineering.1984,112:55-66.
    [85]Iwata, S. and Tabuchi, T. Soil-Water Interactions, Dekken.1988.
    [86]SL 237-1999,土工试验规程[S].北京:中国水利水电出版社.1999.
    [87]Komine, H., and Ogata, N. Experimental study of swelling characteristics of compacted bentonite[J]. Canadian Geotechnical Journal.1994,31(4):478-490.
    [88]Alain, Lajudiel. Clay-based Materials for Engineered Barriers:A Review[A]. In:Takash Murakawi. Scientific Basis for Nuclear Waste Management(partl)[C]. New Mexico, USA: Materials research Society,1994:221-229.
    [89]Montes, H.G., Duplay, J., Martinez, L., and Mendoza, C. Swelling-shrinkage kinetics of MX80 bentonite[J]. Applied Clay Science.2003,22:279-293.
    [90]Xu, Y.F., Matsuoka, H., and Sun, D.A. Swelling characteristics of fractal-textured betonies and its mixtures [J]. App. Clay Science.2003,22:197-209.
    [91]Hideo, K. Simplified evaluation for swelling characteristics of bentonites[J]. Engineering Geology.2004,71:265-279.
    [92]Villar, M. V., and Lloret, A. Influence of temperature on the hydromechanical behaviour of a compacted bentonite [J]. App.Clay Sci.2004,26:337-350.
    [93]Villar, M.V. Thermo-hydro-mechanical characterisation of a bentonite from Cabo de Gata. A study applied to the use of bentonite as sealing material in high level radioactive waste repositories. Publicacion Tecnica ENRESA 01/2002, Madrid.2002:258.
    [94]Villar, M.V., and Lloret, A. Influence of dry density and water content on the swelling of a compacted bentonite[J]. Applied Clay Science.2008,39:38-49
    [95]Lloret, A., Romero, E., and Villar, M.V. FEBEX Ⅱ Project Final report on thermo-hydro-mechanical laboratory tests. Publicacion Tecnica ENRESA 10/04, Madrid. 2004:180.
    [96]Lloret, A, and Villar, M.V. Advances on the knowledge of the thermo-hydro-mechanical behaviour of heavily compacted "FEBEX" bentonite[J]. Physics and Chemistry of the Earth. 2007,32:701-715.
    [97]Haruo, S. Thermodynamic model on swelling of bentonite buffer and backfill materials[J]. Physics and Chemistry of the Earth.2008,33:538-543.
    [98]De'an Sun, Cui, H.B, and Sun, W.J. Swelling of compacted sand-bentonite mixtures[J]. Applied Clay Science.2009,43:485-492.
    [99]Baille, W., Tripathy, S., and Schanz, T. Swelling pressures and one-dimensional compressibility behaviour of bentonite at large pressures[J]. Applied Clay Science.2010,48: 324-333.
    [100]Sivapullaiah, P.V, Sridharan, A., and Stalin, V.K. Swelling behavior of soil-bebtibute mixtures[J]. Can.Geotech.1996,33:808-814.
    [101]Kawamura, K., Ichikawa, Y., Nakano, M., Kitayama, K., and Kawamura, H. Swelling properties of smectite up to 90℃ In situ X-ray diffraction experiments and molecular dynamic Simulations[J]. Engineering Geology.1999,54:75-79.
    [102]Cho, W.J., Lee, J.O., and Kang, C.H. Influence of temperature elevation on the sealingperformance of a potential bu.er material for a high-level radioactive waste repository[J]. Annals of Nuclear Energy.2000,27:1271-1284.
    [103]Pusch, R. Mineral-water interactions and their influence on the physical behavior of highly compacted Na bentonite[J]. Canadian Geotechnical Journal.1982,19(3):381-387.
    [104]Norrish, K. The swelling of montmorillonite[J]. Discuss.Faraday Soc.1954,18:120-134.
    [105]Quirk, J.P. Particle interaction and soil swelling[J]. Chem.1968,6:213-234.
    [106]Slade, P.G., Quirk, J.P., and Norrish, K. Crystalline swelling of smectite samples in concentrated NaCl solutions in relation to layer charge[J]. Clays Clay Miner.1991,39: 234-238.
    [107]Lagaly, G., and Fahn, R. Ullmann's Encyclopedia of Technical Chemistry,4th ed., Verlag Chemie, Weinheim.1993,23:311-326.
    [108]Laird, D.A., Shang, C., and Thompson, M.J. Hysteresis in crystalline swelling of smectite[J]. Coll. Int. Sci.1995,171:240-245.
    [109]Kozaki, T., Fujishima, A., Sato, S., and Ohashi, H. Self-diffusion of sodium ions in compacted sodium montmorillonite[J]. Nucl. Technol.1998,121:63-69.
    [110]Komine, H., and Ogata, N. Prediction for swelling characteristics of compacted bentonite[J]. Can.Geotech.1996,33:11-22.
    [111]Pusch, R., Kamland, O., and Hokmark, H. GMM-A general microstructural model for qualitative and quantitative studies of smectite clays. SKB Tech. Rep. (Stockholm, Sweden). 1990.
    [112]Huang W.H., and Chen, W.C. Swelling behavior of a potential material under simulated near field environment [J]. Journal of nuclear and technology.2004,41(12):1271-1279.
    [113]Hussain, A., and Alawaji. Swell and compressibility characteristics ofsand-bentonite mixtures inundated with liquids[J]. Applied Clay Science.1999,15:411-430.
    [114]Studds, P.G., Stewart, D.I., and Cousens, T.W. The effect of ion valance on the swelling behaviour of sodium bentonite. Polluted and Marginal Land-96, Proc.4th Int. Conf. on Re-use of Contaminated Land and Landfills[J]. Engineering Technics Press, Edinburgh. 1996:139-142.
    [115]Herbert. H.J., Kasbohm, J., Sprenger, H., Fernandez, A.M., and Reichelt, C. Swelling pressures of MX-80 bentonite in solutions of different ionic strength[J]. Physics and Chemistry of the Earth.2008,33:327-342
    [116]Moog, H.C., Gruner, M., and Herbert, H.-J. Zur quellung des Na-bentonits MX-80 in hochsalinaren losungen. Berichte der Deutschen Ton- und Tonmineralgruppee. V. DTTG, Band 7. Beitrage zur Jahrestagung, Zurich,30 August bis 1 September.2000:206-213.
    [117]Herbert, H.-J., Kasbohm, J., Moog, H.C., and Henning, K.-H. Long-term behaviour of the Wyoming bentonite MX-80 in high saline solutions[J]. Applied Clay Science.2004a, 26:275-291
    [118]Karnland, O., Olsson, S., Nilsson, U., and Sellin, P. Experimentally determined swelling pressures and geochemical interactions of compacted Wyoming betonies with highly alkaline solutions[J]. Physics and Chemistry of the Earth.2007,32:275-286.
    [119]Karnland, O., Nilsson, U., Weber, H., and Wersin, P. Sealing ability of Wyoming bentonite pellets foreseen as buffer material-Laboratory results[J]. Physics and Chemistry of the Earth. 2008,33:472-475.
    [120]Castellanos, E., Villar, M.V., Romero, E., Lloret, A., and Gens, A. Chemical impact on the hydro-mechanical behaviour of high-density FEBEX bentonite[J]. Physics and Chemistry of the Earth.2008,33:516-526.
    [121]刘月妙,徐国庆,刘淑芬,等.我国高放废物处置库缓冲/回填材料压实膨胀特性研究[J].铀矿地质.2001,17(1):4447.
    [122]叶为民,Schanz T,钱丽鑫,等.高压实高庙子膨润土GMZ00101的膨胀力特征[J].岩石力学与工程学报.2007,26(增2):3861-3865.
    [123]叶为民,黄伟,陈宝,郁陈,王驹.双电层理论与高庙子膨润土的体变特征[J].岩土力学.2009,30(7):1889-1903.
    [124]秦冰,陈正汉,刘月妙,等.高庙子膨润土的胀缩变形特性及其影响因素研究[J].岩土工程学报.2008,30(7):1005-1010.
    [125]秦冰,陈正汉,刘月妙,王驹.高庙子膨润土GMZ001三向膨胀力特性研究.岩土工程学报.2009,31(5):756-763.
    [126]刘泉声,王志俭.砂-膨润土混合物膨胀力影响因素的研究[J].岩石力学与工程学报.2002,21(7):1054-1058.
    [127]徐永福,史春乐.宁夏膨润土的膨胀变形规律[J].岩土工程学报.1997,19(3):95-98.
    [128]谢云,陈正汉,孙树国,等.重塑膨胀土的三向膨胀力试验研究[J].岩土力学.2007,28(8):1636-1642.
    [129]王志俭,刘泉声.密实砂-膨润土混合物膨胀特性的试验研究[J].岩土力学.2002,21(4):331-334.
    [130]卢肇钧,吴肖茗,孙玉珍,等.膨胀力在非饱和土强度理论中的作用[J].岩土工程学报.1997,19(5):20-27.
    [131]李培勇,杨庆,栾茂田,汪东林.膨润土加砂混合物膨胀特性研究[J].岩土力学.2009,30(5):1332-1342.
    [132]徐永福,孙德安,董平.膨润土及其与砂混合物的膨胀试验[J].岩石力学与工程学报.2003,22(3):451-455.
    [133]李国鼎,宋乾武.高放废物处置库缓冲材料膨胀势研究[C].高放废物地质处置研究论文集(第一集).中国核工业总公司科技局,1992:38-44.
    [1]王驹,范显华,徐国庆等主编.中国高放废物地质处置十年进展[M].北京:原子能出版社.2004.
    [2]刘月妙,陈璋如.内蒙古高庙子膨润土作为高放废物处置库回填材料的可行性[J].矿物学报.2001,21(3):541-543.
    [3]温志坚.中国高放废物深地质处置的缓冲材料选择及其基本性能[J].岩石矿物学杂志.2005,24(6):583-596.
    [4]温志坚.中国高放废物处置库缓冲材料物理性能[J].岩石力学与工程学报.2006,25(4):794-800.
    [5]刘晓东,罗太安,朱国平,等.缓冲回填材料内蒙古高庙子膨润土性能研究[J].中国核科技报告.2007,2:140-157.
    [6]Witherspoon, P.A. Geological Problems in Radioactive Waste Isolation, Second World Review[C]. California USA.1996.
    [7]Borje, T., and Bert, A. Migration of fission porducts and actinides in compacted bentonite (SKB Technical Report 86-140)[C]. Sweden:SKB.1986.
    [8]Borje, T. Radionuclide diffusion and mobilities in compacted bentonite (SKB Technical Report 83-84). Sweden[C]:SKB,1983.
    [9]Pusch R. Required physical and mechanical properties of buffer masses(KBS-TR-33). Sweden: SKB.1977.
    [10]Radhokrishra, H.S., and Chan, H.T. Thermal and physical properties of candidate buffer-backfill material for a nuclear fuel waste disposal vault[J]. Can. Geotech.1989,26(6): 629-639.
    [11]刘月妙,徐国庆,刘淑芬.高放废物地质处置库缓冲/回填材料性能测试[J].辐射防护1998,18(4):290-295.
    [12]郭永海,杨天笑,刘淑芬.高放废物处置库甘肃北山预选区水文地质特征研究[J].铀矿地质.2001,17(3):184-189.
    [12]Japan Nuclear Cycle Development Institute[R]. Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan Support Report 2 Repository Design and Engineering Technology.2000, JNC TN 1410 2000-003.
    [13]郭明峰.皂土-碎石混合物之压实性质[D].台湾:中央大学,2000.
    [14]郭永海,王驹,刘淑芬,苏锐,吕川河.高放废物处置库预选区野马泉岩体地下水化学特征[J].原子能科学技术.2004,38(增):143-148.
    [15]刘莉,田丰,张明波.甘肃西部北山地区地下水类型及其富水特征[J].岩土工程界.2003,7(6):33-36.
    [16]GB178-1997,水泥强度试验用标准砂(S).北京:国家建设部.1997.
    [1]杨婷,刘晓东,罗太安等.高放废物处置库预选缓冲/回填材料液塑限测定试验研究[J].中国非金属矿工业导刊.2008,2:30-32.
    [2]中华人民共和国国家标准编写组.GB/T50123-1999土工试验方法标准[S].北京:中国计划出版社.1999.
    [3]ASTM Committee on Standards, ASTMD-4318 [S]. US:ASTM International.2004.
    [4]常土骠.工程地质手册(第三版)[M].北京:中国建筑工业出版社.1992.
    [5]Medley, E., Lindquist, E.S. The engineering significance of the scale-independence of some Franciscan melanges in California, USA.35th U S. Symposium, Balkema, Rotterdam.1995: 907-914.
    [6]Vallejole, and Mawbyr. Porosity influnence on the shear strength of granular material-caly mixtures[J]. Engineering Geology.2000,58(2):125-136.
    [7]Brandl, H. Mineral liners for hazardous waste containment[J]. Geotechnique.1992.42(1): 57-65.
    [8]Maio, D.C. Exposure of bentonite to salt solution:osmotic and mechanical effects[J]. Geotechnique.1996,46 (4):695-707.
    [1]王驹,范显华,徐国庆等主编.中国高放废物地质处置十年进展[M].北京:原子能出版社.2004.
    [2]刘月妙,陈璋如.内蒙古高庙子膨润土作为高放废物处置库回填材料的可行性[J].矿物学报.2001,21(3):541-543.
    [3]温志坚.中国高放废物深地质处置的缓冲材料选择及其基本性能[J].岩石矿物学杂志.2005,24(6):583-596.
    [4]温志坚.中国高放废物处置库缓冲材料物理性能[J].岩石力学与工程学报.2006,25(4):794-800.
    [5]刘晓东,罗太安,朱国平,等.缓冲回填材料内蒙古高庙子膨润土性能研究[J].中国核科技报告.2007,2:140-157.
    [6]沈珍瑶.世界各国高放废物地质处置最新进展[J].中国地质.2001,28(12):19-21.
    [7]刘特洪.工程建设中的膨胀土问题[M].北京:中国建筑工业出版社.1997.
    [8]卢肇钧,吴肖茗,孙玉珍,等.膨胀力在非饱和土强度理论中的作用[J].岩土工程学报.1997,19(5):20-27.
    [9]Japan Nuclear Cycle Development Institute[R]. Second Progress Report on Research and Development forthe Geological Disposal of HLW in Japan Support Report 2 Repository Design and Engineering Technology. JNC TN 1410 2000-003.2000.
    [10]Japan Nuclear Cycle Development Institute[R]. Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan Support Report 2 Repository Design and Engineering Technology. JNC TN 1410 2000-001.2000.
    [11]张虎元,梁建,刘吉胜,等.高庙子膨润土与砂混合物的击实性能研究[J].岩石力学与工程学报.2009,28(12):2585-2592.
    [12]中华人民共和国水利部.GB/T50123-1999,土工试验方法标准[S].北京:中国计划出版社.1999:132-132.
    [13]叶为民,Schanz, T.,钱丽鑫,等.高压实高庙子膨润土GMZ01的膨胀力特征[J].岩石力学与工程学报.2007,26(增刊2):3861-3865.
    [14]谢云,陈正汉,李刚,等.南阳膨胀土三向膨胀力规律研究[J].后勤工程学院报.2006,22(1):11-14,23.
    [15]谢云,陈正汉,孙树国,等.重塑膨胀土的三向膨胀力试验研究[J].岩土力学.2007,28(8):1636-1642.
    [16]Erzin, Y., and Erol, O. Swell pressure prediction by suction methods[J]. Engineering Geology. 2007,92:133-145.
    [17]秦冰,陈正汉,刘月妙,等.高庙子膨润土GMZ001三向膨胀力特性研究[J].岩土工程学报.2009,31(5):756-763.
    [18]Villar, M.V., and Lloret, A. Influence of temperature on the hydromechanical behaviour of a compacted bentonite[J]. Applied Clay Science.2004,26:337-350.
    [19]Komine, H., and Ogata, N. Experimental study of swelling characteristics of compacted bentonite[J]. Canadian Geotechnical Journal.1994,31(4):478-490.
    [20]刘泉声,王志俭.砂-膨润土混合物膨胀力影响因素的研究[J].岩石力学与工程学报.2002,21(7):1054-1058.
    [24]SL237-1999,土工试验规程(S).北京:中国水利水电出版社.1999.
    [25]张虎元,崔素丽,刘吉胜,等.混合型缓冲回填材料膨胀力试验研究[J].岩土力学.2012,31(10):3087-3095.
    [26]Xu, Y.F., Matsuoka, H., and Sun, D.A. Swelling characteristics of fractal-textured betonies and its mixtures[J]. App. Clay Science.2003,22:197-209.
    [27]王志俭,刘泉声.密实砂-膨润土混合物膨胀特性的试验研究[J].岩土力学.2000,21(4):331-334.
    [28]徐永福,史春乐.宁夏膨润土的膨胀变形规律[J].岩土工程学报.1997,19(3):95-98.
    [29]Komine, H., and Ogata, N. Experimental study on swellingcharacteristics of sand-bentonite mixture for nuclear waste disposal[J]. Soils and Foundations.1999,39(2):83-97.
    [30]Komine, H., and Ogata, N. New equations for swelling characteristics of bentonite-based buffer materials[J]. Can.Geotech.2003,40(2):460-475.
    [1]Boonsinsuk, P., Pulles, B.C., Kjartanson, B.H., and Dixon, D.A. Prediction of compactive effort for a bentonite-sand mixture[A]. In:Canadian Geotechnical Society.44th Canadian Geotechnical Conference[C]. Alberta, Canada:Canadian Geotechnical Society.1991: 64.1-64.12.
    [2]Japan Nuclear Cycle Development Institute. HI2 Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan [R]. Tokyo:JNC TN 1410.2000.
    [3]Johannesson, L.E, Borgesson, L., and Sanden, T. Compaction of Bentonite Blocks-Development of Technique for Industrial Production of Blocks Which Are Manageable by Man[R]. Swedish:SKB technical report TR 95-19.2005.
    [4]张虎元,梁建,刘吉胜,等.混合型缓冲回填材料压实性能研究[J].岩石力学与工程学报.2009,28(12):2585-2592.
    [5]Xu, Y.F, Matsuoka, H., and Sun, D.A. Swelling characteristics of fractal-textured betonies and its mixtures [J]. App. Clay Science,2003,22:197-209.
    [6]Komine, H., and Ogata, N. Experimental study of swelling characteristics of compacted bentonite[J]. Canadian Geotechnical Journal.1994,31(4):478-490.
    [7]Villar, M.V., and Lloret, A. Influence of temperature on the hydromechanical behaviour of a compacted bentonite [J]. App.Clay Sci.2004,26:337-350.
    [8]Sivapullaiah, P.V., Sridharan, A., and Stalin, V.K. Swelling behavior of soil-bebtibute mixtures[J]. Can.Geotech.1996,33:808-814.
    [9]刘月妙,徐国庆,刘淑芬,等.我国高放废物处置库缓冲/回填材料压实膨胀特性研究[J].铀矿地质.2001,17(1):4447.
    [10]叶为民,Schanz T,钱丽鑫,等.高压实高庙子膨润土GMZ01的膨胀力特征[J].岩石力学与工程学报.2007,26(增2):3861-3865.
    [11]王志俭,刘泉声.密实砂-膨润土混合物膨胀特性的试验研究[J].岩土力学.2002,21(4):331-334.
    [12]刘泉声,王志俭.砂-膨润土混合物膨胀力影响因素的研究[J].岩石力学与工程学报.2002,21(7):1054-1058.
    [13]李培勇,杨庆,栾茂田,汪东林.膨润土加砂混合物膨胀特性研究[J].岩土力学.2009,30(5):1332-1342.
    [14]张虎元,崔素丽,刘吉胜,等.混合型缓冲回填材料膨胀力试验研究[J].岩土力学.2010,31(10):3087-3095.
    [15]郭明峰.皂土-碎石混合物之压实性质[D].台湾:中央大学.2000.
    [16]王欣婷.缓冲回填材料在深层处置场模拟近场环境下回胀行为基础研究[D].硕士论文.国立中央大学.2004.
    [17]秦丽芳,乌天烽.振动压实机械[M].北京:人民交通出版社.1989.
    [18]鄂俊太,等.压路机选型与压实技术[M].北京:人民交通出版社.1991.
    [1]IAEA. Underground disposal of radioactive waste, basic guidance. R, STI/PUB/579.1981
    [2]Chapman, N.A., and McKinley, I.G. The Geological Disposal of Nuclear Waste. John Wiley & Sons.1989.
    [3]Pusch, R., and Yong, R.N. Microstructure of Smectite Clays and Engineering Performance. Taylor & Francis, Springer, London.2006.
    [4]Liu, Y.M., and Chen, Z.R. Bentonite from GaoMiaozi, inner mongolia as anideal buffer/backfilling material in handling highly radioactive wastes-A feasibility study[J]. Acta Mineralogica Sinica.2001,21(3):541-543.
    [5]Wen, Z.J. Selection and basic properties of China s buffer materials for high level radioactive waste repository[J]. Acta Petrologica Et Mineralogica.2005,24 (6):583-586.
    [6]Boonsinsuk, P., Pulles, B.C., Kjartanson, B.H., and Dixon, D.A. Prediction of compactive effort for a bentonite-sand mixture[A]. In:Canadian Geotechnical Society.44th Canadian Geotechnical Conference[C]. Alberta, Canada:Canadian Geotechnical Society.1991: 64.1-64.12.
    [7]Clemente, M.M. Hydraulic behaviors of bentonite based mixtures in engineered barriers[D]. Technical University of Catalonia.2003.
    [8]Japan Nuclear Cycle Development Institute. Repository design and engineering technology[R]. JNC. Supporting Report 3.1999.
    [9]Vaunat, J., and Gens, A. Analysis of the hydration of a bentonite seal in a deep radioactive waste repository Engineering[J]. Geology.2005,81:317-328.
    [10]张虎元,梁建,刘吉胜,等.混合型缓冲回填材料压实性能研究[J].岩石力学与工程学报.2009,28(12):2585-2592.
    [11]张虎元,崔素丽,刘吉胜,等.混合型缓冲回填材料膨胀力试验研究[J].岩土力学.2010,31(10):3087-3095.
    [12]张虎元,崔素丽,刘吉胜,等.混合型缓冲回填材料膨胀变形试验研究.岩土力学.2011,32(3):684-696.
    [13]张虎元,赵天宇,卢一亭,等.混合型缓冲回填材料渗透特性试验研究[J].岩石力学与工程学报.2011,30(增1):3149-3156.
    [14]张虎元,刘吉胜,崔素丽,等.石英砂掺量对混合型缓冲回填材料抗剪强度的控制机理[J].岩石力学与工程学报.2010,29(12):2533-2542.
    [15]张虎元,张明,崔素丽,等.混合型缓冲回填材料土水特征曲线测试与修正[J].岩石力学与工程学报.2011,30(2):382-390.
    [16]Quigley, R.M. Clay minerals against contaminant migration. Geotechnical News[J]. North American Geotechnical Community.1993,11(4):44-46.
    [17]Kaufhold, S., and Dohrmann, R. Stability of bentonites in salt solutions Ⅱ. Potassium chloride solution-Initial step of illitization?[J]. Applied Clay Science.2010,49(3):98-107.
    [18]Maio, C.D. Exposure of bentonite to salt solution:osmotic and mechanical effects[J]. Geotecnique.1996,46(4):695-707.
    [19]Norrish, K. The swelling of montmorillonite[J]. Discuss.Faraday Soc.1954,18:120-134.
    [20]Quigley, R.M. Clay minerals against contaminant migration[J]. Geotechnical News, North American Geotechnical Community.1993,11(4):44-46.
    [21]Slade, P.G., Quirk, J.P., and Norrish, K. Crystalline swelling of smectite samples in concentrated NaCl solutions in relation to layer charge[J]. Clays Clay Miner.1991,39: 234-238.
    [22]Kozaki, T., Fujishima, A., Sato, S., and Ohashi, H. Self-diffusion of sodium ions in compacted sodium montmorillonite[J]. Nucl. Technol.1998,121:63-69.
    [23]Komine, H., and Ogata, N. Prediction for swelling characteristics of compacted bentonite[J]. Can. Geotech.1996,33:11-22.
    [24]Xu, Y.F., Matsuoka, H., and Sun, D.A. Swelling characteristics of fractal-textured bentonite and mixtures[J]. Appl. Clay Sci.2003,22:197-209.
    [25]Pusch, R., and Schomburg, J. Impact of microstructure on the hydraulic conductivity of undisturbed and artificially prepared smectitic clays[J]. Engineering Geology.1999,54: 167-172.
    [26]Hussain, A., and Alawaji. Swell and compressibility characteristics ofsand-bentonite mixtures inundated with liquids[J]. Applied Clay Science.1999,15:411-430.
    [27]Studds, P.G., Stewart, D.I., and Cousens, T.W. The effect of ion valance on the swelling behaviour of sodium bentonite. Polluted and Marginal Land-96, Proc.4th Int. Conf. on Re-use of Contaminated Land and Landfills. Engineering Technics Press, Edinburgh.1996: 139-142.
    [28]Karnland, O., Olsson, S., Nilsson, U., and Sellin, P. Experimentally determined swelling pressures and geochemical interactions of compacted Wyoming betonies with highly alkaline solutions[J]. Physics and Chemistry of the Earth.2007,32:275-286.
    [29]郭永海,杨天笑,刘淑芬.高放废物处置库甘肃北山预选区水文地质特征研究.铀矿地质.2001,17(3):184-189.
    [30]郭永海,王驹,刘淑芬,苏锐,吕川河.高放废物处置库预选区野马泉岩体地下水化学特征[J].原子能科学技术.2004,38(增):143-148.
    [31]Wang, J., Su, R., Chen, W.M., Guo, Y.H., Jin, Y.X., Wen, Z.J.,and Liu, Y.M. Deep geological disposal of high-level radioactive wastes in china[J]. Chinese Journal of Rock Mechanics and Engineering.2006,25(4):649-658.
    [32]Van, O.H. An Introduction to Clay Colloid Chemistry,2nded. Krieger Publishing, Florida. 1991.
    [33]Sposito, G. The Surface Chemistry of Soils. Oxford Univ. New York.1984.
    [1]郝月清,朱建强.膨胀土胀缩变形的有关理论及评析.水土保持通报.1999,19(6):58-61.
    [2]Grime, R.E. Claymineralogy[M]. New York:McgrawHill.1986.
    [3]贾东亮,丁述理等.膨胀土工程性质的研究现状与展望.河北建筑科技学院学报.2003,20(3):34-59.
    [4]钱耀光,刘炜.膨胀土地基处理技术综述.山西建筑.2008,34(13):118-119.
    [5]Van, O.H. An Introduction to Clay Colloid Chemistry,2nd ed. Krieger Publishing, Florida.
    [6]Sposito, G. The Surface Chemistry of Soils. Oxford Univ. Press, New York.1984.
    [7]王志俭,刘泉声.密实砂-膨润土混合物膨胀特性的试验研究[J].岩土力学.2002,21(4):331-334.
    [8]Komine, H., and Ogata, N. Experimental study on swellingcharacteristics of sand-bentonite mixture for nuclear waste disposal[J]. Soils and Foundations.1999,39(2):83-97.
    [9]Komine, H., and Ogata, N. New equations for swelling characteristics of bentonite-based buffer materials [J]. Can.Geotech.2003,40 (2):460-475.
    [10]徐永福,史春乐.宁夏膨润土的膨胀变形规律[J].岩土工程学报.1997,19(3):95-98.
    [11]Borgesson, L., Johannesson, L.-E., Sanden, T., and Hemelind, J. Modelling of the physical behaviour of water saturated claybarriers. Laboratory tests, material models and finite element application. SKB TR 95-20.1995.
    [12]Karnland, O., Sanden, T., Johannesson, L.-E., Eriksen, T., Jansson, M., Wold, S., Pedersen K., Motamedi, M., and Rosborg, B. Long term test of buffer material. Final report on the pilot parcels. SKB TR-00-22.2000.
    [13]Miller, E.A., and Sowers, G.F. The Strength Characteristics of Soil-Aggregate Mixtures[J]. Highway Research Board Bull.1957,183:16-23.
    [14]Vallejo, L.E., and Mawby, R. Porosity influence on the shear strength of granular material-clay mixtures[J]. Engineering Geology.2000,58(2):125-136.
    [15]Borgesson, L., Johannesson, L.-E., and Gunnarsson, D. Influence of soil structure heterogeneities on the behaviour of backfill materials based on mixtures of bentonite and crushed rock[J]. Applied Clay Science.2003,23:121-131.
    [16]Zhang, H.Y., Liu, J.S., Cui, S.L., and Liang, J. Controlling mechanism of quartz sand content on shear strength of bentonite-sand mixtures as buffer/backfill material[J]. Chinese Journal of Rock Mechanics and Engineering.2010,29 (12):2533-2542.
    [17]Japan Nuclear Cycle Development Institute. H12 Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan[R]. JNC TN 1410 2000-003.2000.
    [18]叶为民,Schanz, T.,钱丽鑫,等.高压实高庙子膨润土GMZ01的膨胀力特征[J].岩石力学与工程学报.2007,26(增刊2):3861-3865.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700