基于量子点的超快极化全光开关及慢光特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全光通信一直以来是人们的梦想。它能突破当前光通信中必须使用部分电子器件而使得光通信速度受限即电子瓶颈的限制。这其中存在这两个技术难点:全光开关和全光缓存。量子点材料的出现,为人们解决上述问题提供了可能。本论文基于量子点的激子强限制作用及强非线性等特性,设计超快全光开关,研究量子点的慢光特性,为解决光通信中的电子瓶颈问题提供可能方案。主要工作包括以下几个方面。
     (1)研究了量子点的金属气相沉积(MOCVD)生长技术。探讨了量子点的生长方法和生长工艺。研究了生长温度、沉积速率、沉积厚度、Ⅴ/Ⅲ流量比、覆盖层等条件对量子点生长的影响。通过实验优化了量子点的生长。初步得出了最佳生长条件为生长温度500℃、沉积速率0.074ML/s、沉积厚度1.7ML、Ⅴ/Ⅲ流量比为10。量子点密度达到5×109/cm2。
     (2)设计了一种基于量子点的超快极化全光开关。利用传递矩阵方法计算了光开关的反射谱和对比度。分析了光开关对比度与控制光强的关系。分析了量子点驰豫速率即温度对光开关的影响。分析了量子点非均匀展宽对光开关对比度的影响。该光开关的对比度在不考虑非均匀展宽时,100周期量子点布拉格结构的光开关在泵浦光强为0.5MW/cm2可以达到930(30dB);考虑非均匀展宽为20meV时,200周期量子点布拉格结构的光开关在泵浦光强为0.5MW/cm2可以达到350(25dB)。该光开关的理论开光时间可达ps量级。常温下工作稳定性,工作功率,对比度等参数优于同类型的量子阱光开关。
     (3)研究了量子点中基于电磁感应透明的慢光。分析计算了量子点中双激子-激子级联系统中基于电磁感应透明的慢光。通过求解稳态下的密度矩阵方程,我们获得了量子点中双激子-激子级联系统中电磁感应透明频谱烧孔。分析了泵浦光强、双激子驰豫速率对吸收谱的影响,计算了系统的折射率色散。最后分析了双激子能量重整化对系统吸收谱和慢光系数的影响。发现在不考虑双激子能级重整化时,慢光系数可达到3000;考虑重整化时,慢光系数减小为2500,且需要更大的泵浦光强。研究表明,由于双激子和激子在量子点中受到较强的限制作用,激子和双激子的寿命也较长、驰豫速率较小,同量子阱相比,具有更好的温度稳定性。期望可以在室温下观察到该现象。是常温下实现慢光的又一途径,可用于实现光缓存。另外,我们还通过密度矩阵理论理论研究了双量子点中“Y”型能级结构中的慢光。该系统最突出的特点是可以实现双窗口慢光。我们分别在每个窗口获得0.002c和0.01c的慢光。而且,慢光的速度和带宽都可以通过外加电压来调节。该系统除了用来做光缓存器外,也可用来设计可调光开关、可调光陷波器等,具有较好的开发前景。
     (4)研究了量子点中非电磁感应透明慢光。首先,我们分析计算了量子点在共振激发下,通过改变控制光强可实现从快光到慢光的连续转换。基于我们建立的简单二能级结构模型,采用密度矩阵方法计算了InGaAs/InGaAsP量子点的一阶和三阶吸收系数和折射率。我们研究了量子点中共振能量0.85eV附近的慢光和快光现象。当入射光强度小于临界强度时,量子点显示出快光特性,它起源于量子点的一阶吸收。当入射光强度超过临界强度时,量子点由于存在较大的三阶非线性而呈现出慢光特性。我们证明了量子点中的快光和慢光效应。它可能用于光通信中。接着,我们分析计算了非对称双量子点系统中基于双吸收的慢光特性。在两量子点共振频率的中间,显示出相对低折射率色散、宽带宽、适宜于光通信的特性。两量子点的共振频率的差异决定了慢光系数、吸收率和带宽。系统的带宽可以达到60G,并且信号光在1mm长度的色散材料中,相对于在真空中传输可以延迟许多脉冲宽度。模拟了光信号在其中的传输。信号光的延迟可以通过泵浦光强度来调制。
     总之,本论文研究了基于量子点的超快极化全光开关和慢光,对未来实现全光通信具有一定的借鉴意义。
All-optical communication has been the dream of the people for a long time. Now, some electronic devices have to be used in the optical communication and optical communication speed is limited by them, i.e. electronic bottleneck, and all-optical communication can break through the restriction. In the all-optical communication, there are two technical difficulties:all-optical switching and all-optical buffer. The emergence of quantum dots, offers the possibility for people to solve the above problem. In this thesis, based on the strong restriction and strong nonlinearity in the quantum dots, we design ultrafast all optical switching and study the slow light in order to propose possible options to overcome the electronic bottleneck in the optical communication. The main content is as follows.
     (1) The quantum dot metal organic chemical vapor deposition (MOCVD) growth technique is researched. The growth method and craft are studied. The growth conditions including growth temperature, deposition velocity, deposition thickness, V/III ratio, covering layer etc., are discussed. The growth of the quantum dot is optimized through the experiments. Finally, we preliminarily get the optimal growth condition:growth temperature of500℃, deposition velocity of0.074ML/s, deposition thickness of1.7ML, V/III ratio of10. Quantum dot density is about5×109/cm2.
     (2) We design a type of ultrafast polarization all optical switching based on quantum dot. How the optical switching works is studied. The reflection spectrum and the contrast ratio of the optical switching are calculated by the transfer matrix method. The relation between the contrast ratio and the control light intensity is researched. The quantum dot relaxation rate, i.e. temperature influence on the optical switching is discussed. The optical switching dependence on the quantum dot inhomogeneous broadening is studied. Without considering the inhomogeneous broadening, for100periods of the Bragg-spaced structure contained uniform quantum dots, under the operation of control light intensity0.5MW/cm2, the optical switching contrast ratio can reach930(30dB). When considering the inhomogeneous broadening of20meV, for200periods of the Bragg-spaced structure contained uniform quantum dots, under the operation of control light intensity 0.5MW/cm2, the optical switching contrast ratio is up to350(25dB). The theory optical switching opening time is up to the order of ps. The room temperature operation stability, operation power, contrast ratio etc. are superior to the same type of quantum well optical switching.
     (3) We study the slow light in the quantum dot based on electromagnetically induced transparency (EIT). Firstly, we calculated the slow light based on EIT in the quantum dot biexciton-exciton cascade system. By solving the density matrix equation in the steady state, we have obtained the EIT spectral hole burning in the quantum dot biexciton-exciton cascade system. We discuss the pump pulse intensity and biexciton relaxation rate influence on the absorption spectrum. We calculate the refractive index dispersion of the system. Finally, we consider the biexciton energy renormalization influence on the system absorption and the slow light. Without considering the renormalization, the slow factor is up to3000; when considering the renormalization, the slow factor is reduced to2500, and at the same time, it needs more pump pulse power. The study has shown that due to large confinement, long lifetime and low relaxation rate of the exciton and biexciton in the quantum dot, the system temperature stability is superior to the quantum well. It is expected to observe the phenomenon in the quantum dot at room temperature. It is another way to realize the slow light at room temperature and maybe used in the optical buffer. Secondly, we also theoretically study the slow light in the double quantum dots Y-shape level structure by the density matrix theory. The most prominent feature of the slow light is the double window transparency. We get0.002c and0.01c respectively in each window. What is more, we can tune the slow light factor and bandwidth by the applied voltage. In addition to application in the optical buffer, it can also be used in the tunable optical switch and tunable optical notch filter. It has a good development prospects.
     (4) We study the slow light not based on the EIT. Firstly, under the resonant excitation of the control light, we find that we can achieve continuous conversion from fast to slow light by change of the control light intensity. We create a simple two-level structure model. We use the density matrix method to calculate the first-order and third-order absorption and refractive index of the InGaAs/InGaAsP quantum dot. We study the slow and fast light near the quantum dot resonance energy0.85eV. When the incident light intensity is less than the critical intensity, quantum dots show fast light properties, which originate from the first-order absorption of the quantum dots. When the incident light intensity exceeds the critical intensity, quantum dots show slow light properties due to the presence of large third-order absorption. We demonstrate the fast light and slow light effect in quantum dots. It may be applied in the optical communication. Secondly, we study slow light in the asymmetry double quantum dots based on double resonance. In the middle of the two quantum dots resonance energy, it shows relatively low refractive index dispersion, large bandwidth and suitable for optical communication. The difference of the two quantum dots resonance energy determines the absorption, slow factor and bandwidth. The system bandwidth can reach60G, and the signal pulse in the1mm dispersion material can be delayed for many pulse widths than in vacuum. We simulate the pulse transmits the dispersion material. The delay of the signal light can be modulated by the pump light intensity.
     In a word, we study ultrafast polarization all optical switch and slow light based on quantum dot. It may be a consultation for the future all optical communication.
引文
[1]胡先念,余少华编著.光纤通信基本理论与技术(第1版).武汉:华中科技大学出版社,2008:157-161
    [2]李淳飞著.全光开关原理(第1版).北京:科学出版社,2010:1-16
    [3]O. Wada. Femtosecond all-optical devices for ultrafast communication and signal processing. New Journal of Physics,2004,6:1-35
    [4]P. C. Ku, C. J. Chang-Hasnain, J. Kim, and S. L. Chuang. Variable optical buffer using slow light in semiconductor nanostructures. Proc. of the IEEE,2003,91(11): 1884-1897
    [5]G. P. Agrawal. Lightwave technology:components and devices. New York:Wiley Interscience,2004:768-789
    [6]S. Tarek, E. L-Bawab. Optical Switching. New York:Springer,2006:22-29
    [7]G I. Papadimitriou, C. Papazoglou, A. S. Pomportsis. Optical Switching:Switch Fabrics, Techniques, and Architectures. Journal of Lightwave Technology,2003, 21(2):384-405
    [8]S. E. Harris, L. V. Hau. Nonlinear Optics at Low Light Levels. Phys. Rev. Lett., 1999,82(23):4611-4614
    [9]W. D. Jemison, T. Yost, P. R. Herczfeld. Acoustooptically controlled true time delays:experimental results. IEEE Microw. Guided Wave Lett.,1996,6(8):283-285
    [10]H. Ishikawa. Ultrafast All-Optical Signal Processing Devices. Chichester, UK: Wiley,2008:1-14
    [11]R. Akimoto, G W. Cong, M. Nagase, et al. All-optical demultiplexing from 160 to 40/80 Gb/s using Mach-Zehnder switches based on intersubband transition of InGaAs/AlAsSb coupled double quantum wells. IEICE Trans. Electron,2009, E92-C(2):187-193
    [12]K. Tajima. All-Optical Switch with Switch-Off Time Unrestricted by Carrier Lifetime. Japan. J. Appl. Phys.,1993,32(12):1746-1749
    [13]D. Cotter, R. J. Manning, K. J. Blow, et al. Nonlinear optics for high-speed digital information processing. Science,1999,286:1523-1528
    [14]S. Nakamura, Y. Ueno, K. Tajima.168-Gb/s all-Optical wavelength conversion with a symmetric-Mach-Zehnder-Type Switch. IEEE Photon. Technol. Lett.,2001, 13(10):1091-1093
    [15]S. Nakamura, Y. Ueno, K. Tajimaet, et al. Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated symmetric Mach-Zehnder all-Optical switch. IEEE Photon. Technol. Lett.,2000,12(4):425-427
    [16]S. Nakamura, Y. Ueno, K. Tajima.168-Gb/s all-optical wavelength conversion with a symmetric-Mach-Zehnder-type switch. Photo. Tech. Lett., IEEE,2001,13(10): 1091-1093
    [17]K. Asakawa, Y. Sugimoto, Y Watanabe, et al. New Design for Wide/Flat Bandwidth in Photonic Crystal-Based SMZ All-Optical Device (PC-SMZ). Transparent Optical Networks,2006 International Conference,2006:146-147
    [18]H. Nakamura, Y. Sugimoto, K. Asakawa. Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks. Lasers and Electro-Optics,2006 and 2006 Quantum Electronics and Laser Science Conference,2006:813-814
    [19]R. Akimoto, T. Simoyama, H. Tsuchida, et al. All-optical demultiplexing of 160-10 Gbit/s signals with Mach-Zehnder interferometric switch utilizing intersubband transition inInGaAs/AlAs/AlAsSb quantum well. Appl. Phys. Lett.,2007,91: 221115
    [20]R. Takahashi, Y. Kawamura, H. Iwamura. Ultrafast 1.55μm all-optical switching using low-temperature-grown multiple quantum wells. Appl. Phys. Lett.,1996, 68(2):153-155
    [21]L. A. Padilha, A. A. Neves, E. Rodriguez, et al. Ultrafast optical switching with CdTe nanocrystals in a glass matrix. Appl. Phys. Lett.,2005,86:161111
    [22]A. Martinez, J. Blasco, P. Sanchis, et al. Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths. Nano Lett.,2010,10:1506-1511
    [23]J. Y. Lee, L. H. Yin, G. P. Agrawal, et al. Ultrafast optical switching based on nonlinear polarization rotation in silicon waveguides. Optics Express,2010,18(11): 11514-11523
    [24]G Ctistis, E. Yuce, A. Hartsuiker, J. Claudon, et al. Ultimate fast optical switching of a planar microcavity in the telecom wavelength range. Appl. Phys. Lett.,2011,98: 161114
    [25]E. Yiice, G. Ctistis, J. Claudon, et al. All-optical switching of a microcavity repeated at terahertz rates. Optics Letters,2013,38(3):374-377
    [26]A. D. Bristow, J.-P. R. Wells, W. H. Fan, et al. Ultrafast nonlinear response of AlGaAs two-dimensional photonic crystal waveguides. Appl. Phys. Lett.,2003, 83(5):851-853
    [27]D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, et al. Ultrafast Optical Switching in Three-Dimensional Photonic Crystals. Phys. Rev. Lett.,2003,91(21):213903
    [28]F. Cuesta-Soto, A. Martinez, J. Garcia, et al. All-optical switching structure based on a photonic crystal directional coupler. Optics Express,2004,12(1):161-167
    [29]T. Tanabe, M. Notomi, S. Mitsugi, et al. All-optical switches on a silicon chip realized using photonic crystal nanocavities. Appl. Phys. Lett.,2005,87:151112
    [30]X. Y. Hu, Q. H. Gong, Y. H. Liu, et al. All-optical switching of defect mode in two-dimensional nonlinear organic photonic crystals. Appl. Phys. Lett.,2005,87: 231111
    [31]X. Y. Hu, P. Jiang, C. Y. Ding, et al. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nature Photonics,2008,2: 185-189
    [32]Y. Liu, F. Qin, Z. Y. Wei, et al.10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals. Appl. Phys. Lett.,2009,95:131116
    [33]C. F. Li, B. Alireza, J. Q. Li, et al. Finesse controllable active ring-resonator-coupled M-Z interferometer optical switches. J. Non. Opt. Phys. & Mater,2004,13(37): 37-44
    [34]B. Alireza, C. F. Li. Controllable all-optical switch using an EDF-ring coupled M-Z interferometer. Photo. Tech. Lett.,2004,16(9):2102-2104
    [35]C. F. Li, N. Dou, P. P. Yupapin. Milliwatt and nanosecond all-optical switching in a double-coupler ring resonator contaning an EDFA. J. Opt. A:Pure and Applied Optics,2006,8:728-732
    [36]N. Dou, C. F. Li. Optical bistability in fiber ring resonator containing an EDFA. Opt. Comm.,2008,281:2238-2242
    [37]D. Marshall, A. Miller. Carrier transport, ultrafast spin dynamics and polarization switching in InGaAsP quantum wells. Optical and Quantum Electronics.2001,22: 1019-1034
    [38]R. Takahashi, H. Itoh, H. Iwamura. Ultrafast high-contrast all-optical switching using spin polarization in low-temperature-grown multiple quantum wells. Appl. Phys. Lett.,2000,77(19):2958-2960
    [39]E. J. Gansen, K. Jarasiunas, A. L. Smirl. Femtosecond all-optical polarization switching based on the virtual excitation of spin-polarized excitons in quantum wells. Appl. Phys. Lett.,2002,80(6):971-973
    [40]D. Marshall, M. Mazilu, A. Miller, et al. Polarization switching and induced birefringence in InGaAsP multiple quantum wells at 1.5μm. Journal of Applied Physics,2002,91(7):4090-4094
    [41]J. P. Prineas, J. Y. Zhou, J. Kuhl. Ultrafast ac Stark effect switching of the active photonic band gap from Bragg-periodic semiconductor quantum wells. Appl. Phys. Lett.,2002,81(23):4332-4334
    [42]M. Yildirim, J. P. Prineas, E. J. Gansen, et al. A near-room-temperature all-optical polarization switch based on the excitation of spin-polarized "virtual" carriers in quantum wells. Journal of Applied Physics,2005,98:06356
    [43]W. J. Johnston, M. Yildirim, J. P. Prineas, et al. All-optical spin-dependent polarization switching in Bragg-spaced quantum well structures. Appl. Phys. Lett., 2005,87:10113
    [44]T. Yasui, R. Takahashi, N. Kondo, et al. Ultrafast All-Optical Pattern Matching Using Differential Spin Excitation and Its Application to Bypass/Drop Self-Routing for Asynchronous Optical Packets. Journal of Lightwave Technology,2006,24(2): 723-733
    [45]N. Bannov, V. Aristov, V. Mitin, et al. Electron relaxation times due to the deformation-potential interaction of electrons with confined acoustic phonons in a free-standing quantum well. Phys. Rev. B.,1995,51(15):9930-9942
    [46]I. V. Kabakova, C. Martijn de Sterke, B. J. Eggleton. Bistable switching and reshaping of optical pulses in a Bragg grating cavity. J. Opt. Soc. Am. B,2010, 27(12):2648-2653
    [47]Y. H. Kim, N. S. Kim, Y. Chung, et al. All-optical switching application based on optical nonlinearity of Yb3+ doped aluminosilicate glass fiber with a long-period fiber gratings pair. Optics Express,2004,12(4):651-656
    [48]Y. H. Kim, U.-C. Paek, W.-T. Han. All-optical 2×2 switching with two independent Yb3+doped nonlinear optical fibers with a long-period fiber grating pair. Applied Optics,44(15):3051-3057
    [49]T. Kawazoe, K. Kobayashi, S. Sangu. Demonstration of a nanophotonic switching operation by optical near-field energy transfer. Appl. Phys. Lett.,2003,82(18): 2957-2959
    [50]P. Bermel, A. Rodriguez, S. G. Johnson, et al. Single-photon all-optical switching using waveguide-cavity quantum electrodynamics. Physical Review A,2006,74: 043818
    [51]T. Volzl, A. Reinhard1, M. Winger1, et al. Ultrafast all-optical switching by single photons. Nature Photonics,2012,6:605-609
    [52]S. Chu, S. Wong. Linear pulse propagation in an absorbing medium. Phys. Rev. Lett.,1982,48(11):738-741
    [53]K.-J. Boller, A. Imamolu, S. E. Harris. Observation of electromagnetically induced transparency. Phys. Rev. Lett.,1991,66(20):2593-2596
    [54]L. V. Hau, S. E. Harris, Z. Dutton, et al. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature,1999,397:594-598
    [55]M. M. Kash, V. A. Sautenkov, A. S. Zibrov, et al. Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas. Phys. Rev. Lett.,1999,82(26):5229-5232
    [56]D. F. Phillips, A. Fleischhauer, A. Mair, et al. Storage of light in atomic vapor. Phys. Rev. Lett.,2001,86(5):783-786
    [57]A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, et al. Observation of ultraslow and stored light pulses in a solid. Phys. Rev. Lett.,2001.88(2):023602
    [58]M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd. Observation of ultraslow light propagation in a ruby crystal at room temperature. Phys. Rev. Lett.,2003,90(11): 113903
    [59]P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, et al. Slow light in semiconductor quantum wells. Optics Letters,2004,29(19):2291-2293
    [60]P. Palinginis, F. Sedgwick, S. Crankshaw, et al. Room temperature slow light in a quantum-well waveguide via coherent population oscillation. Optics Express,2005, 13(23):9909-9915
    [61]P. Palinginis, S. Crankshaw, F. Sedgwick, et al. Ultraslow light (<200m/s) propagation in a semiconductor nanostructure. Appl. Phys. Lett.,2005,87:171102
    [62]J. M(?)rk, R. Kjaer, M. Van Der Poel, et al. Slow light in a semiconductor waveguide at gigahertz frequencies. Optics Express,2005,13(20):8136-8145
    [63]H. Su, S. L. Chuang. Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers. Appl. Phys. Lett.,2006,88:061102-1-061102-3
    [64]H. Su, S. L. Chuang. Room-temperature slow light with semiconductor quantum-dot devices. Opt. Lett.,2006,31(2):271-273
    [65]J. Q. Liang, M. Katsuragawa, F. L. Kien, et al. Slow light produced by stimulated Raman scattering in solid hydrogen. Phys. Rev. A,2002,65:031801
    [66]Y. Okawachi, M. S. Bigelow, J. E. Sharping, et al. Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys. Rev. Lett.,2005,94:153902
    [67]Y. Okawachi, M. A. Foster, J. E. Sharping, et al. All-optical slow-light on a photonic chip. Opt. Express,2006,14(6):2317-2322
    [68]X. Zhao, P. Palinginis, B. Pesala, et al. Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier. Optics Express,2005,13(20):7899-7904
    [69]S. Sarkar, Y. Guo, H Wang. Tunable optical delay via carrier induced exciton dephasing in semiconductor quantum wells. Optics Express,2006,14(7): 2845-2850
    [70]H. Su, P. Kondratko, S. L. Chuang. Electrically and optically controllable optical delay in a quantum-well semiconductor optical amplifier. Conf. on Lasers and Electro-Optics/Quantum Electronics and Laser Science,2006
    [71]F. Qhman, K. Yvind, J. Mork. Slow light at high frequencies in an amplifying semiconductor waveguide. Conf. on Lasers and Electro-Optics/Quantum Electronics and Laser Science,2006
    [72]X. Zhao, Y. Zhou, C. Chang-Hasnain, et al. Slow and fast light using master-modulate injection-locked VCSELs. Conf. on Lasers and Electro-Optics/Quantum Electronics and Laser Science,2006
    [73]E. Podivilov, B. Sturman. A Shumelyuk and S Odoulov. Light pulse slowing down up to 0.025cm/s by photorefractive two-wave coupling. Phys. Rev. Lett.,2003, 91(8):083902
    [74]H. Altug, J. Vuckovic. Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays. Appl. Phys. Lett.,2005,86(11):111102
    [75]Y. A. Vlasov, M. O'Boyle, H. F. Hamann, et al. Active control of slow light on a chip with photonic crystal waveguides. Nature,2005,438(7064):65-69
    [76]M. Notomi, K. Yamada, A. Shinya, et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett.,2001,87(25): 253902
    [77]D. Barettin, J. Houmark, B. Lassen, et al. Optical properties and optimization of electromagnetically induced transparency in strained InAs/GaAs quantum dot structures. Physical Review B,2009,80(23):235304
    [78]P. Lunnemann, J. M(?)rk. Reducing the impact of inhomogeneous broadening on quantum dot based electromagnetically induced transparency. Appl. Phys. Lett., 2009,94(7):071108
    [79]M. C. Phillips, H. Wang. Exciton spin coherence and electromagnetically induced transparency in the transient optical response of GaAs quantum wells. Physical Review B,2004,69(11):115337
    [80]S. Marcinkevicius, A. Gushterov, J. P. Reithmaier. Transient electromagnetically induced transparency in self-assembled quantum dots. Appl. Phys. Lett.,2008,92(4): 041113
    [81]M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd. Superluminal and slow light propagation in a room-temperature solid. Science,2003,301(5630):200-202
    [82]P. K. Kondratko, S. L. Chuang. Slow-to-fast light using absorption to gain switching in quantum-well semiconductor optical amplifier. Optics Express,2007,15(16): 9963-9969
    [83]K. Kikuchi, M. Kakui, C. E. Zah, et al. Observation of highly nondegenerate four-wave mixing in 1.5μm traveling-wave semiconductor optical amplifiers and estimation of nonlinear gain coefficient. IEEE Journal of Quantum Electronics, 1992,28(1):151-156
    [84]A. Uskov, J. Mork, J. Mark. Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning. IEEE Journal of Quantum Electronics, 1994,30(8):1769-1781
    [85]A. D'ottavi, F. Girardin, L. Graziani, et al. Four-wave mixing in semiconductor optical amplifiers:A practical tool for wavelength conversion. Selected Topics in Quantum Electronics, IEEE Journal of,1997,3(2):522-528
    [86]P. C. Ku, C. J. Chang-Hasnain, S. L. Chuang. Slow light in semiconductor heterostructures. Journal of Physics D:Applied Physics,2007,40(5):R93-R107
    [87]A. V. Uskov, F. G. Sedgwick, C. J. Chang-Hasnain. Delay limit of slow light in semiconductor optical amplifiers. Photo. Tech. Lett., IEEE,2006,18(6):731-733
    [88]H. Su, P. Kondratko, S. L. Chuang. Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers. Optics express,2006,14(11):4800-4807
    [89]F. Ohman, K. Yvind, J. M(?)rk. Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics. Photo. Tech. Lett., IEEE,2007, 19(15):1145-1147
    [90]F. Ohman, K. Yvind, J. M(?)rk. Voltage-controlled slow light in an integrated semiconductor structure with net gain. Optics Express,2006,14(21):9955-9962
    [91]W. Xue, Y. Chen, F. Ohman, et al. Enhancing light slow-down in semiconductor optical amplifiers by optical filtering. Optics Letters,2008,33(10):1084-1086
    [92]W. Xue, Y. Chen, F Ohman, et al. The role of input chirp on phase shifters based on slow and fast light effects in semiconductor optical amplifiers. Optics Express,2009, 17(3):1404-1413
    [93]W. Xue, S. Sales, J. Capmany, et al. Microwave phase shifter with controllable power response based on slow-and fast-light effects in semiconductor optical amplifiers. Optics Letters,2009,34(7):929-931
    [94]J. M(?)rk, F. Ohman, M. van der Poel, et al. Slow and fast light:Controlling the speed of light using semiconductor waveguides. Laser & Photonics Reviews,2009,3(1-2): 30-44
    [95]W. Xue, S. Sales, J. Capmany, et al. Wideband 360 microwave photonic phase shifter based on slow light in semiconductor optical amplifiers. Optics Express, 2010,18(6):6156-6163
    [96]J. D. Joannopoulos, S. G Johnson, J. N. Winn, et al. Photonic crystals:molding the flow of light. Princeton university press,2011
    [97]T. F. Krauss. Slow light in photonic crystal waveguides. Journal of Physics D: Applied Physics,2007,40(9):2666-2670
    [98]L. H. Frandsen, A. Lavrinenko, J. Fage-Pedersen, et al. Photonic crystal waveguides with semi-slow light and tailored dispersion properties. Optics Express,2006, 14(20):9444-9450
    [99]K. Inoue, N. Kawai, Y. Sugimoto, et al. Observation of small group velocity in two-dimensional AlGaAs-based photonic crystal slabs. Physical Review B,2002, 65(12):121308
    [100]J. Kim, S. L. Chuang, P. C. Ku, et al. Slow light using semiconductor quantum dots. Journal of Physics:Condensed Matter,2004,16(35):S3727-S3735
    [101]M. Soljacic, E. Lidorikis, J. D. Joannopoulos, et al. Ultralow-power all-optical switching. Appl. Phys. Lett.,2005,86(17):171101
    [102]T. R. Nielsen, A. Lavrinenko, J. M(?)rk. Slow light in quantum dot photonic crystal waveguides. Appl. Phys. Lett.,2009,94(11):113111
    [103]J. M(?)rk, T. R. Nielsen. On the use of slow light for enhancing waveguide properties. Optics Letters,2010,35(17):2834-2836
    [104]L. Esaki, R. Tsu. Superlattice and negative differential conductivity in semiconductors. IBM Journal of Research and Development,1970,14(1):61-65
    [105]王占国编著.纳米半导体技术(第一版).化学工业出版社,36-110
    [106]梁松.长波长InAs/GaAs量子点的MOCVD生长及激光器制作:[博士学位论文].北京:中国科学院半导体研究所
    [107]D. Guimard, M. Nishioka, S. Tsukamoto, et al. Effect of antimony on the density of InAs/Sb:GaAs (100) quantum dots grown by metalorganic chemical-vapor deposition. Journal of Crystal Growth,2007,298:548-552
    [108]F. Heinrichsdorff, A. Krost, D. Bimberg, et al. Self organized defect free InAsGaAs and InAs/InGaAs/GaAs quantum dots with high lateral density grown by MOCVD. Applied Surface Science,1998,123:725-728
    [109]A. A. El-Emawy, S. Birudavolu, S. Huang, et al. Selective surface migration for defect-free quantum dot ensembles using metal organic chemical vapor deposition. Journal of Crystal Growth,2003,255(3):213-219
    [110]M. Grundmann, D. Bimberg, A. O. Kosogov, et al. InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition. Jpn. J. Appi. Phys.,1997,36: 4129-4133
    [111]K. Sears, J. Wong-Leung, M. Buda, et al. Growth and characterisation of InAs/GaAs quantum dots grown by MOCVD. Optoelectronic and Microelectronic Materials and Devices,2004 Conference on. IEEE,2004:1-4
    [112]P. M. Petroff, S. P. DenBaars. MBE and MOCVD growth and properties of self-assembling quantum dot arrays in Ⅲ-Ⅴ semiconductor structures. Superlattices and Microstructures,1994,15(1):15
    [113]S. Liang, H. L. Zhu, X. L. Ye, et al. Annealing behaviors of long-wavelength InAs/GaAs quantum dots with different growth procedures by metalorganic chemical vapor deposition. Journal of Crystal Growth,2009,311(8):2281-2284
    [114]P. Tian, C. Q. Huang, W. H. Luo, et al. MOCVD Growth and Optical Properties of Self-Assembled InAs/GaAs Quantum Dots. Advanced Materials Research,2012, 571:265-268
    [115]G. B. Stringfellow. Organometallic vapor-phase epitaxy:theory and practice. Academic Press,1999
    [116]T. Chung, G. Walter, N. Holonyak. Growth mechanism of InAs quantum dots on GaAs by metal-organic chemical-vapor deposition. Journal of Applied Physics, 2005,97(5):053510
    [117]K. Potschke, L. Muller-Kirsch, R. Heitz, et al. Ripening of self-organized InAs quantum dots. Physica E:Low-dimensional Systems and Nanostructures,2004, 21(2):606-610
    [118]P. Hazdra, J. Voves, J. Oswald, et al. Optical characterisation of MOVPE grown vertically correlated InAs/GaAs quantum dots. Microelectronics Journal,2008, 39(8):1070-1074
    [119]P. Hazdra, J. Oswald, V. Komarnitskyy, et al. Influence of capping layer thickness on electronic states in self assembled MOVPE grown InAs quantum dots in GaAs. Superlattices and Microstructures,2009,46(1):324-327
    [120]F. Tatebayashi, M. Nishioka, Y. Arakawa.1.5-μm emission at room temperature of InAs quantum dots in strained InGaAs quantum well. Quantum Electronics and Laser Science Conference,2001. QELS'01. Technical Digest. Summaries of Papers Presented at the. IEEE,2001:39
    [121]D. Guimard, M. Ishida, M Nishioka, et al. Ground state lasing at 1.34μm from InAs quantum dots grown on GaAs Substrate by antimony-mediated metal organic chemical Vapor Deposition. Conference on Lasers and Electro-Optics. Optical Society of America,2007
    [122]A. Mysyrowicz, D. Hulin, A. Antonetti, et al. "Dressed excitons" in a multiple-quantum-well structure:evidence for an optical Stark effect with femtosecond response time. Phys. Rev. Lett.,1986,56(25):2748-2751
    [123]M. J. LaGasse, K. K. Anderson, H. A. Haus, et al. Femtosecond all-optical switching in AlGaAs waveguides using a time division interferometer. Appl. Phys. Lett.,1989,54(21):2068-2070
    [124]A. M. Sanchez, R. Beanland, N. F. Hasbullah, et al. Correlation between defect density and current leakage in InAs/GaAs quantum dot-in-well structures. Journal of Applied Physics,2009,106:024502
    [125]K. J. Vahala. Optical microcavities. Nature,2003,424(6950):839-846
    [126]D. Vujic, S. John. Coherent all-optical switching by resonant quantum-dot distributions in photonic band-gap waveguides. Physical Review A,2007,76(6): 063814
    [127]T. V. Torchynska, J. L. Casas Espinola, L. V. Borkovska, et al. Thermal activation of excitons in asymmetric InAs dots-in-a-well InxGal-xAs/GaAs structures. Journal of Applied Physics,2007,101(2):024323
    [128]S. Zhou, Y. Liu, H. Ye, et al. Calculation of critical size of coherent InAs quantum dot on GaAs substrate. Physica E:Low-dimensional Systems and Nanostructures, 2012,46:52-56
    [129]M. Scheibner, T. Schmidt, L. Worschech, et al. Superradiance of quantum dots. Nature Physics,2007,3(2):106-110
    [130]A. Ozmen, Y. Yakar, B. Cakir, et al. Computation of the oscillator strength and absorption coefficients for the intersubband transitions of the spherical quantum dot. Optics Communications,2009,282(19):3999-4004
    [131]M. R. K. Vahdani, G. Rezaei. Intersubband optical absorption coefficients and refractive index changes in a parabolic cylinder quantum dot. Physics Letters A, 2010,374(4):637-643
    [132]G. Rezaei, Z. Mousazadeh, B. Vaseghi. Nonlinear optical properties of a two-dimensional elliptic quantum dot. Physica E:Low-dimensional Systems and Nanostructures,2010,42(5):1477-1481
    [133]D. Ahn, S. L. Chuang. Nonlinear intersubband optical absorption in a semiconductor quantum well. Journal of Applied Physics,1987,62(7):3052-3055
    [134]G. Wang, K. Guo. Interband optical absorptions in a parabolic quantum dot. Physica E:Low-dimensional Systems and Nanostructures,2005,28(1):14-21
    [135]G. Y. Slepyan, S. A. Maksimenko, V. P. Kalosha, et al. Effective boundary conditions for planar quantum dot structures. Physical Review B,2001,64(12): 125326
    [136]P. N. Prasad, Nanophotonics, New Jersey,2004
    [137]T. Wang, G. Li, Z. Chen. The theoretical investigation of all-optical polarization switching based on InGaAs (P) Bragg-spaced quantum wells. Optics Express,2008, 16(1):127-132
    [138]M. V. Erementchouk, L. I. Deych, A. A. Lisyansky. Optical properties of one-dimensional photonic crystals based on multiple-quantum-well structures. Physical Review B,2005,71(23):235335
    [139]K. Min, Y. K. Choi, H. Jeon. Model calculations for enhanced fluorescence in photonic crystal phosphor. Optics Express,2012,20(3):2452-2459
    [140]M. Furis, H. Htoon, M. A. Petruska, et al. Bright-exciton fine structure and anisotropic exchange in CdSe nanocrystal quantum dots. Physical Review B,2006, 73(24):241313
    [141]J. Kim, C. Meuer, D. Bimberg, et al. Effect of inhomogeneous broadening on gain and phase recovery of quantum-dot semiconductor optical amplifiers. Quantum Electronics, IEEE Journal of,2010,46(11):1670-1680
    [142]J. Kim, S. L. Chuang. Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers. Quantum Electronics, IEEE Journal of,2006,42(9):942-952
    [143]L. C. Andreani, G. Panzarini, A. V. Kavokin, et al. Effect of inhomogeneous broadening on optical properties of excitons in quantum wells. Physical Review B, 1998,57(8):4670
    [144]S. Kiravittaya, H. Heidemeyer, O. G Schmidt. Growth of three-dimensional quantum dot crystals on patterned GaAs (001) substrates. Physica E: Low-dimensional Systems and Nanostructures,2004,23(3):253-259
    [145]S. Kiravittaya, A. Rastelli, O. G Schmidt. Photoluminescence from seeded three-dimensional InAs/GaAs quantum-dot crystals. Appl. Phys. Lett.,2006,88: 043112
    [146]M. Phillips, H. Wang. Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well. Optics Letters,2003,28(10):831-833
    [147]M. C. Phillips, H. Wang, I. Rumyantsev, et al. Electromagnetically induced transparency in semiconductors via biexciton coherence. Phys. Rev. Lett.,2003, 91(18):183602
    [148]王取泉,程木田,刘绍鼎等著.基于半导体量子点的量子计算与量子信息.(第1版).合肥:中国科学技术大学出版社,2009:49-52
    [149]R. Mathew, C. E. Pryor, M. E. Flatte, et al. Optimal quantum control for conditional rotation of exciton qubits in semiconductor quantum dots. Physical Review B,2011, 84(20):205322
    [150]W. X. Yang, A. X. Chen, R. K. Lee, et al. Matched slow optical soliton pairs via biexciton coherence in quantum dots. Physical Review A,2011,84(1):013835
    [151]C. Dal Savio, K. Pierz, G Ade, et al. Optical study of single InAs on In0.12Ga0.88As self-assembled quantum dots:biexciton binding energy dependence on the dots size. Applied Physics B,2006,84(1-2):317-322
    [152]P. K. Nielsen, H. Thyrrestrup, B. Tromborg. Numerical investigation of electromagnetically induced transparency in a quantum dot structure. Optics Express,2007,15(10):6396-6408
    [153]G. Bensky, S. V. Nair, H. E. Ruda, et al. On-demand production of entangled photon pairs via quantum-dot biexciton control. Quantum Physics,2013 (In press)
    [154]M. Bayer, G Ortner, O. Stern, et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Physical Review B,2002,65(19): 195315
    [155]A. Huggenberger, S. Heckelmann, C. Schneider, et al. Narrow spectral linewidth from single site-controlled In(Ga)As quantum dots with high uniformity. Appl. Phys. Lett.,2011,98(13):131104
    [156]C. H. Yuan, K. D. Zhu. Voltage-controlled slow light in asymmetry double quantum dots. Appl. Phys. Lett.,2006,89(5):052115
    [157]C. H. Yuan, K. D. Zhu, Y. W. Jiang. Slow light control with electric fields in vertically coupled InGaAs/GaAs quantum dots. Journal of Applied Physics,2007, 102(2):023109
    [158]H. S. Borges, L. Sanz, J. M. Villas-Boas, et al. Tunneling induced transparency and slow light in quantum dot molecules. Physical Review B,2012,85(11):115425
    [159]A. Zrenner, E. Beham, S. Stufler, et al. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature,2002,418(6898):612-614
    [160]X. Li, Y. Wu, D. Steel, et al. An all-optical quantum gate in a semiconductor quantum dot. Science,2003,301(5634):809-811
    [161]N. Akopian, N. H. Lindner, E. Poem, et al. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett.,2006,96(13):130501
    [162]R. M. Stevenson, R. J. Young, P. Atkinson, et al. A semiconductor source of triggered entangled photon pairs. Nature,2006,439(7073):179-182
    [163]S. W. Chang, S. L. Chuang, C. J. Chang-Hasnain, et al. Slow light using spin coherence and V-type electromagnetically induced transparency in [110] strained quantum wells. J. Opt. Soc. Am. B,2007,24(4):849-859
    [164]T. Li, H. Wang, N. Kwong, et al. Electromagnetically induced transparency viaelectron spin coherence in a quantum well waveguide. Optics Express,2003, 11(24):3298-3303
    [165]S. W. Chang, S. L. Chuang. Slow light based on population oscillation in quantum dots with inhomogeneous broadening. Physical Review B,2005,72(23):235330
    [166]A. Rostami, A. Lotfian, R. Yadipour, et al. Electrically Tunable Slow and Fast Light using Coherent Population Oscillations in Quantum Dot Semiconductor Optical Amplifier. J. Opt. Commun.,2013,34(1):1-8
    [167]A. Matsudaira, D. Lee, P. Kondratko, et al. Electrically tunable slow and fast lights in a quantum-dot semiconductor optical amplifier near 1.55μm. Optics Letters, 2007,32(19):2894-2896
    [168]P. K. Kondratko, S. W. Chang, H. Su, et al. Optical and electrical control of slow light in p-doped and intrinsic quantum-dot electroabsorbers. Appl. Phys. Lett.,2007, 90(25):251108
    [169]Y. H. Chen, J. M(?)rk. Enhancing slow-and fast-light effects in quantum dot semiconductor waveguides through ultrafast dynamics. Optics Letters,2010,35(5): 697-699
    [170]J. M(?)rk, P. Lunnemann, W. Xue, et al. Slow and fast light in semiconductor waveguides. Semiconductor Science and Technology,2010,25(8):083002
    [171]B. Macke, B. Segard. From fast to slow light in a resonantly driven absorbing medium. Physical Review A,2010,82(2):023816
    [172]Y. Yakar, B. Cakir, A. Ozmen. Calculation of linear and nonlinear optical absorption coefficients of a spherical quantum dot with parabolic potential. Optics Communications,2010,283(9):1795-1800
    [173]O. Voskoboynikov, C. P. Lee, O. Tretyak. Spin-orbit splitting in semiconductor quantum dots with a parabolic confinement potential. Physical Review B,2001, 63(16):165306
    [174]M. K. Al-Khakani, K. H. Al-Mossawi, A. H. Al-Khursan. Slow light using InGaAsP semiconductor quantum dot systems. Physics Express,2011,1(3):199-207
    [175]R. M. Camacho, M. V. Pack, J. C. Howell. Low-distortion slow light using two absorption resonances. Physical Review A,2006,73(6):063812
    [176]R. M. Camacho, C. J. Broadbent, I. Ali-Khan, et al. All-optical delay of images using slow light. Phys. Rev. Lett.,2007,98(4):043902
    [177]S. Wang, L. Ren, Y. Liu, et al. Zero-broadening SBS slow light propagation in an optical fiber using two broadband pump beams. Optics Express,2008,16(11): 8067-8076
    [178]Z. Zhu, D. J. Gauthier. Nearly transparent SBS slow light in an optical fiber. Optics Express,2006,14(16):7238-7245
    [179]R. M. Camacho, M. V. Pack, J. C. Howell, et al. Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor. Phys. Rev. Lett.,2007,98(15):153601
    [180]R. N. Shakhmuratov, J. Odeurs. Slow light with a doublet structure:underlying physical processes and basic limitations. Physical Review A,2008,77(3):033854
    [181]J. B. Khurgin. Slow light in various media:a tutorial. Adv. Opt. Photon,2010,2(3): 287-318
    [182]A. J. Ramsay, A. V. Gopal, E. M. Gauger, et al. Damping of exciton rabi rotations by acoustic phonons in optically excited InGaAs/GaAs quantum dots. Phys. Rev. Lett., 2010,104(1):017402
    [183]P. Borri, W. Langbein, S. Schneider, et al. Ultralong dephasing time in InGaAs quantum dots. Phys. Rev. Lett.,2001,87(15):157401
    [184]P. K. Kondratko, S. W. Chang, H. Su, et al. Variable Slow Light Using Coherent Population Oscillation in Quantum-Dot Electro-Absorption Modulator. Slow and Fast Light. Optical Society of America,2006,78-79
    [185]P. K. Kondratko, H. Su, S. L. Chuang. Room temperature variable slow light using semiconductor quantum dots. Conference on Lasers and Electro-Optics. Optical Society of America,2006
    [186]C. J. Chang-Hasnain, S. L. Chuang. Slow and fast light in semiconductor quantum-well and quantum-dot devices. Journal of Lightwave Technology,2006, 24(12):4642-4654
    [187]钱士雄,王恭明编著.非线性光学(第一版).上海:复旦大学出版社,516-519
    [188]K. Imakita, M. Ito, R. Naruiwa, et al. Ultrafast third order nonlinear optical response of donor and acceptor codoped and compensated silicon quantum dots. Appl. Phys. Lett.,2012,101(4):041112
    [189]M. R. Singh, C. Racknor, D. Schindel. Controlling the photoluminescence of acceptor and donor quantum dots embedded in a nonlinear photonic crystal. Appl. Phys. Lett.,2012,101(5):051115
    [190]B. Zou, Y. Zhu. Light controlling light in a coupled atom-cavity system. Physical Review A,2013,87(5):053802
    [191]E. S. Bautista, E. Cabrera-Granado, R. Weigand. Two-photon and two-photon-assisted slow light. Optics Letters,2011,36(5):639-641

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700