含沙水流中离心式水泵过流部件泥沙磨损的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离心式水泵是一种通用水力机械,主要用于管道水力输送。在含沙水流中其主要失效形式是叶轮的磨损。其内部的固液两相流情况一直是水泵设计人员十分关注的问题,因为泵内流动的优劣直接影响水泵的性能。离心泵的内部流动是很复杂的湍流流动,同时由于受旋转、叶片表面曲率和泥沙颗粒的影响,还拌有脱流、回流等流动现象,是流体工程中较难的试验研究和数值计算问题之一。
     本课题从计算流体动力学出发,分析对比了湍流的几种计算理论和方法,在对含沙水流中离心式水泵过流表面磨损机理理解的基础上,以YLB50-20水泵叶轮为例,根据κ-ε理论,选用Mixture模型,利用ProE软件建立了水泵内部过流通道的几何模型,采用GAMBIT软件贴体坐标和四面体网格系统,生成计算网格系统,再利用Fluent进行三维固液两相湍流的数值模拟。
     数值模拟以固液两相流为介质,使用Fluent提供的多相流模型,压力修正使用SIMPLEC算法,通过对该模型设置不同的边界条件后,利用标准κ-ε湍流方程对离心叶轮内部流动情况进行数值模拟,计算了清水流场、浑水流场下颗粒直径相同和浓度不同、颗粒直径不同和浓度相同等四个不同工况下离心泵叶轮内部过流部件的三维固液多相湍流流场。根据四个不同工况下速度场和压力场分布的计算结果,初步分析了该叶轮的内部水力特性,比较了颗粒直径和泥沙浓度对计算结果的影响,分析浓度、速度、压力等流动参数在泵内的分布规律及其相互影响,分析了泵的磨损情况。
     通过本课题的研究,对含沙水流中离心式水泵内部进行固液两相流场模拟,可以帮助探讨叶轮内部流动规律,总结叶轮及泵体的几何参数和介质对离心泵性能的影响,提出设计离心泵的一些改进措施并积累经验数据,为水力抗磨优化设计和制定防护措施提供依据和手段,为改善叶轮的性能和进一步深入研究水泵内部的固液两相流动机理提供一定的参考,对于解决含沙水流中水泵过流表面快速损坏问题具有重要的理论意义和实际应用价值。
Centrifugal pumps are hydraulic machines which are widely used in pipeline transportation. The main invalid form is the abrasion of impeller. The solid-liquid two-phase flow within the pump is the quite attentive question by the pump designer, because the interior flow directly affects the performance of pump. The interior flow of pump is the quite complicated turbulent flow. It is affected not only by the circumrotation and the surface curvature of impeller, but also by the sandy materials, even has the backflow and disengaged flow. They are one of the rather complicated numerical calculations in the fluid engineering field.The subject has applied hydrokinetics to compare and analyze several kinds of theories and methods of turbulent flow. Based on the understanding the abrasion mechanism of centrifugal pump flow passage parts in high sandy flow, it has used normal κ - ε theory, and the mixture model has been selected. The subject has established the geometry model of the centrifugal pump, then the body-fitted coordinate systems and the tetrahedron grid systems are applied to establish grids system for calculate, finally fluent software is used to calculate the numerical simulation model about three-dimension solid-liquid two-phase turbulent flow.The subject selects YLB50-20 centrifugal pump. It has taken solid-liquid two-phase flow as the medium and applied multiphase model to calculate. The algorithm of SIMPLEC has used to correct of the pressure. After setting different boundary conditions, the physical models are computed in three-dimension solid-liquid two-phase turbulent flow of centrifugal pump in rinsing fluid field and muddy fluid field by choosing the different solid particle diameter and sandy volume fraction. Base on the calculative results in different typical work conditions, we can analyze the pump's hydraulic performance and interior distribution rules and the interaction of some fluid parameters, such as consistence, velocity and pressure etc. We also can understand the fluid rules of particle and the abrasion mechanism through analyze the abrasion of the centrifugal pump. Using the
    numerical simulation results we can summarize the affection of the geometric parameters and the medium to the pump's performance. Thus, it is very significant to supply corrective measures to pump's design and to find the factors affecting the pump's performance and to supply reference for further study the solid-liquid two-phase turbulent flow of this kind of pump.The subject has studied the numerical simulation of the three-dimensional interior solid-liquid two-phase flow in the centrifugal pump and summarized some rules and the trajectory of solid particles. The work of this paper will be significantly helpful to afford new methods and experiences to design and to provide defensive measures to resolve and defend the abrasion of pump's flow passage parts in high sandy flow. All of them are very significant to supply reference for further study centrifugal pump's inner flow in theory and practice.
引文
[1] 席本强,基于边界层理论的离心式固液两相流系的研究[D],陕西西安科技大学,(2005),1~4
    [2] 赵啸冰,渣浆泵内清水流场及离散固体颗粒轨迹的模拟与研究[D],北京清华大学,(2002),1~3
    [3] Spalding. D. Brian, General Theory of Turbulent Combustion [J], Journal of Energy v2n1, Jan (1978) 2, 16~23, 7~8
    [4] 苏波隆 B.K,混合液在泥浆泵流道中的流动特性的研究[J],杂质泵技术(两相流专辑),(1986)12,36~4
    [5] G. Grabow, Zweiphasenstromungin Kreiselpumpen [J], Ener. tech, (1982) 9, 94, 54~59
    [6] Zaya A. N, The effect of the solid phase of a slurry on the head developed by a centrifugal pump[J], Fluid Mechanics-Soviet Research, (1975) 4, 4, 144~154
    [7] M. C. Roco et al, Dredge pump performance prediction [J], Journal of Pipilines, (1986) 2, 171
    [8] Yoshiro Iwai, Kazuyuki Nambu, Slurry wear properties of pump lining materials [J], Wear, (1997) 210, 211~219
    [9] Craig I Walker & Greg C. Bodkin, Empirical wear relationships for centrifugal pumps Part 1: side-liner[J], wears, (2000) 242, 140-146
    [10] 蔡葆元,离心泵的两相流理论及其设计原理[J],科学通报,(1983)8,498~502
    [11] 蔡葆元,按两相流设计的杂质泵的性能特点[J],水泵技术,(1986)2,14~18
    [12] 赵振海,离心泵流道中固体颗粒运动规律的研究[D],北京清华大学,(1989),6
    [13] 何希杰,离心式泥浆泵的基本原理与设计方法[C],杂质泵及管道水力输送学术讨论会论文集,石家庄,(1988),10~21
    [14] 何希杰,中低比转速离心式水泵优化设计方法[J],水泵技术,(1992)3,29~32
    [15] 许洪元,离心式渣浆泵的设计理论研究与运用[J],水力发电学报,(1998)1,76~84
    [16] 许洪元,两相流理论[M],清华大学水利水电工程系流体机械与流体动力工程教研组,清华大学出版社,(1990),8
    [17] 赵敬亭,将道振,叶轮流道中固液两相流流动规律的研究[J],水泵技术(1992)2, 1~8
    [18] 赵敬亭,刘卫伟,离心式水泵出口处水沙两相流动分析计算[J],水泵技术,(1990)1,1~6
    [19] 陈次昌,离心式水泵内的两相流和泵性能研究[J],水泵技术,(1990)3,25~28
    [20] 陈次昌,刘正英,两相流泵的理论与设计[M],兵器工业出版社,北京,(1994)
    [21] 戴江,离心式水泵内固液两相湍流流动规律研究[D],北京清华大学,(1994)
    [22] 姜培正等,离心式水泵内液固两相流场的实验研究与理论分析[C],全国第二届杂质泵及固体物管道水力输送学术讨论会论文集,四川自贡,(1999)7,23~27
    [23] 吴玉林,许洪元,高志强,杂质泵叶轮中固体颗粒运动规律的实验[J],清华大学学报,(1992)32,5,52~58
    [24] 吴玉林,曹树良,葛亮,渣浆泵叶轮中固液两相湍流的计算和实验[J],清华大学学报,(1998)38,1,71~74
    [25] 刘小兵、程良骏,固液两相湍流和颗粒磨损的数值模拟[J],水力学报,(1996)11,20~27
    [26] 刘小兵,水力机械泥沙磨损的数值模拟[J],四川工业学院学报,(2000)2,79~84
    [27] 李仁年,薛立华,水力机械中含沙水流的两流体数学模型[J],甘肃工业大学学报,(2000)26,4,48~53
    [28] 程效锐、齐学义,冯俊豪,颗粒浓度对双通道污水泵叶轮流场影响的数值模拟[J],水泵技术,(2006)1,21~23
    [29] MPO'Brien & RG Folsom, The Transportation of Sand in Pipelines[J]. Univ. of Cali, Pub. inEng, (1937) 7, 48
    [30] L. C. Fairbank, Effect on the characteristics of centrifugal pump[J], Paper No. 2167, (1942)
    [31] Herbich. , Characteristics of a Model Dredge Pump[J], Lehing Uni, Report No. 33, (1961), 9
    [32] 谢艳芳,多相流混合模型应用于低含沙水流的数值模拟研究[D],陕西西安理工大学,(2005),17~18
    [33] 秦宏波,白晓宁,胡寿根,基于CFD的管道固液两相流体输送的数值计算及实验对比[J],水力采煤与管道运输,(2001)2,3~6
    [34] 袁丹青,旋转、弯曲、扩散流道中的固液两相流场的数值模拟及其分析[J],上海力 学,(1999) 2
    [35] 肖若富,中比转速混流式水轮机内流场数值模拟及性能改善研究[D],湖北华中科技大学,(2004),16~20,23
    [36] 章梓雄,董曾南,粘性流体力学[M],清华大学出版社,(1998)
    [37] 清华大学工程力学系编,流体力学基础(上、下册)[M],机械工业出版社,(1980)
    [38] 赵学端,廖其奠,粘性流体力学[M],机械工业出版社,(1983)
    [39] 王海松,轴流泵CAD-CFD综合特性研究[D],北京中国农业大学,(2005),35
    [40] 吴治将,混流泵内流场的数值模拟[D],甘肃兰州理工大学,(2005),4~13
    [41] 周光炯,严宗毅,许世雄et al,流体力学(第2版)(上、下册)[M],高等教育出版社,(2002)
    [42] 钱键,离心泵叶轮内部三维湍流数值模拟研究[D],江苏扬州大学,(2003),32~34
    [43] Fluent中文全教程,(2003)
    [44] 韩占忠,王敬,兰小平,FLUENT流体工程仿真计算实例与应用[M],北京理工大学出版社,(2004)
    [45] 王福军,计算流体动力学基础[M],清华大学出版社,(2005)
    [46] 王秋红,螺旋离心泵内固液两相流场的CFD数值模拟[D],甘肃兰州理工大学,(2005),40~42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700