小波多尺度分析在地球重力场中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为地球的重要物理特征之一,地球重力场是地球物质分布和地球旋转运动信息的综合反应。地球重力场的知识是地球科学,特别是大地测量学、固体地球物理学和海洋学的巨大进展中不可缺少的重要基础信息源。因此,对地球重力场的认知和研究成为现代大地测量学及其它相关地学学科发展的最活跃的领域之一。
     重力探测技术的突破性进展,以及和空间技术、卫星定位技术发展的交叉并进,从根本上改变了重力场研究中技术落后于理论的局面。多样化、高精度的重力探测手段提供了丰富的地球重力场信息,这将导致以前所未有的精度和分辨率确定地球重力场的精细结构成为可能。另外,技术上的突破也强化了地球重力场在地球科学中的作用和地位。在这种新形势下,地球重力场的研究必须要在理论和方法上有新的突破。
     小波分析是近几十年来发展极为迅猛的一个数学分支,由于具有局部化分析和多尺度分析的能力,在众多学科领域得到广泛应用。在地球重力场的理论研究和数值计算等方面,小波分析也有不少的应用。本文把小波多尺度分析的思想和方法应用到地球重力场研究中,以期在重力场数据处理与解释方面得到一些有益的结果。利用多尺度分析方法来研究地球重力场具有以下几个优点:(1)地球重力场是一个多尺度场,它在不同的空间尺度或时间尺度上表现出不同的特性,多尺度分析有助于更好地认识地球重力场的性质。(2)空间和时间多尺度是地学过程和现象的客观属性,研究这些过程和现象需要不同尺度的重力场信息,对地球重力场的多尺度分析有利于研究各种尺度的地球动力学现象。(3)除了地面重力数据外,可用的重力场数据还有航空重力数据、卫星测高数据、卫星跟踪卫星数据、甚至卫星重力梯度数据等,这些数据是利用不同传感器在不同高度上观测得到的,对重力场具有不同的分辨能力,是重力场在不同尺度上的表现。要最佳的逼近地球重力场必须融合所有类型的观测数据,而多尺度分析在多尺度数据的联合处理方面具有一定的优势。因此,将多尺度分析用于地球重力场的研究有望改进一些传统的理论和方法。
     本文围绕“多尺度”这个主线展开,研究了小波多尺度分析在重力信号向下
The earth's gravity field, one of the important physical features of the earth, is the overall reaction of the mass distribution inside the earth and the rotation of the earth. The knowledge of the earth's gravity field is the information indispensable to geosciences, especially to geodesy, solid geophysics and oceanography. So comprehension and investigation of the earth's gravity field is one of the most active areas in modern geodesy and other relative sciences.The rapid progress of gravimetry technique as well as spatial technique and satellite positioning technique have radically changed the situation that the theory of geophisical geodesy is behind its technique. Multiform gravimetry techniques with high precision provide a plentiful supply of information about the earth's gravity field, which makes it possible to determine the refined structure of the earth's gravity field with unprecedented precision and resolution. On the other side, the breakthrough of the technique makes the earth's gravity field plays a more important role in geosciences. Facing the new situation, breakthroughs in theories and methods for the determination of the earth's gravity field are expected urgently.Wavelet analysis is a new branch of mathematics which has been developed rapidly in recent decades. It has extensive applications in many areas of science because of its ability in localization and multiscale analysis. There are also lots of applications of wavelet analysis in the research of the earth's gravity field. In this thesis, we will apply the theory and methods of wavelet multiscale analysis to study the earth's gravity field, and expect to get some beneficial results for the processing and interpretation of gravity field data. There are some advantages to study the earth's gravity field using multiscale analysis. Firstly, the earth's gravity field is a multiscale field, which behaves different characteristics on different space or time scales. So multiscale analysis is helpful to understand the characteristics of the earth's gravity field. Secondly, spatio-temporal multiscale is an impersonal property of processes and phenomena in geosciences. To study these processes and phenomena needs information of the gravity field on various scales. Therefore, multiscale analysis of the earth's gravity field is beneficial to recognize geodynamic phenomena with different scales. Finally, besides surface gravity data, there are also airborne gravity data,
    satellite-to-satellite tracking data, altimeter data and satellite gravity gradient data available to determine the earth's gravity field. These data have different resolving power to the earth's gravity field, because they are observed at different altitudes using various sensors. In order to approximate the earth's gravity field optimally, all these observations should be combined together. Multiscale analysis has a good property for multiscale data fusion. In a word, multiscale analysis can be used to improve some traditional theories and methods of the earth's gravity field.Taking "multiscale" as the theme, applications of wavelet multiscale analysis in downward continuation of gravity signal, gravity anomaly inversion, multiresolution gravity data fusion, and so on, are studied in this dissertation. The detailed contents and main results are as following:1. The general concept of scale and its notions in geosciences are introduced. The importance of multiscale analysis to understanding is discussed. And the multiscale characteristic of the earth's gravity field is analyzed. It is pointed out that applying multiscale analysis to investigate the earth's gravity field has a great importance and practical value. Whereafter applications of wavelet analysis in geodesy and its progress are reviewed, especially focused on approximation of gravity field, filtering and estimation, improvement of numerical algorithms, and geophysical interpretation. Plenty of successful applications show that wavelet analysis has been a powerful tool for theoretical research and data processing in geodesy.2. As the research basis for this thesis, wavelet analysis theory is introduced, including concept of wavelet, continuous wavelet transform and its properties, dyadic wavelet transform, 2D orthonormal wavelet transform, multiscale analysis and its fast algorithm, etc. By contrasting wavelet transform with Fourier transform in detail, the advantage of wavelet analysis in multiscale analysis and time-frequency localization analysis is illustrated. More than that, the basic principles and methods for singularity detection, signal filtering and denoising by wavelet are also discussed in this thesis.3. The theory of wavelet multiscale edge analysis is introduced into the earth's gravity field, and applied to downward continuation of gravity signals. The downward continuation is a seriously ill-posed problem, which is always a focus and difficulty in the research of the earth's gravity field. Summary remarks on present methods of downward continuation are made, and a new downward continuation method based on multiscale edges constraint is proposed. Using the potential wavelet, the physical
    signification and the characteristic of the wavelet transform and the multiscale edge of gravity signals are analyzed, and a relation between the scale parameter and the altitude is founded. It is proved that, the wavelet transform on scale .s of the gravity signal fz at altitude z is the horizontal gradient of upward continued signal/z+bo multiplying by a factor s, and the multiscale edges are composed of pointswhere the gravity signals at different heights change sharply. Multiscale edges of gravity signals at different heights are relative to the distribution of anomalous mass inside the earth, so they should have the same shape except for a translation of the scale. Based on this fact, multiscale edges can be used as a constraint condition. Simulated examples show that the multiscale edges constraint method can efficiently restrain noise and improve the downward continued results, and has practical value for the downward continuation of airborne gravimetry data.4. Applications of multiscale analysis to the gravity anomaly inversion are explored. Firstly, a simple introduction to the concept of the gravity anomaly inversion and some of existing inversion methods is given. And some of applications of wavelet analysis to the potential field data processing are reviewed. Secondly, the method for the separation of gravity anomalies based on wavelet transform is modified using multiscale edge analysis. In contrast to the traditional approaches, the modified method can be used to perform simultaneously radial multiple decomposition and transverse separation of gravity anomalies to isolate an individual anomaly. Finally, to some simple geological units, the forward models of multiscale edges are deduced, and their properties are summarized. Sequently, an inversion method based on multiscale edges is put forward, which models are very simple and have a good antinoise performance. The outstanding ability of this new method is that geometry parameters and density can be inverted at the same time. The inversion method based on multiscale edges provides a new way to the gravity anomaly inversion, which has a fruitful prospect for geophysical inversion.5. At present, Least-Squares Collocation (LSC) is the unique method which can combine heterogenous types of gravity field information to determine the earth's gravity field. There are different viewpoints on collocation depicted by different mathematical concepts, such as stochastic collocation, deterministic collocation and statistical collocation. A descriptive review about the advantages and drawbacks of these LSC methods is given in the thesis. Based on the Fourier transform form of
    minimum mean square error principle;the connection between the collocation results and data resolution is discussed. The collocation formulas depending on data resolution are deduced;and the estimation formula for the aliasing error due to the finite sampling resolution is also given. Following on;the theory of multiresolution least square collocation(MLSC) is expatiated and its formulas are derived combining the stepwise collocation with wavelet multiscale analysis. Results of MLSC are compared with those of traditional collocation. MLSC provides a new possible technique to fuse gravity data with different precision and resolution;however;more work should be done to verify whether the MLSC method is superior to the traditional collocation.6. When processing a huge amount of data;collocation needs to solve large systems of linear equations. In the stationary case collocation equations can be solved in the frequency domain using Fourier transform. But Fourier transform can not be used in the non-stationary case because of its disability to deal with the non-stationary signals. Wavelet transform can be used to solve the non-stationary collocation equations;however;it can not diagonalize the system matrix like Fourier transform. Based on the wavelet method;Wavelet-Vaguelette method for the solution of non-stationary collocation is presented. The new method integrates the good performances of Fourier transform and wavelet transform;and may improve the computational efficiency significantly for some non-stationary collocation problems.
引文
[1] Ballani L. Solving the inverse gravimetric problem: on the benefit of wavelets, IAG.Syrup Proc, Vol 114. Springer Berlin Heidelberg New York, 1996, 151~161
    [2] Barthelmes F, Ballani L, Klees R. On the Application of Wavelets in Geodesy. In: Sanso F(cd.), Proceedings of Ⅲ Hotine-Marussi Symposium on Mathematical Geodesy, Springcr-Verlag, Berlin, 1994. 394~403
    [3] Benciolini B. A Note on Some Possible Geodetic Applications of Wavelets. Section Ⅳ Bulletin, International Association of Geodesy, 1994, 17~21
    [4] Berman Z, Baras J S. Properties of the maxima and zero-crossings representations. IEEE Trans. Signal Proc., 1993, 41(12): 3216~3231
    [5] Bhimasankakam V. Interpretation of gravity anomalies due to finite inclined dikes using Fourier transformation. Geophysics, 1977, 42: 51~59
    [6] Blaha T, Hirsch M, Keller W, et al. Application of a spherical FFT approach in gravimetry. Journal of Geodesy, 1996, 70(11): 663~672
    [7] Bosehetti F, Homby P and Horowitz F G. Geophysical feature removal by multiseale edge suppression. ISSPA99, Proceedings of the 5th International Symposium on Signal Processing and its Applications, Brisbane, Australia, 1999. 935~939
    [8] Bruton A M, Sehwarz K P. The Use of Wavelets for the Analysis and De-noising of Kinematic Geodetic Measurements. In: Sehwarz(ed.), Geodesy Beyond 2000—The Challenges of the First Decade, IAG Symposia, Springer-Verlag, Berlin, 2000, vol.121: 227~232
    [9] Chanpin D A.宋国耀 译.小波变换:一种解释重磁数据的新方法.物探化探译丛,1998,(增刊):104~108
    [10] Chao B F, Baito I. Wavelet Analysis Provides a New Tool for Studying Earth's Rotation. Eos, Trans. Amer. Geophy. Union, 1995, 76(6): 161~165
    [11] Cheinway Hwang and Rieky Kao. TOPEX/POSEIDON-Derived Space-Time Variations of Kuroshio Current: Applications of a Gravimetric Geoid and Wavelet Analysis. Geophysical Journal Intematiortal, 2002, 151 (3): 835~847
    [12] Cianciara B, Marcar H. Interpretation of gravity anomalies by means of local power spectra. Geophys. Prospec., 1975, 24: 273~286
    [13] Daubeehies I. Ten lectures on wavelet. Society for Industrial and Applied Math. Philadephia:Permsylvania, 1992
    [14] Daubechies I. The wavelet transform, time frequency localization and signal analysis. IEEE Transaction on Information Theory, 1990, 36: 961~1006
    [15] Donoho D. Nonlinear solution of linear inverse problem by wavelet-vaguelette decomposition. Appl. Comput. Harmon. Anal., 1995, 2 (2): 101~126
    [16] Donoho, D L. De-noising by soft-thresholding. IEEE Trartsaetions on Information Theory, 1995, 41 (3): 613~627
    [17] Ei-Sayed M, Tarek M, et al. A new method for shape and depth determinations from gravity data. Geophysics. 2001, 66(6): 1774-1780
    [18] Fadi A B. Some investigations on local geoid determination from airborne gravity data. UCGE report, No. 20154, University of Calgary, 2001
    [19] Fedi M and Quarta T. Wavelet analysis for the regional-residual and local separation of potential field anomalies. Geophysical Prospecting, 1998, 46(5) :507~525
    [20] Freeden W, Schneider F. An Intergrated Wavelet Concept of Physical Geodesy. Journal of Geodesy, 1998, 72:259-281
    [21] Freeden W, Pereverzev S. Spherical Tikhonov Regularization Wavelets in Satellite Gravity Gradiometry with Random Noise. Journal of Geodesy, 2001, 74:730-736
    [22] Freeden W, Windheuser U. Combined Spherical Harmonic and Wavelet Expansion—A Future Concept in Earth's Gravitational Determination. Applied and Computational Harmonic Analysis, 1997, 4:1-37
    [23] Freeden W, Windheuser U. Spherical Wavelet Transform and Its Discretization. Advances in Computational Mathematics, 1996, 5 (1): 51-94.
    [24] Freeden W. Multiscale modeling of spaceborne geodata. B.GTeubner Stuttgart, Leibpzig, 1999
    [25] Freeden W. Wavelet-Methods for Resolution of Boundary Value Problem. Paper presented at Symposium on Mathematical and Physical Foundations of Geodesy, Stuttgart, 1993
    [26] Gibert D, Holshneider M, LeMouel J L. Wavelet Analysis of the Chandler Wobble. J. Geophys.Res., 1998, 103 (B11):27 069-27 089
    [27] Gilbert A, Keller W. Deconvolution with Wavelets and Vaguelettes. Journal of Geodesy, 2000, 74:306-320
    [28] Gregory Beylkin, Robert Cramer. Toward Multiresolution and Efficient Representation of Gravitational Fields . Celestial Mechanics and Dynamical Astronomy , 2002 , 84(1): 87-104
    [29] Heiskanen W A, MoritzH著; 卢福康,胡国理译. 物理大地测量学.北京:测绘出 版社, 1979
    [30] Holden D J, Archibald N J, Boschetti Fand Jessell M W. Inferring geological structures using wavelet-based multiscale edge analysis and forward models . Exploration Geophysics, 2001, 31 (4): 67-71
    [31] Hornby P, Boschetti F, Horovitz F G. Analysis of Potential Field Data in the Wavelet Domain. Geophysical Journal International, 1999, 137:175-196
    [32] Huang J L. Computational methods for the discrete downward continuation of the earth gravity and effects of the lateral topographical mass density variation on gravity and the geoid: [P.h. D. dissertation]. University of New Brunswick, 2002
    [33] Jekeli C, Li Xiaopeng. Using Second-Generation Wavelets on a Sphere to Generate a Multiresolution of Gravity Anomalies. Paper presented at XXIII General Assembly of IUGG, Sapporo, Japan, 2003
    [34] Jorge W D, Paulo T L, et al. Gravity inversion of basement relief constrained by the knowledge of depth at isolated points. Geophysics, 1996, 61 (6): 1702-1714
    [35] Kaula W M. Statistical and harmonic anlaysis of gravity. J. Geophys. Res., 1959, 64:2401-2421
    [36] Keller W. A Wavelet Approach for the Construction of Multi-grid Solvers for Large Linear System. Paper presented at the IAG 2001 Scientific Assembly, Budapest, 2001
    [37] Keller W. A Wavelet Approach to Non-stationary Collocation. In: Schwarz (ed.), Geodesy Beyond 2000—The Challenges of the first Decade, LAG Symposia. Berlin: Springer-Verlag, 2000, vol.121: 208~213
    [38] Keller W. A Wavelet Solution to Non-stationary 2D Collocation. In: Sideris M G(Ed.): Gravity, Geoid and Geodynamics 2000. IAG Symposium Banff, Alberta, canada, July 31-August4, 2000. Berlin:Springer-Verlag, 2001, 79~85.
    [39] Keller W. Geoid Computation by Collocation in Scaling Spaces. In: Forsberg R(ed.), Geodesy on Move, LAG Symposia, Berlin: Springer-Verlag, 1998, vol. 119: 176~181
    [40] Keller W. Harmonic Downward Continuation Using a Haar Wavelet Frames. In: Schwarz K P(ed.), Proceedings of the LAG Symposium on Airborne Gravity Field Determination, 1995
    [41] Keller W. Wavelet-Vaguelette Decomposition as a Tool in Local Geoid Detemination. Phys. Chem. Earth(A), 1999, 24(1): 15~18
    [42] Kicey C J, Lennard C J. Unique reconstruction of band-limited signals by a Mallat-Zhang wavelet transform algorithm. Fourier Analysis and App., 1997, 3 (1): 63~82
    [43] Koch K R. Numerical examples for downward continuation of gravity anomalies. OSU report, No. 112. Ohio State University, Columbus, Ohio. 1968
    [44] Kotsakis C, Bayoud F A, Sideris M G. Wiener filter modifications for gravity field data using different resolution levels and non-stationary noise. In: Sideris M G(Ed.):Gravity, Geoid and Geodynamics 2000. IAG Symposium Banff, Alberta, canada, July 31-August 4, 2000. Berlin:Springer-Verlag, 2001
    [45] Kotsakis C, Sideris M G. A modified Wiener-type filter for geodetic estimation problems with non-stationary noise. Journal of Geodesy, 2001, 75(12): 647~660
    [46] Kotsakis C, Sideris M G. Aliasing Error Modelling in Single-input Single-output Linear Estimation Systems. In: Sideris M G (ed.), Gravity, Ceoid and Geodynamics 2000. LAG Symposium Banff, Alberta, canada, July 31 - August 4, 2000. Berlin: Springer-Verlag, 2001. 43~49
    [47] Kotsakis C. Multiresolution aspects of linear approximation methods in Hilbert spaces using gridded data. UCGE report No. 20138, Department of Geomatics Engineering, University of Calgary, Canada, 2000b
    [48] Kotsakis C. The Multiresolution Character of Collocation. Journal of Geodesy, 2000a, 74 (3-4): 275~290
    [49] Krarup T. A contribution to the mathmatical foundations of physical geodesy. Report of the Danish Geodetic Institute, No.44, Copenhagen. 1969
    [50] Kumar P, Foufoula-Georgiou E. Wavelet analysis for geophysical applications. Rev. Geophys, 1997, 34(5): 385~412
    [51] Kusche J, Ilk K H, Rudolph S, Thalhammer M. Application of Spherical Wavelets for Regional Gravity Field Recovery—A Comparative Study. In: Forsberg R(ed.), Geodesy on Move, IAG Symposia, Springer-Verlag, Berlin, 1998, vol.119: 213~218
    [52] Li Chun-Feng. Scaling and wavelet-based singularity analysis for geological and geophysical interpretation:[Ph.D, dissertation]. University of Tulsa, United States, 2002
    [53] Li Y G and Oldenburg D W.袁桂琴 译.利用小波交换快速反演大型磁数据.物探化探译丛,1998,4:23~28
    [54] Li Zuofa. Multiresolution Approximation of the Gravity Field. Journal of Geodesy, 1996, 70: 731~739
    [55] Liu Q, Sideris M G. Wavelet evaluation of the Stokes and Vening Meinesz intergrals. Journal of Geodesy, 2003, 77(5-6): 345~356
    [56] Mallat S著.杨力华,戴道清,黄文良等译.信号处理的小波导引.北京:机械工业出版社,2002
    [57] Mallat S, Hwang W L. Singularity dactation and processing with wavelets. IEEE Transactions on information theory, 1992, 38(2): 617~643
    [58] Mallat S, Zhong Sifen. Characterization of signals from multiscale edges. IEEE Transactions on pattern analysis and machine intelligence, 1992, 114 (7): 710~732
    [59] Mallat S. Multifrequency channel decomposition and wavelet models. IEEE ANS. On Acoustics, 1989, 37: 209~211
    [60] Mallat S. Wavelet for a vision. Proceedings of the IEEE, 1996, 84(4): 604~614
    [61] Mareschal J C. Inversion of potential field data in Fourier transform domain. Geophysics, 1985, 50(4): 685~691
    [62] Martelet G, Sailhac P, Moreau F and Diament M. Characterization of geological boundaries using 1-D wavelet transform on gravity data: Theory and application to the Himalayas. Geophysics, 2001, 66(4): 1116~1129
    [63] Moreau F, Gibert D, Holschneider M, Saracco G. Wavelet Analysis of Potential Fields. Inverse Problem, 1997, 3: 165~178
    [64] Moreau F, Gilbert D, Holdschneider M and Saracco. Identification of sources of potential fields with the continuous wavelet transform: Basic theory, Journal of Geophysical Research, 1999, 104(B3): 5003~5013
    [65] Moritz H. Interpolation and prediction of gravity ang their accuracy. OSU Report No.24. Ohio State University, Columbus, Ohio. 1962
    [66] Moritz H著;宁津生,管泽霖等译.高等物理大地测量学.北京:测绘出版社,1984
    [67] Novak P, Heck B. Downward continuation and geoid determination based on band-limited airborne gravity data. Journal of Geodesy, 2002, 76(5): 269~279
    [68] Nychka D, Wikle C, Royle J A. Multiresolution models for nonstationary spatial covariance functions. Statistical Modeling, 2002, 2: 315~331
    [69] Olugbenga Esan. Spectral analysis of gravity field data and errors in view of sub-decimeter geoid determination in Canada. UCGE report, No. 20137, University of Calgary, 2000
    [70] Pawlowski R S, Hansen R O. Gravity anomly seperation by wiener filtering. Geophysics, 1990, 55 (5): 539~548
    [71] Rene Forsberg, Downward continuation of airborne gravity data, IAG Symposium G4, IUGG ⅩⅪ General Assembly Boulder, Colorado, July, 1995, 11~14
    [72] Salamonowiez P H. A Wavelet Based Gravity Model with an Application to the Evaluation of Stokes' Integral. In: Sideris M G(ed.), Gravity, Geoid and Geodynamics, IAG Symposia, Springer-Verlag, Berlin, 2000
    [73] Sanso F and Sideris M. On the similarities and differences between system theory and least squares collocation in physical geodesy. Bolletino di Geodesia e Affini, 1997, LⅥ: 173~206
    [74] Sanso F. The minimum mean square estimation error principle in physical geodesy (stochastic and non-stochastic interpretation). Boll. Geod. Sci. Affi., 1980, 39 (2): 111~129
    [75] Schmidt M, Fabert O, Shum C K. Multi-resolution Representation of the Gravity Field Using Spherical Wavelet. Paper presented at the Heiskanen Symposium in Geodesy, Ohio State University, 2002
    [76] Sidefis M G, Liu Q w. Wavelet Evaluation of Some Singular Geodetic Integrals. Paper presented at ⅩⅩⅢ General Assembly of IUGG, Sapporo, Japan, 2003
    [77] Sideris M G. On the use of heterogeneous noisy data in spectral gravity field modeling methods. Journal of Geodesy, 1996, 70(8): 470~479
    [78] Sybery F. A Fourier method for the regional-residual problem of potential fields. Geophys. Prospec., 1972, 20: 47~75
    [79] Telford W M, Geldart L P, Sheriff R E, Keys D A. Applied geophysics. Cambridge University Press, 1976
    [80] Tieng-Chang Lee and Shawn Biehler. Inversion modelling of gravity with prismatic mass bodes. Geophysics, 1991, 56(9): 1365~1376
    [81] Tscheming C C, Rubek F, Forsberg R. Combining airborne and ground gravity using collocation. In Forsberg et al. ed. Geodesy on the Move, IAG Symposia, Vol. 119. Springer Verlag, 1997. 18~23
    [82] Vanicek P, Sun W et al.. Downward continuation of Helmert's gravity. Journal of Geodesy, 1996, 71 (1): 21~34
    [83] Wen H J. On the use of wavelets and multiscale model in altimetry:[Ph.D. dissertation]. Graz University of Technology, Austria, 1999
    [84] Wolfgang F. Notions of Scale in Geosciences. In: Nengebauer H J and Simmer C(ed.): LNES97. Berlin:Springer-Verlag, 2003. 17~39
    [85] Zoran C, Martin V. Discrete-time wavelet extrema representation: design and consistent reconstruction. IEEE transactions on signal processing, 1995, 43 (3): 681~693
    [86] 陈玉东.复小波变换反演重力异常.物探与化探,2003,27(5):354~361
    [87] 程正兴.小波分析算法与应用.西安:西安交通大学出版社.1998
    [88] 高德章,候遵泽,唐建.东海及邻区重力异常多尺度分解.地球物理学报,2000,43(6):842~849
    [89] 郭仁忠 著.空间分析(第二版).北京:高等教育出版社,2001
    [90] 候遵泽,杨文采,刘家琦.中国大陆地壳密度差异多尺度反演.地球物理学报,1998,41(5):642~651
    [91] 候遵泽,杨文采.中国重力异常的小波分解与多尺度分析.地球物理学报,1997,40(1):85~95
    [92] 胡明城 著.跨世纪的大地测量.北京:国家测绘科技信息研究所,1994
    [93] 黄金维,高豫麒.海水质量变化对重力场时变之贡献.两岸重力及水准面研讨会论文集,台湾:台湾交通大学土木工程学系,2003,153~163
    [94] 黄维彬.近代平差理论及其应用.北京:解放军出版社,1992
    [95] 李弼程,罗建书 编著.小波分析及其应用.北京:电子工业出版社,2003
    [96] 李伯衡.多尺度数字地球模型及其在地球科学研究中的应用.中国科学工程,2000,2(4):12~15:
    [97] 李建成,陈俊勇,宁津生,晁定波 著.地球重力场逼近理论与中国2000似大地水准面的确定.武汉:武汉大学出版社,2003
    [98] 李健,周云轩,卢焱.重磁场多尺度分析原理.世界地质,2000,19(4):379~391
    [99] 李军,周成虎.地球空间数据集成多尺度问题基础研究.地球科学进展,2000,15(1):48~52
    [100] 李水根,吴纪桃编著.分形与小波.北京:科学出版社,2002
    [101] 李志林,朱庆.数字高程模型(第二版).武汉:武汉大学出版社,2003
    [102] 李宗杰.杨林,王勤聪.二维小波变换在位场数据处理中的应用试验研究.石油物探,1999,36(3):70~88
    [103] 梁锦文.位场向下延拓的正则化方法.地球物理学报,1989,32(5):600~608
    [104] 柳林涛,许厚泽,航空重力测量数据的小波滤波处理,地球物理学报,2004,47(2):490~494
    [105] 柳林涛.小波基本理论及其在大地测量等领域中的应用:[博士论文].武汉:中国科学院测量与地球物理研究所,1999
    [106] 罗志才,宁津生,晁定波.卫星重力梯度向下延拓的谱方法.测绘学报,1997,26(2):168~175
    [107] 宁津生,晁定波,金标仁.现代大地测量在研究相关地学问题中的作用.地球物理学进展,1997,12(1):1~14
    [108] 宁津生,陈军,晁定波 著.数字地球与测绘.北京:清华大学出版社:广州:暨南大学出版社,2001
    [109] 宁津生,罗志才,杨沾吉等.深圳市1km高分辨率厘米级高精度大地水准面的确定.测绘学报,2003,32(2):102~107
    [110] 宁津生,汪海洪,罗志才.小波分析在大地测量中的应用及其进展.武汉大学学报(信息科学版),2004,29(8):659~663
    [111] 秦前清,杨宗凯 编著.实用小波分析.西安:西安电子科技大学出版社,1994
    [112] 汤志伟,王建国,黄顺吉.使用小波分析的图像融合算法.电子科技大学学报,2000,29(2):121~125
    [113] 汪海洪,罗志才,宁津生.多尺度边缘在重力场信号向下延拓中的应用.两岸重力及水准面研讨会论文集,台湾:台湾交通大学土木工程学系,2003,363~372
    [114] 汪海洪,罗志才.非稳态配置的Wavelet-Vaguelette解法.见:大地测量与地球动力学进展,武汉:湖北科学技术出版社.2004,844~850
    [115] 王东明.地球重力场的球面小波分析研究.地学前缘,2000,7(增刊):171~178
    [116] 王刚,林江发,张赛珍 等.胜利油区航磁异常的小波分析.中国图形图像学报,1994,4(9):785~789
    [117] 王妙月 等 编著.勘探地球物理学.北京:地震出版社,2003
    [118] 王谦身 等 编著.重力学.北京:地震出版社,2003
    [119] 王兴涛,夏哲仁,石磐等.航空重力测量数据向下延拓方法比较.地球物理学报,2004,47(6):1017~1022
    [120] 文成林,周东华 著.多尺度估计理论及其应用.北京:清华大学出版社,2002
    [121] 谢永华,傅德胜.基于小波变换的多源遥感图像的信息融合.遥感技术与应用,2001, 16(4):260~263
    [122] 徐长发,李国宽.实用小波方法.武汉:华中科技大学出版社,2004
    [123] 徐晨,赵瑞珍,甘小冰著.小波分析·应用算法:北京:科学出版社,2004
    [124] 杨福生 著.小波变换的工程分析与应用.北京:科学出版社,1999
    [125] 杨强文,吴晓平.航空重力数据向下延拓的倒锥法(上).解放军测绘学院学报,1998,15(3):169~172
    [126] 杨强文.地球重力场球面小波展开及其应用:[博士论文].郑州:解放军信息工程大学,2001
    [127] 杨文采,施志群,候遵泽,程振炎.离散小波变换与重力异常多重分解.地球物理学报,2001,44(4):534~541
    [128] 于锦海,朱灼文,郭建峰.利用小波理论计算物理大地测量中的奇异积分.武汉测绘科技大学学报,1999,24(1):36~39
    [129] 于锦海,朱灼文,彭富清.Molodensky边值问题中解析延拓法g1项的小波算法.地球物理学报,2001,44(1):112~119
    [130] 张志永,丁平.河西重力变化的小波分解与地震活动关系的研究.地壳形变与地震,1997,17(3):26~32
    [131] 章传银.近海多种卫星测高应用技术研究:[博士论文].武汉:武汉大学,2002
    [132] 赵瑞珍.小波理论及其在图像信号处理中的算法研究:[博士论文].西安:西安电子科技大学,2001
    [133] 周永宏,郑大伟等.日长变化、大气角动量和ENSO:1997~1998厄尔尼诺和1998~1999拉尼娜信号.测绘学报,2001,30(4):288~292
    [134] 朱秋煜,莫玉龙,韩锦成.实用信号多尺度边缘重建算法.上海大学学报(自然科学版),1996,2(1):67~72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700