大规模互联电力系统动态等值方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国电网正处于高速发展时期,随着特高压输电工程的展开,不远的将来将形成全国性的大规模特高压互联电网。随之会出现一系列的重大技术问题,如稳定性、动态安全评估和协调控制等问题。直接对如此大规模的电网进行详细分析是很难进行的,因此本文利用电力系统仿真软件PSS/E,重点研究了在新环境下大规模互联电力系统的动态等值方法。主要内容包括:
     (1)基于电力系统仿真软件PSS/E研究了电力系统同调动态等值原理,其中同调机聚合采用了保留发电机方程系数矩阵结构不变的时域聚合方法。该方法不同于传统的在频域中拟合传递函数的聚合方法,它是在时域中直接求取等值机参数,不需要迭代优化。利用PSS/E中的IPLAN语言编制了程序,程序可以直接在PSS/E中使用。并将该方法应用于实际大电网—华东电网,对华东电网进行动态等值简化。通过对华东电网的原型系统和等值系统的动态仿真分析和比较,结果表明建立的动态等值系统能够很好地反映原型系统的动态特性。
     (2)提出了一种基于物理等效的适用于电力系统电磁暂态仿真的动态等值方法,该方法根据等值后主网架母线短路容量保持不变的原理对系统进行动态等值。利用该方法对实际电网—江苏电网进行动态等值简化,通过对原型系统和等值系统的动态仿真分析比较,表明等值效果良好,能够满足工程分析要求。利用等值系统分析了江苏电网中交流系统故障或直流系统系统故障时系统的稳定性,由仿真得到的动态响应特性曲线表明无论是交流系统故障或直流系统故障,江苏电网都能保持稳定。
     (3)提出了一种新的基于全球定位系统(GPS)的同步相量测量单元(PMU)的动态等值方法,该方法根据同步相量测量单元测得的同步动态数据来等值简化外部系统,等值系统的参数利用参数辨识技术得到。该方法的优点1)PMU能够进行相量测量,量测数据同步且精度高,保证了量测量的准确性和可靠性。2)不需要外部系统的拓扑结构、参数及运行状态等详细信息。通过原型系统和等值系统仿真分析和模态分析比较,表明等值系统能够较好地再现原型系统的主要动态性能。
     (4)提出了一种改进的含变异算子的两粒子群(PSO)优化辨识算法来估计等值系统参数。该算法构造了两个独立的粒子群,通过对各粒子群分别设置不同的速度上限,来使两个粒子群以不同的步长在搜索空间中并行寻优。为充分利用两个粒子群的最优信息,在各粒子群的进化过程中引入另一粒子群的全局最优值,从而实现两粒子群间的信息交互和共享。并在此基础上设计了一个特殊的变异算子来保证寻优过程中种群的多样性。该算法具有跳出局部极值的能力,提高粒子的搜索优化效率。
Power grids are developing quickly in China. Large-scale national power grid will be formed in the future with the progress of Ultra High Voltage (UHV) transmission project. However, some forthcoming technical problems, such as stability, dynamic security assessment and coordination control et al., will emerge. It is difficult to analyze such a large-scale power system thoroughly. So, this dissertation focuses on the dynamic equivalents methods for large-scale power systems using the power system simulation software PSS/E. The main results are organized as follow:
     (1) The theory of coherency equivalents is studied under power system simulation software PSS/E, in which the coherent generators are aggregated based on structure preservation of the coefficient matrices in time domain. The aggregation method obtains directly the parameters of the equivalent generator without iterations unlike traditional aggregation method which needs iterations to optimize the parameters by means of fitting the transfer function in frequency domain. The program in IPLAN language in PSS/E can be implemented directly in the system. The aggregation method was used to reduce East China power grid. The original system and the equivalent system are simulated respectively. The comparison shows that the equivalent system can preserve the main dynamic characteristics of the original system well.
     (2) A practical method for power system electromagnetic analysis is presented based on physical equivalence, which matches a short-circuit current after the reduction of the power system to that of the original system. It was applied to reduce Jiangsu power grid. Simulation on the original system and the reduced system were performed and compared. Results show that the reduced system can maintain the essential dynamic behavior of the original with good accuracy. The stability of Jiangsu power grid was studied in the reduced system when disturbance in AC system or DC system occurred. Results indicate that Jiangsu power grid is stable whether AC system or DC system is disturbed.
     (3) A new dynamic equivalent method based on PMU is proposed, which reduces the external system on the basis of the synchronous dynamic measurements obtained by PMU and parameter identification. There are the following advantages: (a) PMU can provide the high-precision phasor measurement synchronously insuring the accuracy and reliability of the measurements. (b) It does not need the detailed information about the configuration, parameters and operating state of the external system. Results of simulation and mode analysis on the original system and the reduced system show that the reduced system can resemble the main dynamic characteristic of the original system well.
     (4) An improved two PSO algorithm with mutation operator was presented to optimize and identify the parameter of the equivalent system. The algorithm constructs two populations separately, and makes them seek the best position with different steps in the problem space by setting different maximum velocities. In order to share optimal information between two populations, the global optimum of one population is used by the other in the evolution process. Furthermore, a mutation operator is introduced to assures the diversity of the individual in the evolution process. The algorithm can escape from the local optimum and enhance the search ability of the particles.
引文
[1] 周鹤良.努力提高电能质量 适应电力发展新形势.电气技术,2006,(8):7-10.
    [2] 吴敬儒,徐永禧.我国特高压交流输电发展前景.电网技术,2005,29(3):1-4.
    [3] 吴敬儒,陈剑波.我国电力工业发展规划问题.中国电力,2005,38(9):10-14.
    [4] 袁清云.特高压直流输电技术现状及在我国的应用前景.电网技术,2005,29(14):1-3.
    [5] P. Kundur, J. Paserba, V. Ajjarapu, et al. Definition and classification of power system stability. IEEE Transactions on Power Systems, 2004, 19(2): 1387-1401.
    [6] 汤广福.2006年国际大电网会议系列报道—高压直流输电和电力电子技术.电力系统自动化,2006,31(8):1-6.
    [7] 陈向宜,陈允平,李春艳等.构建大电网安全防御体系——欧洲大停电事故的分析及思考.电力系统自动化,2007,31(1):4-8.
    [8] 程改红.交直流电力系统恢复控制[博士论文].杭州:浙江大学,2006.
    [9] 韩祯祥,吴浩,薛禹胜.2006年国际大电网会议系列报道—(一)主题报告及综合讨论会.电力系统自动化,2006,30(20):1-4.
    [10] Dl.电力系统安全稳定导则.北京:中国电力出版社,2001.
    [11] 薛禹胜.时空协调的大停电防御框架(一)从孤立防线到综合防御.电力系统自动化,2006,30(1):8-16.
    [12] Y.N. Yu. Electric Power System Dynamics. New York: Academic Press, 1983.
    [13] 余贻鑫,陈礼义.电力系统的安全性和稳定性.北京:科学出版社,1988.
    [14] 倪以信,陈寿孙,张宝霖.动态电力系统的理论与分析.北京:清华大学出版社,2002.
    [15] D. Z. Fang, T. S. Chung, A. K. David. Fast transient stability estimation using a novel dynamic equivalent reduction technique. IEEE Transactions on Power Systems, 1994, 9(2): 995-1001.
    [16] R. Belhomme, H. Zhao, M. Pavella. Power system reduction techniques for direct transient stability methods. IEEE Transactions on Power Systems, 1993, 8(2): 723-729.
    [17] A. M. Miah. Simple dynamic equivalent for fast online transient stability assessment, IEE Proceedings-Generation, Transmission and Distribution, 1998, 145(1): 49-55.
    [18] 周鲲鹏.基于在线动态等值和能量函数的电力系统暂态稳定控制研究[博士论文].武汉:武汉大学,2004.
    [19] C. M. Lo, C. T. Tse. Application of coherency-based dynamic equivalents in small perturbation stability studies. IEE 2nd International Conference on Advances in Power System Control, Operation and Management, Hong Kong, 1993, 916-921.
    [20] M. Saeki, H. Matsuoka, Y. Nagae, et al. Development and application of a new approach to the construction of external equivalents for use by power system stabilizing controllers. Electrical Engineering in Japan, 2001, 134(4): 1-9,.
    [21] Y. P. Wang, Z. H. Wang, Y. H. Han. A new external equivalent model for decentralized control design in multimachine power system. IEE International Conference on Advances in Power System Control, Operation and Management, Hong Kong, 1991, 1: 86-89.
    [22] 侯科峰,余贻鑫.电力系统实用动态安全域的降维与还原.电力系统自动化,2004,28(23):16-21.
    [23] Y. Yu, Z. Feng., K. Hou, et al. Application of Dynamic Equivalents in Determining Practical Dynamic Security Region. 2005 IEEE/PES Transmission and Distribution Conference and Exhibition: Asia and Pacific Dalian, China, 2005, 1-6.
    [24] P. Ju, X. Y. Zhou. Dynamic equivalents of distribution systems for voltage stability studies. IEE Proceedings-Generation, Transmission and Distribution, 2001, 148(1): 49-53.
    [25] 周小尧,鞠平.用于电压稳定分析的配电网动态等值.电工技术学报,2001,16(6):76-80.
    [26] 邱晓燕,李兴源,王建等.电力系统实时等值及电压稳定性分析.电网技术,2004,28(7):7-9.
    [27] J. J. Sanchez-Gasca, J. H. Chow. Power system reduction to simplify the design of damping controllers for interarea oscillations. IEEE Transactions on Power Systems, 1996, 11(3): 1342-1349.
    [28] 孟杰,谢小荣,童陆园.电力系统阻尼控制设计中的降阶状态空间模型辨识.中国电力,2006,39(8):1-5.
    [29] 张风营,朱守真.基于网络实时动态等值的自适应可控串补控制器.电网技术,2006,30(5):38-43.
    [30] B. Kirby, E. Hirst. Maintaining system blackstart in competitive bulk-power markets. Proceedings of the America Power Conference, Chicago, IL, April, 1999.
    [31] D. L. Hackett. Coherency Based Dynamic Equivalent Application Experience-Eastern Us Data Base. IEEE Conference Proceedings of Power Industry Computer Applications Conference, 1979, PICA-79: 307-313.
    [32] R. Podmore. A Comprehensive Program For Computing Coherency-based Dynamic Equivalents. IEEE Conference Proceedings of Power Industry Computer Applications, 1979, PICA-79: 298-306.
    [33] L. Wang, M. Klein, S. Yirga, et al. Dynamic Reduction of Large Power Systems for Stability Studies. IEEE Transactions on Power Systems, 1997, 12(2): 889-895.
    [34] W. W. Price, A. W. Hargrave, B. J. Hurysz, et al. Large-scale system testing of a power system Dynamic Equivalencing Program. IEEE Transactions on Power Systems, 1998, 13(3): 768-774.
    [35] R. J. Newell, M. D. Risan, L. Allen, et al. Utility Experience With Coherency-Based Dynamic Equivalents Of Very Large Systems. IEEE Transactions on Power Apparatus and Systems, 1985, PAS-104(11): 3056-3063.
    [36] R. J. Galarza, J. H. Chow, W. W. Price, et al. Aggregation of exciter models for constructing power system dynamic equivalents. IEEE Transactions on Power Systems, 1998, 13(3): 782-788.
    [37] J. H. Chow, J. R. Winkelman, M. A. Pai, et al. Model reduction and energy function analysis of power systems using singular perturbation techniques. 25th IEEE Conference on Decision and Control, 1986,1206-1211.
    [38] S. T. Y. Lee, F. C. Schweppe. Distance Measures and Coherency Recognition for Transient Stability Equivalents. IEEE Transactions on Power Apparatus and Systems, 1973, PAS-92(5): 1550-1557,1973.
    [39] F. Wu, Y. K. Tsai. Identification of groups of epsilon-coherent generators. IEEE Transactions on Circuits and Systems, 1983, CAS-30(4): 234-241.
    [40] F. Wu, N. Narasimhamurthi. Coherency identification for power system dynamic equivalents. IEEE Transactions on Circuits and Systems, 1983,30(3): 140-147.
    [41] N. Gacic, A. I. Zecevic, D. D. Siljak. Coherency recognition using epsilon decomposition. IEEE Transactions on Power Systems, 1998,13(2): 314-319.
    
    [42]余贻鑫,赵国刚.电力系统暂态稳定研究中相关发电机群的识别.天津大学学报,1987, (1):1—7.
    [43] G. Troullinos, J. F. Dorsey. Coherency and model reduction: state space point of view. IEEE Transactions on Power Systems, 1989,4(3): 988-995.
    [44] H. Kim, G. Jang, K. Song. Dynamic reduction of the large-scale power systems using relation factor. IEEE Transactions on Power Systems, 2004, 19(3): 1696-1699.
    [45] M. H. Haque. Identification of coherent generators for power system dynamic equivalents using unstable equilibrium point. IEE Proceedings-Generation, Transmission and Distribution, 1991,138(6): 546-552.
    [46] M. H. Haque, A. H. M. A. Rahim. An efficient method of identifying coherent generators using Taylor series expansion. IEEE Transactions on Power Systems, 1988, 3(3): 1112-1118.
    [47] M. H. Haque, A. H. M. A. Rahim. Identification of coherent generators using energy function. IEE Proceedings-Generation, Transmission and Distribution, 1990, 137(4): 255-260.
    [48] K.L. Lo, Z. Z. Qi, D. Xiao. Identification of coherent generators by spectrum analysis, lEE Proceedings-Generation, Transmission and Distribution, 1995, 142(4): 367-371.
    [49] Wang Mang-Hui, Chang Hong-Chan. Novel clustering method for coherency identification using an artificial neural network. IEEE Transactions on Power Systems, 1994, 9(4): 2056-2062.
    [50] Liu Mingbo. On-line identification of coherent generators using multilayer feedforward neural networks. Proceedings of the IEEE International Conference on Industrial Technology,1994, 803-807.
    [51] T. N. Nababhushana, K. T. Veeramanju, Shivanna. Coherency identification using growing self organizing feature maps. 1998 International Conference on Energy Management and Power Delivery, 1998, 1: 113-116.
    [52] Wang Shu-Chen, Huang Pei-Hwa. Fuzzy c-means clustering for power system coherency. 2005 IEEE International Conference on Systems, Man and Cybernetics, 2005, 3: 2850-2855.
    [53] S. Zhao, X. Chang, Y. Pan, et al. A reduced order method for swing mode eigenvalue calculating based on fuzzy coherency recognition. 1998 International Conference on Power System Technology, 1998, 2: 1402-1405.
    [54] 任立,陈允平.小波变换和人工神经网络在电力系统动态等值中的应用.武汉水利电力大学学报,1998,3(5):47-50.
    [55] 赵书强,常鲜戎.电力系统同调机群识别的一种模糊聚类方法.电网技术,2001,25(4):10-13.
    [56] L. Oscar Yucra, P. D. M. Fette. Electromechanical identity recognition as alternative to the coherency identification. 39th International Universities Power Engineering Conference, 2004, 2: 1078-1085.
    [57] D. Chaniotis, M. A. Pai. Model reduction in power systems using Krylov subspace methods. IEEE Transactions on Power Systems, 2005, 20(2): 888-894.
    [58] 诸骏伟.电力系统分析(上册).北京:水利电力出版社,1995.
    [59] 吴际舜.电力系统静态安全分析.上海:上海交通大学出版社,1984.
    [60] T. L. Baldwin, L. Mili, A. G. Phadke. Dynamic Ward equivalents for transient stability analysis. IEEE Transactions on Power Systems, 1994, 9(1): 59-67.
    [61] A. J. Germond, R. Podmore. Dynamic aggregation of generating unit models. IEEE Transaction on Power Apparatus and Systems, 1978, PAS-97(4): 1060-1069.
    [62] M. L. Ourari, L. A. Dessaint, D. Van-Que. Dynamic equivalent modeling of large power systems using structure preservation technique. IEEE Transactions on Power Systems, 2006, 21(3): 1284-1295.
    [63] M. L. Ourari, L. A. Dessaint, V. Q. Do. Generating units aggregation for dynamic equivalent of large power systems. 2004 IEEE Power Engineering Society General Meeting, 2004, 2: 1535-1541.
    [64] W. W. Price, E. M. Gulachenski, P. Kundur, et al. Testing of the Modal Dynamic Equivalents Technique. IEEE Transactions on Power Apparatus and Systems, vol. PAS-97(4): 1366-1372, 1978.
    [65] S.E.M. de Oliveira, J. F. de Queiroz. Modal dynamic equivalent for electric power systems Ⅰ. Theory. IEEE Transactions on Power Systems, 1988, 3(4): 1723-1730.
    [66] S.E.M. de Oliveira, A. G. Massaud. M6dal dynamic equivalent for electric power systems Ⅱ. Stability Simulation tests. IEEE Transactions on Power Systems, 1988, 3(4): 1731-1737.
    [67] K. Nojiri, S. Suzaki, K. Yakenaka, et al. Modal reduced dynamic equivalent model for analog type power system simulator. IEEE Transactions on Power Systems, 1997, 12(4): 1518-1523.
    [68] W. W. Price, D. N. Ewart, E. M. Gulachenski, et al. Dynamic equivalents from on-line measurements. IEEE Transactions on Power Apparatus and Systems,1975,94(4): 1349-1357.
    [69] P. Ju, L. Q. Ni, F. Wu. Dynamic equivalents of power systems with online measurements. Part 1: Theory. IEE Proceedings-Generation, Transmission and Distribution, 2004, 151(2): 175-178.
    [70] P. Ju, F. Li, N. G. Yang, et al. Dynamic equivalents of power systems with online measurements Part 2: Applications. IEE Proceedings-Generation, Transmission and Distribution, 2004, 151 (2): 179-182.
    [71] A. M. Stankovic, A. T. Saric. Transient power system analysis with measurement-based gray box and hybrid dynamic equivalents. IEEE Transactions on Power Systems, 2004, 19(1): 455-462.
    [72] 傅周兴,何文林.基于GPS同步时钟的相同测量在电力系统中的应用研究.继电器,2001,29(7):31-34.
    [73] 周孝信.面向21世纪的电力系统技术.电气时代,2000,2:6-8.
    [74] A. G. Phadke. Synchronized phasor measurements in power systems. IEEE Computer Applications in Power, 1993, 6(2): 10-15.
    [75] 张景超,张承学,吴方劫.基于北斗卫星导航定位系统的PMU可行性研究.电力系统自动化,2005,19(15):86-88.
    [76] 韩英铎,林孔兴.电力系统中的三项前沿课题:柔性输电技术,智能控制,基于GPS的动态安全分析与监测系统.清华大学学报(自然科学版),1997,37(7):1-6.
    [77] 李大虎.基于广域测量系统的电力系统实时动态监测与在线安全分析的研究[博士论文].武汉:华中科技大学,2006.
    [78] 闵勇,丁仁杰.电力系统全网同步监测系统.清华大学学报(自然科学版),1997,37(7):86-88.
    [79] Liu Ying-Hong, Lin Chih-Wen, Chen Ching-Shan. A new PMU-based fault detection/location technique for transmission lines with consideration of arcing fault discrimination-part Ⅰ: theory and algorithms. IEEE Transactions on Power Delivery, 2004, 19(4): 1587-1593.
    [80] Liu Ying-Hong, Lin Chih-Wen, Chen Ching-Shan. A new PMU-based fault detection/location technique for transmission lines with consideration of arcing fault discrimination-part Ⅱ: performance evaluation. IEEE Transactions on Power Delivery, 2004, 19(4): 1594-1601.
    [81] 王克英,陈学允.计及PMU的状态估计精度分析及配置研究.中国电机工程学报,2001,21(8):29-33.
    [82] 时伯年,崔文进,吴京涛等.基于GPS同步相量的电力系统暂态稳定预测控制.清华大学学报(自然科学版),2002,42(3):316-320.
    [83] 黄莹,徐政.基于同步相量测量单元的直流附加控制器研究.中国电机工程学报,2004,24(9):7-12.
    [84] 黄莹,徐政,杨靖萍.基于同步相量测量单元的观测线性化最优直流附加控制器.电网技术,2005,29(3):18-22.
    [85] 黄莹.交直流电力系统动态特性分析方法研究[博士论文].杭州:浙江大学,2005.
    [86] 闵勇.黑龙江东部网区域稳定控制系统的研究与开发.清华大学学报(自然科学版),1997,37(7):106-108.
    [87] L. Ljung. System dentification: theory for the user. Beijing: Tsinghua University Press, 2002.
    [88] 沈善德.电力系统辨识.北京:清华大学出版社,1993.
    [89] 李言俊,张科.系统辨识理论机应用.北京:国防工业出版社,2002.
    [90] M. Wien. Application of system identification in engineering. New York: Springer-Verlag, 1988.
    [91] C. SANKARAN. Power quality. New York: CRC Press, 2002.
    [92] M. T. Chen, Z. M. Yu. Determination of frequency variation effect on DFT-based algorithms for harmonic and flicker measurements. 2003 IEEE PES Transmission and Distribution Conference and Exposition, 2003, 1: 422-427.
    [93] X. Y. Wang, J. H. Zheng, S. Z. Zhu, et al. Parameter identification and database management system in power systems. 2002 International Conference on Power System Technology, 2002, 4: 2043-2046.
    [94] 鞠平,倪腊琴等.同步发电机参数辨识的模拟进化方法.电工技术学报,1999,14(5):1-5.
    [95] 鞠平,李德丰.感应电动机综合负荷的参数辨识.电工技术学报,1999,14(1):2-6.
    [96] 龙云,王建全.基于粒子群游算法的同步发电机参数辨识.大电机技术,2003,(1):8-11,2003.
    [97] Hsu Yuan-Yih, Liu Chuan-Sheng, Luor Tain-Syh, et al. Experience with the identification and tuning of excitation system parameters at the second nuclear power plant of Taiwan power company. IEEE Transactions on Power Systems, 1996, 11 (2): 747-753.
    [98] 江全元,曹一家.基于遗传算法的HVDC附加次同步阻尼控制器的设计.中国电机工程学报,2002,22(11):87-91.
    [99] 金丽成,刘海峰,徐政.多馈入直流输电系统小信号调制器的协调优化整定.电力系统自动化,2003,27(16):10-15.
    [100] C. T. Pan, C. M. Liaw. An adaptive controller for power system load-frequency control. IEEE Transactions on Power Systems, 1989, 4(1): 122-128, 1989.
    [101] K. W. V. To, A. K. David. Adaptive controller for an HVDC power system. 1993 IEEE Conference on Computer, Communication, Control and Power Engineering,1993, 5: 252-254.
    [102] 谢小荣,崔文进.STATCOM无功电流的鲁棒自适应控制.中国电机工程学报,2001,21(4):35-39.
    [103] 窦春霞.组合电力系统混合自适应稳定器的设计.电力系统自动化,2000,24(10):21-23.
    [104] M. Aldeen, F. Crusca. Observer-based fault detection and identification scheme for power systems. IEE Proceedings-Generation, Transmission and Distribution,2006, 153(1): 71-79.
    [105] 徐文,李益民.模糊辨识在电力设备故障诊断中的应用.电力系统自动化,1996,20(3):45-49.
    [106] 陈陈,朱子述.频响分析法及其模型辨识检测和诊断变压器绕组变形的研究[博士论文].上海:上海交通大学,2001.
    [107] H. K. Temraz, M. M. A. Salama, A. Y. Chikhani. Review of electric load forecasting methods. 1997 IEEE Conference on Electrical and Computer Engineering. 1997, 1: 289-292.
    [108] 张小平,王伟.短期电力负荷预报的自适应模糊神经网络方法.电力系统自动化1998,22(1):30-32.
    [109] 张民,鲍海,晏玲等.基于卡尔曼滤波的短期负荷预测方法的研究.电网技术,2003,27(10):39-42.
    [110] J. M. Ramfirez, R. G. Valle. A technique to reduce power systems electromechanical models. IEEE Transactions on Energy Conversion, 2004, 19(2): 456-458.
    [111] I. A. Hiskens. Nonlinear dynamic model evaluation from disturbance measurements. IEEE Transactions on Power Systems, 2001, 16(4): 702-710.
    [1] Z. Zhao, F. Zheng, Y. Huan, et al. On-line parameter identification for large synchronous machines. 2nd International Conference on Advances in Power System Control, Operation and Management, 1993, 2: 839-842.
    [2] 丁坚勇.同步发电机动态参数辨识研究[博士论文].武汉:武汉大学,2002.
    [3] 王锡凡.现代电力系统分析.北京:科学出版社,2003.
    [4] 西安交通大学等合编.电力系统计算.北京:水利电力出版社,1978.
    [5] 倪以信,陈寿孙,张宝霖.动态电力系统的理论与分析.北京:清华大学出版社,2002.
    [6] 马大强.电力系统机电暂态过程.北京:水利电力出版社,1988.
    [7] 朱守真,曲祖义.负荷建模和参数辨识遗传进化算法.清华大学学报(自然科学版),1999,39(3):37-40.
    [8] 鞠平,李德丰.感应电动机综合负荷的参数辨识 电工技术学报,1999,14(1):2-6.
    [9] J.B. Patton,J. llic. Aggregate load parameter identification using general regression neural networks. Electrical and Computer Engineering, 1994. Conference Proceedings. 1994 Canadian Conference on, 1994, 72-76.
    [1] Power Technologies Inc. PSS/E application manual and operation manual, PSS/E brochure. Power Technologies Inc, 2004.
    [2] Power Technologies Inc. IPLAN program mannual, PSS/E brochure. Power Technologies Inc, 2004.
    [3] W.W. Price, A. W. Hargrave, B. J. Hurysz, et al. Large-scale system testing of a power system dynamic equivalencing program. IEEE Transactions on Power Systems, 1998, 13(3): 768-774.
    [4] 岳程燕.大规模电力系统动态等值中聚合问题的研究[硕士论文].北京:中国电力科学研究院,2001.
    [5] 倪以信,陈寿孙,张宝霖.动态电力系统的理论与分析.北京:清华大学出版社,2002.
    [6] Y.N. Yu. Electric Power System Dynamics. New York: Academic Press, 1983.
    [7] J. Machowski, J. W. Bialek, J. R. Bumby. Power System Dynamics and Stability. New York: John Wiley & Sons Ltd, 1997.
    [8] 许剑冰,薛禹胜,张启平.电力系统同调动态等值的述评.电网技术,2005,29(14):91-95.
    [9] R. Podmore. Identification of Coherent Generators for Dynamic Equivalents. IEEE Transactions on Power Apparatus and Systems, 1978, PAS-97(4): 1344-1354.
    [10] E. J. S. Pires de Souza, A. M. Leite da Silva. An efficient methodology for coherency-based dynamic equivalents. IEE Proceedings C. Generation, Transmission and Distribution, 1992, 139(5): 371-382.
    [11] R. Nath, S. S. Lamba, K. S. Prakasa Rao. Coherency Based System Decomposition into Study and External Areas Using Weak Coupling. IEEE Transactions on Power Apparatus and Systems, 1985, PAS-104(6): 1443-1449.
    [12] 王成山,杜瑞建,张家安.区域互联电力系统同调机群的分布式协同识别.电网技术,2005,29(11):9-13.
    [13] C. M. Lo, C. T. Tse. Application of coherency-based dynamic equivalents in small perturbation stability studies. 2nd International Conference on Advances in Power System Control, Operation and Management, 1993, 2: 916-921.
    [14] 陈礼义,孙丹峰.电力系统动态等值中发电机组详细模型的参数集合.中国电机工程学报,1989,9(5):30-39.
    [15] 余贻鑫,陈礼义.电力系统的安全性和稳定性.北京:科学出版社,1988.
    [16] T. L. Baldwin, L. Mili, A. G. Phadke. Dynamic Ward equivalents for transient stability analysis. IEEE Transactions on Power Systems, 1994, 9(1): 59-67.
    [17] W. L. Snyder Jr, S. Vemuri, A. D. Papalexopoulos, et al. External network modeling-recent practical experience. Power Systems, IEEE Transactions on, 1994, 9(1): 216-228.
    [18] 诸骏伟.电力系统分析(上册).北京:水利电力出版社,1995.
    [19] R. Nath, S. S. Lamba. Development of coherency-based time-domain equivalent model using structure constraints. IEE Proceedings C. Generation, Transmission and Distribution, 1986, 133: 165-175.
    [20] M. L. Ourari, L. A. Dessaint, V. Q. Do. Generating units aggregation for dynamic equivalent of large power systems. 2004 IEEEPower Engineering Society General Meeting, 2004, 2: 1535-1541.
    [21] M. L. Ourari, L. A. Dessaint, V. Q. Do. Dynamic equivalent modeling of large power systems using structure preservation technique. IEEE Transactions on Power Systems, 2006, 21(3): 1284-1295.
    [1] M. Abdel-Rahman, A. Semlyen, M. Reza Iravani. Two-layer network equivalent for electromagnetic transients. IEEE Transactions on Power Delivery, 2003, 18(4): 1328-1335.
    [2] A. S. Morched, J. H. Ottevangers, L. Marti. Multi-port frequency dependent network
    equivalents for the EMTP. IEEE Transactions on Power Delivery, 1993, 8(3): 1402-1412.
    [3] A. Semlyen, M. R. Iravani. Frequency domain modeling of external systems in an Electro-Magnetic Transients Program. IEEE Transactions on Power Systems, 1993, 8(2): 527-533.
    [4] H. Singh, A. Abur. Multi-port equivalencing of external systems for simulation of switching transients. IEEE Transactions on Power Delivery, 1995, 10(1): 374-382.
    [5] 吴晔,殷威扬.用于直流系统动态性能研究的等值计算.高电压技术,2004,30(11):18-20.
    [6] 中国南方电网公司.交直流电力系统仿真技术.北京:中国电力出版社,2007.
    [7] 赵良,李蓓,卜广全.云南—广东士800 kV直流输电系统动态等值研究.电网技术,2006,30(16)6-10.
    [8] 徐政.交直流电力系统动态行为分析.北京:机械工业出版社,2004.
    [9] 杨汾艳,徐政.直流输电系统典型暂态响应特性分析.电工技术学报,2005,20(3):45-52.
    [10] 戴熙杰.直流输电基础.北京:水利电力出版社,1990.
    [1] A.G. Phadke. Synchronized phasor measurements in power systems. IEEE Computer Applications in Power, 1993, 6(2): 10-15.
    [2] Lin Ying-Hong, Liu Chih-Wen and Chen Ching-Shan. A new PMU-based fault detection/location technique for transmission lines with consideration of arcing fault discrimination-part Ⅰ: theory and algorithms. IEEE Transaction on Power Delivery, 2004, 19(4): 1587-1593.
    [3] Ota Yutaka, Ukai Hiroyuki, Nakamura Koichi, et al. Evaluation of stability and electric power quality in power system by using phasor measurements. International Conference on Power System Technology, Australia, 2000, 3: 1335-1340.
    [4] 黄莹,徐政.基于同步相量测量单元的直流附加控制器内部.中国电机工程学报,2004,24(9):7-12.
    [5] J. Kennedy, R. Eberhart. Particle swarm optimization. IEEE International Conference on Neural Networks, Piscataway, 1995, 4: 1942-1948.
    [6] Y. Shi, R. Eberhart. A modified particle swarm optimizer. The 1998 IEEE International Conference on Evolutionary Computation Proceedings, Piscataway, 1998, 69-73.
    [7] M.R. A1Rashidi, M. E. El-Hawary. A survey of particle swarm optimization applications in electric power systems. IEEE Transaction on Evolutionary Computation, to be published.
    [8] 郭远帆,杨峰,董朝霞.应用粒子群优化算法求解可用输电能力.中国电机工程学报,2006,25(4):52-57.
    [9] Yu Yaonan, M. A. El-Sharkawi. Estimation of external dynamic equivalents of a thirteen system. IEEE Transaction on Power Apparatus and Systems, 1981, PAS-100(3): 1324-1332.
    [10] W. W. Price, D. N. Ewart, E. M. Gulachenski, et al. Dynamic equivalents from on-line measurements. IEEE Trans on Power Apparatus and Systems, 1975, 94(4): 1349-1357.
    [11] J. M. Ramfirez, R. G. Valle. A technique to reduce power systems electromechanical models. IEEE Transa on Energy Conversion, 2004, 19(2): 456-458.
    [12] J. M. Ramirez Arredondo. Obtaining dynamic equivalents through the minimization of a line flows function. International Journal of Electrical Power & Energy Systems, 1999, 21: 365-373.
    [13] 倪以信,陈寿孙,张宝霖.动态电力系统的理论与分析.北京:清华大学出版社,2002.
    [14] 沈善德.电力系统辨识.北京:清华大学出版社,1993.
    [15] 鞠平.电力系统非线性辨识.南京:河海大学出版社,1999.
    [16] 丁坚勇.同步发电机动态参数辨识研究[博士论文].武汉:武汉大学,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700