氯胺酮相关性泌尿系统损害发病机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的
     K粉主要成分为氯胺酮,近几年一些长期吸食新型毒品K粉的患者出现严重的尿频、尿急、尿痛、血尿、排尿困难、急迫性尿失禁等临床症状,暂且称之为“氯胺酮相关性泌尿系统损害(ketamine associated urinary dysfunction, KAUD)"。其发病机制尚不明确。本课题应用体外原代培养膀胱上皮细胞,研究经不同浓度的氯胺酮作用于细胞后的一系列生物学行为改变。这些生物学行为包括细胞增殖和细胞凋亡,同时在分子水平研究这些改变的分子机制,包括对凋亡相关蛋白、基因和对线粒体通路的影响等。为了进一步探究氯胺酮对于膀胱的毒性作用,我们建立大鼠KAUD动物模型,探讨氯胺酮在体内对膀胱上皮的影响,并进一步探讨其分子机制。另外,收集临床KAUD患者尿液行荧光原位杂交(fluorescence in situ hybridization, FISH)检测,从染色体水平,探讨氯胺酮对膀胱上皮细胞的影响,及KAUD与膀胱肿瘤发生的相关性。
     方法
     体外原代培养膀胱移行尿路上皮细胞,倒置显微镜细胞形态观察,细胞暴露于不同浓度的氯胺酮中,观察细胞形态学的改变,MTT比色法检测氯胺酮对膀胱上皮细胞增殖的影响;TUNEL法观测氯胺酮对膀胱上皮细胞凋亡率的影响。Western blot检测不同浓度氯胺酮作用下NF-κB、Bcl-2、Bax、细胞色素C、Caspase-3的蛋白表达情况,用RT-PCR技术检测经不同浓度氯胺酮作用后细胞NF-κB、Bcl-2、Bax、细胞色素C、Caspase-3基因mRNA表达水平的改变,以探讨氯胺酮对膀胱上皮细胞凋亡的作用机制。
     雌性Wistar大鼠80只,体重180-220g,随机分为8组(4个实验组,4个相应的对照组),每组10只,实验组大鼠每日同一时间腹腔注射氯胺酮,注射剂量分为50mg/kg和100mg/kg,饲养时间分为1个月和3个月,分别为50mg/kg1月组,50mg/kg3月组,100mg/kg1月组,100mg/kg3月组,4个对照组分别注射等量等时间的生理盐水。观察各组大鼠刻板行为(stereotyped behavior SB)和内脏疼痛行为并进行相关评分,观察排尿次数和体重变化,建立大鼠KAUD动物模型。拉颈处死后,取大鼠膀胱组织进行HE染色观察组织结构和层次改变:采用透射电镜法检测组织细胞超微结构的影响;采用Tunel法检测各组凋亡情况。
     临床中收集12例KAUD患者尿液行脱落细胞学和FISH检测,探针诊断试剂盒,包括CSP7/CSP3和GLPP16/CSP17两组双色探针。CSP7/CSP3探针分别定位于7p11.1-q11.1和3p11.1-q11.1,对应的荧光信号为红色、绿色;GLPP16/CSP17探针分别定位于9p21和17p11.1-q11.1,对应的荧光信号为红色、绿色。观察染色体改变情况,并分析异常染色体改变与吸毒量和吸毒时间之间的关系。
     通过SPSS13.0软件,采用单因素方差分析,析因分析和双变量相关分析进行统计处理,P<0.05认为有统计学意义。
     结果
     膀胱上皮细胞原代培养并传代成功,不同浓度的氯胺酮作用膀胱上皮细胞6h、24h、48h、72h后,细胞的生长受到不同程度的抑制。不同作用时间间存在统计学差异(F=130.632,P<0.001),氯胺酮作用24h后的抑制率(平均为0.398)显著高于其他三个时间点。不同浓度之间的抑制率有显著差异(F=76.957,P<0.001),各个浓度组与阴性对照组间均存在统计学差异(P<0.001)。时间与浓度间存在交互效应(F=4.702, P<0.001)。
     TUNEL法检测发现10ug/ml (18.500±1.998)、100ug/ml (31.133±4.411)、500ug/ml (39.933±6.278)、1000ug/ml(57.967±4.594)、2500ug/ml (19.533±2.203)的氯胺酮分别作用膀胱上皮细胞24h后,加药组均出现棕褐色的凋亡细胞,对照组细胞均未见或偶见阳性细胞(6.567±2.977),除10ug/ml组外(P=0.073),其他实验组和对照组均存在统计学差异(P<0.05),最高值出现在1000ug/ml组(57.967±4.594)。
     WB检测不同浓度氯胺酮处理膀胱上皮细胞后,与对照组(86.330±1.528)相比,100ug/ml (64.330±5.132)、500ug/ml (55.000±5.000)、1000ug/ml (46.330±2.082)、2500ug/ml (39.000±1.000)剂量组NF-κB蛋白表达降低(P<0.05),呈剂量依赖性;100ug/ml (87.000±3.606)、500ug/ml (70.670±2.517)、1000ug/ml (56.670±3.055)、2500ug/ml (85.330±6.658)剂量组Bcl-2蛋白表达降低(P<0.05);500ug/ml (89.000±8.185)、1000ug/ml (96.670±5.033)、2500ug/ml (111.330±4.163)剂量组bax表达升高(P<0.05);500ug/ml(124.330±6.429)、1000ug/ml(127.330±3.055)剂量组细胞色素C表达显著升高(P<0.05);500ug/ml(90.670±6.658)、1000ug/ml(95.330±5.033)剂量组caspase-3蛋白表达显著增高(P<0.05)。
     RT-PCR检测膀胱上皮细胞中各凋亡相关基因的表达,细胞经不同浓度的氯胺酮处理后,与对照组相比,各剂量组NF-κB均下调(P<0.001),并呈递减趋势;Bcl-2mRNA的表达明显受到抑制(P<0.001);10ug/ml(2.246±0.204)、100ug/ml(1.428±0.212)和1000ug/ml(2.730±0.558)剂量组Bax与对照组无统计学差异(P>0.05),200ug/ml(3.757±0.419)、500ug/ml(3.082±0.449)、2500ug/ml(3.293±0.361)、5000ug/ml(5.246±0.258)组均存在统计学差异(P<0.05);细胞色素C的表达出现不稳定趋势,200ug/ml(1.905±0.337)、2500ug/ml(1.981±0.309)、5000ug/ml(1.998±0.391)三个剂量组与对照组比较有统计学差异,10ug/ml(0.960±0.120)、100ug/ml(0.745±0.138)、500ug/ml(1.452±0.294)、1000ug/ml(1.228±0.086)四个剂量组与对照组相比无显著差异(P>0.05);caspase-3mRNA的表达从有200ug/ml剂量组开始有上调趋势(P<0.001),且随着药物作用浓度增高,表达逐渐增强。
     成功建立大鼠KAUD动物模型。对照组注射生理盐水后,行为活动与正常大鼠无异,正常饮水进食;实验组注射氯胺酮后开始出现行为和活动异常,主要表现为不自主的扭头、点头、啮齿(磨牙)和自发转圈运动等刻板行为。与对照组相比,实验组大鼠体重明显受抑制,实验组和对照组有显著差异(F=100.421,P<0.001),时间点有显著性差异(F=100.421,P<0.001),剂量间无显著差异(F=0.066,P=0.798),分组和时间存在交互效应(F=9.640,P=0.003),分组和剂量无交互效应(F=0.662,P=0.419),时间和剂量无交互效应(F=0.103,P=0.749),分组、时间和剂量三个因素间不存在交互效应(F=0.166,P=0.685)
     通过对实验大鼠刻板行为的观察,发现实验组大鼠注射氯胺酮后出现明显的刻板行为增多。刻板行为评分明显高于对照组,实验组和对照组有显著差异(F=791.807,P<0.001),时间点无显著性差异(F=3.657,P=0.057),剂量间存在显著差异(F=4.387,P=0.037),分组和时间存在交互效应(F=4.387,P=0.037),分组和剂量也存在交互效应(F=9.031,P=0.003),时间和剂量无交互效应(F=0.008,P=0.928),分组、时间和剂量三个因素间不存在交互效应(F=0.207,P=0.649)。
     通过对实验大鼠内脏疼痛行为的观察,发现实验组大鼠注射氯胺酮后出现明显的内脏疼痛行为增多。评分明显高于对照组,实验组和对照组有显著差异(F=484.921,P<0.001),1月和3月组间有显著性差异(F=36.853,P<0.001),不同注射剂量间有显著性差异(F=75.505,P<0.001),分组和时间存在交互效应(F=25.392,P<0.001),分组和剂量也存在交互效应(F=108.892,P<0.001),时间和剂量间不存在交互效应(F=2.155,P=0.143),分组、时间和剂量三个因素间存在交互效应(F=5.115,P=0.025)。
     氯胺酮注射后,大鼠排尿次数明显增多,实验组和对照组有显著差异(F=570.545,P<0.001),时间点无显著性差异(F=0.599,P=0.440),剂量间有显著性差异(F=10.184,P=0.002),分组和时间存在交互效应(F=5.387,P=0.021),分组和剂量也存在交互效应(F=10.184,P=0.002),时间和剂量间不存在交互效应(F=0.150,P=0.699),分组、时间和剂量三个因素间不存在交互效应(F=0.037,P=0.847)。
     HE染色观察:实验组大鼠膀胱组织上皮细胞层损伤明显,部分上皮细胞层全层脱落形成局部溃疡。膀胱壁尤其是粘膜下层和肌层出现明显水肿、血管充血、破裂出血,粘膜固有层结缔组织和粘膜小血管周围出现大量多形核中性白细胞侵润,侵润甚至出现在膀胱全层。透射电镜结果显示,细胞胞浆浓集,染色质固缩,聚集于核膜下,并可见凋亡小体形成。
     大鼠膀胱组织TUNEL凋亡检测结果:阳性细胞核呈棕黄色,染色质凝聚、浓缩,呈凋亡细胞的形态学征象,部分阳性细胞核染色质仍很疏松,部分呈圆形深染的棕黄色小体,为典型的凋亡小体。在对照组中,偶见阳性细胞,可能是膀胱细胞的正常凋亡或者是假阳性的结果,而在经氯胺酮处理组,可见明显的细胞凋亡增加的现象。实验组和对照组间凋亡情况存在显著差异(F=1548.244,P<0.001),时间点有显著差异(F=153.021,P<0.001),剂量间有显著差异(F=216.566,P<0.001),分组和时间存在交互效应(F=140.891,P<0.001),分组和剂量存在交互效应(F=232.207,P<0.001),时间和剂量不存在交互效应(F=0.438,P=0.509),分组、时间和剂量不存在交互效应(F=2.067,P=0.152)。表明氯胺酮能诱导大鼠膀胱细胞凋亡,且有时间和剂量效应。
     本研究中12例患者,男9例,女3例,年龄18-34岁,平均27.5岁,吸毒时间13-40月,平均27月,每日吸毒量1.5-5克,平均3.2克。细胞学均为阴性,FISH阳性5例。另有1号和12号患者分别只有一个染色体突变,所有突变中,3、7、P16、17突变率分别为4/12、5/12、1/12、2/12。每日吸毒量与FISH间存在显著相关性(r=0.595,P=0.041),总吸毒量与FISH间存在显著相关性(r=0.808,P=0.001)。
     结论
     体外实验中氯胺酮对膀胱上皮细胞的增殖具有明显的抑制作用,并诱导其凋亡。
     体外实验中氯胺酮可调控膀胱上皮细胞凋亡相关蛋白和mRNA的表达,其机制可能是通过下调NF-κB引起线粒体凋亡通路,Bcl-2下调,Bax上调,Bax/Bcl-2比值升高,细胞色素C外流,释放入胞浆,活化的caspase-3表达增多,从而启动细胞凋亡。
     成功建立大鼠KAUD动物模型,大鼠刻板运动、内脏疼痛行为、排尿次数、体重等均发生变化。
     体内实验表明氯胺酮可引起大鼠膀胱上皮损伤和凋亡。
     KAUD患者尿液脱落细胞存在染色体变异,且与吸毒总量相关,但染色体突变的远期结果是否与肿瘤发生相关,尚需进一步研究。
Background and Objection:
     More and more chronic recreational ketamine abusers suffer from severe frequency, urgency, painful, haematuria, dysuria and urge incontinence, which we called ketamine associated urinary dysfunction (KAUD), and nothing was known about the pathogenesis. The present study was carried out to investigate the effect of ketamine on cell culture in vitro, setup the KAUD animal model and detect the chromosome with FISH, in order to approach the molecular pathogenesis of KAUD.
     Methods and materials:
     Rat primary urothelium cell was cultivated in vitro. MTT assay was used to measure proliferation activity of urothelium cell by ketamine. Apoptotic cell death was determined by TUNEL-staining. The protein expressions of NF-κB, Bcl-2, Bax. Cytochrome C and Caspase-3were assessed by Western Blot. The expression of mRNA determined by reverse transcript-polymerase chain reaction (RT-PCR) assay.
     80wistar rats were divided into8groups at random:50mg/kg1month,50mg/kg3months,100mg/kg1month,100mg/kg3months, and four corresponding control groups. They were exposed to ketamine by intraperitioneal injection or equivalence saline. Experiments and observations described below were performed after exposure. Stereotyped behavior, internal organs pain behavior, urination times and body weight changes were observed. Apoptosis of urothelium cell in rat bladder were measured with method of TUNEL. Morphology of bladder was observed with light microscope and electron microscope.
     Urine samples of12KAUD patients were analyzed by means of cytology and fluorescence in situ hybridization. Fluorescence in situ hybridization were used to detect the abnormalities of chromosome3,7,17and p16. We analyzed the rates of abnormalities in chromosome3,7,17, p16. The probe mix used consisted of centromeric enumeration probes of chromosomes3(CEP3),7(CEP7), and17(CEP17), and locus-specific identifier probes to the9p21locus location of the p16tumor suppressor gene (LSI9p21or p16). Two DNA probes were mixed together as a set double-target FISH and paired as follows:chromosome3(rhodamine) and chromosome7(FITC), chromosome17(FITC) and p16(rhodamine). We analyses the relationship between chromosomal change and drug abuse.
     Data were analysis by One-Way ANOVA, Factorial analysis and Bivariate in SPSS13.0software.
     Results:
     Rat primary urothelium cell modle treated with ketamine was setup successfully. Ketamine could inhibit the proliferation of urothelium cells significantly in a dose-and time-dependent manner. There was statistics difference in different action time groups (F=130.632, P<0.001) and different ketamine density groups (F=76.957, P <0.001). Interaction could be found between time and density (F=4.702, P<0.001).
     TUNEL assay also showed ketamine could induce apoptosis in urothelium cells in lOug/ml (18.500±1.998),100ug/ml (31.133±4.411),500ug/ml (39.933±6.278),1000ug/ml (57.967±4.594),2500ug/ml (19.533±2.203). Apoptosis cells showed in all ketamine groups, but did not in control group (6.567±2.977). Compared with control group, there was statistics difference in all experimental group (P<0.05), except10ug/ml group (P=0.073), with maximum level in1000ug/ml group (57.967±4.594)
     Ketamine could regulate the expression of apoptosis-related protein. Western blot analysis showed that the protein expression of NF-κB was down-regulated in100ug/ml (64.330±5.132),500ug/ml (55.000±5.000),1000ug/ml (46.330±2.082),2500ug/ml (39.000±1.000) groups (P<0.05). Bcl-2was down-regulated in100ug/ml (87.000±3.606),500ug/ml (70.670±2.517),1000ug/ml (56.670±3.055),2500ug/ml (85.330±6.658) groups (P<0.05), but the protein expression of Bax was up-regulated in500ug/ml (89.000±8.185),1000ug/ml (96.670±5.033),2500ug/ml (111.330±4.163) groups (P<0.05). Cytochrome C was up-regulated in500ug/ml (124.330±6.429),1000ug/ml(127.330±3.055) groups (P<0.05). Caspase-3were advanced in500ug/ml (90.670±6.658), lOOOug/ml (95.330±5.033) groups (P<0.05)
     RT-PCRanalysis showed that the expression of NF-κB and Bcl-2were down-regulated in urothelium cells treated with ketamine in a dose-dependent manner (P<0.001), whereas the expression of Bax was up-regulated in200ug/ml (3.757±0.419),500ug/ml (3.082±0.449),2500ug/ml (3.293±0.361),5000ug/ml (5.246±0.258) groups(P<0.05). Cytochrome C was up-regulated in200ug/ml (1.905±0.337),2500ug/ml (1.981±0.309),5000ug/ml (1.998±0.391) groups(P<0.05). Caspase-3was up-regulated from200ug/ml to5000ug/ml groups (P<0.001).
     KAUD rat modle was setup successfully. Rats body weight were inhibited obviously in ketamine groups compared with control group (F=100.421, P<0.001). Significant difference showed in different time (F=100.421, P<0.001), but without in different dose (F=0.066, P=0.798). Interaction effects were present in group and time (F=9.640, P=0.003), time and dose (F=0.103. P=0.749), but not in group and dose(F=0.662, P=0.419), and not among the three factors(F=0.166, P=0.685).
     Abnormal behavior showed up after treated with ketamine. Results show significant difference in stereotyped behavior compared with control group (F=791.807, P<0.001). Significant difference showed in different dose (F=4.387, P=0.037), but without in different time (F=3.657, P=0.057). Interaction effects were present in group and time (F=4.387, P=0.037), group and dose (F=9.031, P=0.003), but not in time and dose (F=0.008, P=0.928), and not among the three factors (F=0.207, P=0.649)
     Internal organs pain behavior score was higher than control group (F=484.921, P<0.001). Significant difference showed in different time (F=36.853. P<0.001) and in different dose(F=75.505, P<0.001). Interaction effects were present in group and time(F=25.392, P<0.001), group and dose(F=108.892, P<0.001), and among the three factors (F=5.115, P=0.025), but not in time and dose (F=2.155, P=0.143)
     After injected with ketamine, rats urination times increased significantly (F=570.545, P<0.001). Significant difference also showed in different dose(F=10.184, P=0.002), but without in different time (F=0.599, P=0.440). Interaction effects were present in group and time (F=5.387, P=0.021), group and dose (F=10.184, P=0.002), but not in time and dose(F=0.150, P=0.699), and not among the three factors(F=0.037, P=0.847).
     The observation under light microcope showed:arrangement of the urothelium cell was orderly in control group, but with the increasing of the doses and time of ketamine exposed, the urothelium cell displayed disorderly, the connections among the urothelium cell were loosened. Urothelium cell layer was danaged, lossed or desquanmated. Edema, vasocongestion and hemorrhage showed in submucosa and muscular layer. Polymorphonuclear neutrophil leukocyte can also be found in connective tissue and vessels surrounding. Picture under electron microscope displayed:the karyon shrinlced, the karyotin assembled in the edge, karyotheca was broken, mitochondria swelled, broken, apoptotic body can be found.
     TUNEL assay showed ketamine could induce apoptosis in bladder urothelium cells with morphology signs(buffy positive cells, chromatin agglutination, apoptotic body) Results show significant difference between ketamine groups and control group (F=1548.244, P<0.001). Significant difference showed in different time (F=153.021, P<0.001), and in different dose(F=216.566, P<0.001). Interaction effects were present in group and time(F=140.891, P<0.001), group and dose(F=232.207, P<0.001), but not in time and dose (F=0.438. P=0.509), and not among the three factors (F=2.067, P=0.152)
     5positive FISH and all negative cytology were detected in12KAUD patients, with9male and3female. The aberration rates of3,7,17, p16were4/12,5/12,1/12,2/12. There were correlation between daily dose and FISH(r=0.595, P=0.041), total dose and FISH(r=0.808, P=0.001).
     Conclusion:
     Ketamine could inhibit the proliferation of urothelium cells significantly and induce apoptosis in a dose-and time-dependent manner in vitro.
     Ketamine could regulate the expression of apoptosis-related protein and mRNA. The mechanism may trigger mitochondria apoptosis path through the downwards regulation of NF-κB translocation reduction, which may reduce the ratio between anti-and pro-apoptotic proteins by increasing the expression of pro-apoptotic protein Bax and inducing the degradation of anti-apoptotic protein Bcl-2, and consequent the decrease of membrane potential, release of cytochrome c and activation of caspase-3 result in apoptosis.
     KAUD rat modle was setup successfully. Stereotyped behavior, internal organs pain behavior, urination times and body weight changes were observed.
     Ketamine could caused damage and apoptosis in rat bladder tissue in a dose-and time-dependent manner.
     Chromosomal variation was found in cell of KAUD patient urine by FISH. Further study was needed to make clear whether it is correlated to tumorigenesis.
引文
[1]Yang J, Bian SZ. A reviewing for abusing of ketamine. Fa Yi Xue Za Zhi 2007;23:312-5.
    [2]Siegel RK. Phencyclidine and ketamine intoxication:a study of four populations of recreational users. NIDA Res Monogr 1978:119-47.
    [3]Chu PS, Ma WK, Wong SC, Chu RW. Cheng CH, Wong S, Tse JM, Lau FL, Yiu MK, Man CW. The destruction of the lower urinary tract by ketamine abuse:a new syndrome? BJU Int 2008;102:1616-22.
    [4]王艳芬,张玉竹,连智,孙桂宽,鲍彦平,刘志民.北京地区三种新型毒品流行滥用特征.中国药物依赖性杂志2008.
    [5]丘志馨.氯胺酮的药理作用及滥用问题探讨.广东公安科技2006.
    [6]吴芃,朱秀群,姚铭广,郑少斌,谭万龙,文志卫,韦安阳,程祎,吴威武.氯胺酮相关性泌尿系统损害.中华泌尿外科杂志2008;29:4.
    [7]喻汉华,彭俊红.氯胺酮相关性泌尿系统损害MSCT表现及文献复习.放射学实践2009.
    [8]黄志扬,林俊雄,吴文峰,沈倚天.氯胺酮致泌尿系统损害35例临床分析.山西医科大学学报2011.
    [9]Tsai TH, Cha TL, Lin CM, Tsao CW, Tang SH, Chuang FP, Wu ST, Sun GH, Yu DS, Chang SY. Ketamine-associated bladder dysfunction. Int J Urol 2009;16:826-9.
    [10]Chen CH, Lee MH, Chen YC, Lin MF. Ketamine-snorting associated cystitis. J Formos Med Assoc 2011;110:787-91.
    [11]Chu PS, Kwok SC, Lam KM, Chu TY, Chan SW, Man CW, Ma WK, Chui KL, Yiu MK, Chan YC, Tse ML, Lau FL.'Street ketamine'-associated bladder dysfunction:a report of ten cases. Hong Kong Med J 2007; 13:311-3.
    [12]吴芃,陈烨,成官迅,郑少斌.氯胺酮相关性胆管扩张症.现代消化及介入诊疗2010.
    [13]史本涛,周德荣,关志忱.氯胺酮相关性下尿路症状1例报告并文献复习.现代泌尿外科杂志2010.
    [14]Moore KA, Sklerov J, Levine B, Jacobs AJ. Urine concentrations of ketamine and norketamine following illegal consumption. J Anal Toxicol 2001;25:583-8.
    [15]Homma Y, Ueda T, Tomoe H, Lin AT, Kuo HC, Lee MH, Lee JG, Kim DY, Lee KS. Clinical guidelines for interstitial cystitis and hypersensitive bladder syndrome. Int J Urol 2009:16:597-615.
    [16]Shahani R, Streutker C, Dickson B, Stewart RJ. Ketamine-associated ulcerative cystitis:a new clinical entity. Urology 2007;69:810-2.
    [17]魏辉,黄英,张晓忠,程志刚,李国,罗旭杰,方少洪,邬绍文,梅骅.碱化利多卡因膀胱灌注治疗氯胺酮相关性膀胱炎.中华泌尿外科杂志2010;31.
    [18]Selby N AJ, Bungay P. Lindsay J, Chesterton, Nitin V, Kolhe. Obstructive nephropathy and kidney injury associated with ketamine abuse. NDT Plus 2008;1:310-2.
    [19]Angela M. Cottrell DAG. Ketamine-associated urinary tract pathology:The tip of the iceberg for urologists? British Journal of Medical and Surgical Urology 2008:136-8.
    [20]Chen X, Shu S, Bayliss DA. HCN1 channel subunits are a molecular substrate for hypnotic actions of ketamine. J Neurosci 2009;29:600-9.
    [21]Han J, Kim N, Joo H, Kim E. Ketamine blocks Ca2+-activated K+channels in rabbit cerebral arterial smooth muscle cells. Am J Physiol Heart Circ Physiol 2003;285:H1347-55.
    [22]Song XM, Li JG, Wang YL, Zhou Q, Du ZH, Jia BH, Ke JJ. Effects of ketamine on proinflammatory cytokines and nuclear factor kappaB in polymicrobial sepsis rats. World J Gastroenterol 2006;12:7350-4.
    [23]Loop T, Liu Z, Humar M, Hoetzel A, Benzing A, Pahl HL, Geiger KK. BH JP. Thiopental inhibits the activation of nuclear factor kappaB. Anesthesiology 2002;96:1202-13.
    [24]Shen W, Zhang C, Zhang G. Nuclear factor kappaB activation is mediated by NMDA and non-NMDA receptor and L-type voltage-gated Ca(2+) channel following severe global ischemia in rat hippocampus. Brain Res 2002;933:23-30.
    [25]Lee MH, Han DW, Hyon SH, Park JC. Apoptosis of human fibrosarcoma HT-1080 cells by epigallocatechin-3-O-gallate via induction of p53 and caspases as well as suppression of Bcl-2 and phosphorylated nuclear factor-kappaB. Apoptosis 2010.
    [26]Chu SH, Lim JW, Kim DG, Lee ES, Kim KH, Kim H. Down-regulation of Bcl-2 is mediated by NF-kappaB activation in Helicobacter pylori-induced apoptosis of gastric epithelial cells. Scand J Gastroenterol 2010.
    [27]Weerasinghe P, Hallock S, Liepins A. Bax. Bcl-2, and NF-kappaB expression in sanguinarine induced bimodal cell death. Exp Mol Pathol 2001;71:89-98.
    [28]Engidawork E, Gulesserian T, Seidl R, Cairns N, Lubec G. Expression of apoptosis related proteins:RAIDD, ZIP kinase, Bim/BOD, p21, Bax. Bcl-2 and NF-kappaB in brains of patients with Down syndrome. J Neural Transm Suppl 2001:181-92.
    [29]Cartron PF, Priault M, Oliver L, Meflah K, Manon S, Vallette FM. The N-terminal end of Bax contains a mitochondrial-targeting signal. J Biol Chem 2003:278:11633-41.
    [30]Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999; 13:1899-911.
    [31]贾林涛,于翠娟,许彦鸣,朱峰,彭玮丹,苏成芝,王成济,杨安钢. Caspase-3融合蛋白基因的构建及其对HeLa细胞凋亡的诱导作用.第四军医大学学报2001.
    [32]Salvesen GS, Dixit VM. Caspases:intracellular signaling by proteolysis. Cell 1997;91:443-6.
    [33]Mak YT, Lam WP, Lu L, Wong YW, Yew DT. The toxic effect of ketamine on SH-SY5Y neuroblastoma cell line and human neuron. Microsc Res Tech 2010;73:195-201.
    [34]Zou X, Patterson TA, Sadovova N, Twaddle NC, Doerge DR, Zhang X, Fu X, Hanig JP, Paule MG, Slikker W, Wang C. Potential neurotoxicity of ketamine in the developing rat brain. Toxicol Sci 2009;108:149-58.
    [35]Oxley JD, Cottrell AM, Adams S, Gillatt D. Ketamine cystitis as a mimic of carcinoma in situ. Histopathology 2009;55:705-8.
    [36]Storr TM, Quibell R. Can ketamine prescribed for pain cause damage to the urinary tract? Palliat Med 2009;23:670-2.
    [37]姜海洋,谭明波,张定,孙璇,程洁敏,林杨.滥用氯胺酮致膀胱炎2例.实用医学杂志2009.
    [38]San Miguel Fraile P, Anton Badiola I, Ortiz Rey JA, Alvarez Alvarez C, Fernandez Costas A, Lago Fernandez M, Pelaez Boismorand E, Zungri Telo E, De La Fuente Buceta A. [Comparative study of the expression of p53, Ki-67, bcl-2 and CK20 in superficial transitional carcinoma of the bladder:correlation with recurrence, histological grade, and clinical stage]. Actas Urol Esp 2003:27:587-93.
    [39]Mallofre C, Castillo M, Morente V, Sole M. Immunohistochemical expression of CK20, p53, and Ki-67 as objective markers of urothelial dysplasia. Mod Pathol 2003:16:187-91.
    [40]McKenney JK, Desai S, Cohen C, Amin MB. Discriminatory immunohistochemical staining of urothelial carcinoma in situ and non-neoplastic urothelium:an analysis of cytokeratin 20, p53, and CD44 antigens. Am J Surg Pathol 2001;25:1074-8.
    [41]Kunju LP, Lee CT, Montie J, Shah RB. Utility of cytokeratin 20 and Ki-67 as markers of urothelial dysplasia. Pathol Int 2005;55:248-54.
    [42]Nowell PC, Hungerford DA. Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst 1960:25:85-109.
    [43]Lissens W, Sermon K. Preimplantation genetic diagnosis:current status and new developments. Hum Reprod 1997; 12:1756-61.
    [44]Sandberg AA, Berger CS. Review of chromosome studies in urological tumors. Ⅱ. Cytogenetics and molecular genetics of bladder cancer. J Urol 1994;151:545-60.
    [45]Shan ZF, Zheng SB, Wu P, Tan WL, Zuo Y, Zhou HK, Qi H, Zhang P, Peng HM. [Predictive value of fluorescence in situ hybridization in patients with bladder cancer]. Nan Fang Yi Ke Da Xue Xue Bao 2010:30:1597-9,603.
    [46]Ibrahim A, Fahal AH. Recovery of radiologically functionless obstructed kidneys. Br J Urol 1984;56:113-5.
    [47]Kerr JF, Wyllie AH, Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26:239-57.
    [48]Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 1995;146:3-15.
    [49]Nagata S. Apoptotic DNA fragmentation. Exp Cell Res 2000;256:12-8.
    [50]Eskes R, Desagher S, Antonsson B, Martinou JC. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 2000:20:929-35.
    [51]Miramar MD, Costantini P, Ravagnan L, Saraiva LM, Haouzi D, Brothers G, Penninger JM, Peleato ML, Kroemer G, Susin SA. NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem 2001:276:16391-8.
    [52]Nakamura K, Bossy-Wetzel E, Burns K, Fadel MP, Lozyk M, Goping IS, Opas M, Bleackley RC, Green DR. Michalak M. Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis. J Cell Biol 2000:150:731-40.
    [53]Rao RV, Hermel E, Castro-Obregon S, del Rio G, Ellerby LM, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem 2001;276:33869-74.
    [54]Mesaeli N. Nakamura K, Zvaritch E, Dickie P, Dziak E, Krause KH, Opas M, MacLennan DH. Michalak M. Calreticulin is essential for cardiac development. J Cell Biol 1999;144:857-68.
    [55]Lee CS, Kim YJ, Jang ER, Kim W, Myung SC. Fluoxetine induces apoptosis in ovarian carcinoma cell line OVCAR-3 through reactive oxygen species-dependent activation of nuclear factor-kappaB. Basic Clin Pharmacol Toxicol2010;106:446-53.
    [56]Kong R, Sun B, Wang SJ, Pan SH, Wang G, Chen H, Xue DB, Jiang HC. [An experimental study of gemcitabine inducing pancreatic cancer cell apoptosis potentiated by nuclear factor-kappa B P65 siRNA.]. Zhonghua Wai Ke Za Zhi 2010:48:128-33.
    [57]Kim SM; Lee SY Cho JS, Son SM, Choi SS, Yun YP, Yoo HS, Yoon do Y, Oh KW, Han SB, Hong JT. Combination of ginsenoside Rg3 with docetaxel enhances the susceptibility of prostate cancer cells via inhibition of NF-kappaB. Eur J Pharmacol 2010;631:1-9.
    [58]Kao YH, Jawan B, Sun CK; Goto S, Lin YC, Hung CT, Pan MC, Hsu LW, Cheng YF, Lai CY, Wang CS, Tsai CC, Chang HR, Chen CL. High concentration of magnolol induces hepatotoxicity under serum-reduced conditions. Phytomedicine 2010; 17:469-74.
    [59]Huang XY, Wang HC, Yuan Z, Li A, He ML, Ai KX, Zheng Q, Qin HL. Gemcitabine combined with gum mastic causes potent growth inhibition and apoptosis of pancreatic cancer cells. Acta Pharmacol Sin 2010;31:741-5.
    [60]Slikker W, Jr., Paule MG, Wright LK; Patterson TA, Wang C. Systems biology approaches for toxicology. J Appl Toxicol 2007;27:201-17.
    [61]Orrenius S. Mitochondrial regulation of apoptotic cell death. Toxicol Lett 2004;149:19-23.
    [62]Saito M, Korsmeyer SJ, Schlesinger PH. BAX-dependent transport of cytochrome c reconstituted in pure liposomes. Nat Cell Biol 2000;2:553-5.
    [63]Zong WX, Lindsten T, Ross AJ, MacGregor GR, Thompson CB. BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev 2001;15:1481-6.
    [64]倪锦,古妙宁,钟志勇,孙侠.氯胺酮对七日龄SD大鼠脑皮层神经元凋亡的影响及其机制探讨.数理医药学杂志2011.
    [65]Sun L, Lam WP, Wong YW, Lam LH, Tang HC, Wai MS, Mak YT, Pan F, Yew DT. Permanent deficits in brain functions caused by long-term ketamine treatment in mice. Hum Exp Toxicol 2011;30:1287-96.
    [66]Desfeux A, El Ghazi F, Jegou S, Legros H, Marret S, Laudenbach V, Gonzalez BJ. Dual effect of glutamate on GABAergic interneuron survival during cerebral cortex development in mice neonates. Cereb Cortex 2010;20:1092-108.
    [67]左媛宜,赵彦伯,蒋小岗,顾振纶,郭次仪,卞士中.氯胺酮对PC12细胞增殖及凋亡的影响.法医学杂志2011.
    [68]Zou H, Li Y, Liu X, Wang X. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 1999:274:11549-56.
    [69]Vander Heiden MG, Chandel NS, Li XX, Schumacker PT, Colombini M, Thompson CB. Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc Natl Acad Sci U S A 2000:97:4666-71.
    [70]Maurer M. Tsai M, Metz M, Fish S, Korsmeyer SJ, Galli SJ. A role for Bax in the regulation of apoptosis in mouse mast cells. J Invest Dermatol 2000:114:1205-6.
    [71]Mronga T, Stahnke T, Goldbaum O, Richter-Landsberg C. Mitochondrial pathway is involved in hydrogen-peroxide-induced apoptotic cell death of oligodendrocytes. Glia 2004;46:446-55.
    [72]Hao Z, Duncan GS, Chang CC, Elia A, Fang M, Wakeham A, Okada H, Calzascia T, Jang Y, You-Ten A, Yeh WC, Ohashi P, Wang X, Mak TW. Specific ablation of the apoptotic functions of cytochrome C reveals a differential requirement for cytochrome C and Apaf-1 in apoptosis. Cell 2005; 121:579-91.
    [73]Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 1998:391:43-50.
    [74]Lee ST, Wu TT, Yu PY, Chen RM. Apoptotic insults to human HepG2 cells induced by S-(+)-ketamine occurs through activation of a Bax-mitochondria-caspase protease pathway. Br J Anaesth 2009; 102:80-9.
    [75]Soriano SG, Liu Q, Li J, Liu JR, Han XH, Kanter JL, Bajic D, Ibla JC. Ketamine activates cell cycle signaling and apoptosis in the neonatal rat brain. Anesthesiology 2010;112:1155-63.
    [76]Braun S, Gaza N, Werdehausen R, Hermanns H, Bauer I, Durieux ME, Hollmann MW, Stevens MF. Ketamine induces apoptosis via the mitochondrial pathway in human lymphocytes and neuronal cells. Br J Anaesth 2010:105:347-54.
    [77]黄河,杨天德,杨辉,陶军,李洪,吕胜青.氯胺酮对体外培养大鼠神经干细胞增殖与凋亡的影响.中华麻醉学杂志2006.
    [78]赵国庆,王宏宇,王金兰,张耀中,李龙云,苏振波,王天元.氯胺酮麻醉对机体部分免疫细胞的影响.临床麻醉学杂志2007.
    [79]Sams-Dodd F. A test of the predictive validity of animal models of schizophrenia based on phencyclidine and D-amphetamine. Neuropsychopharmacology 1998;18:293-304.
    [80]Miampamba M. Chery-Croze S, Gorry F, Berger F, Chayvialle JA. Inflammation of the colonic wall induced by formalin as a model of acute visceral pain. Pain 1994:57:327-34.
    [81]Dickson A, Avelino A, Cruz F, Ribeiro-da-Silva A. Peptidergic sensory and parasympathetic fiber sprouting in the mucosa of the rat urinary bladder in a chronic model of cyclophosphamide-induced cystitis. Neuroscience 2006;141:1633-47.
    [82]Ho CC, Pezhman H, Praveen S, Goh EH, Lee BC, Zulkifli MZ, Isa MR. Ketamine-associated ulcerative cystitis:a case report and literature review. Malays J Med Sci 2010;17:61-5.
    [83]Agarwal A, Gupta D, Kumar M, Dhiraaj S, Tandon M, Singh PK. Ketamine for treatment of catheter related bladder discomfort:a prospective, randomized, placebo controlled and double blind study. Br J Anaesth 2006;96:587-9.
    [84]Chen RM, Chen TL, Lin YL, Chen TG, Tai YT. Ketamine reduces nitric oxide biosynthesis in human umbilical vein endothelial cells by down-regulating endothelial nitric oxide synthase expression and intracellular calcium levels. Crit Care Med 2005;33:1044-9.
    [85]Yeung LY, Rudd JA, Lam WP, Mak YT, Yew DT. Mice are prone to kidney pathology after prolonged ketamine addiction. Toxicol Lett 2009;191:275-8.
    [86]范颖晖,高轶,王新华.氯胺酮对大鼠肾脏低温延时保存影响的形态学观察.第二军医大学学报2009.
    [87]Parsons CL. The role of the urinary epithelium in the pathogenesis of interstitial cystitis/prostatitis/urethritis. Urology 2007;69:9-16.
    [88]van de Merwe JP, Yamada T, Sakamoto Y. Systemic aspects of interstitial cystitis, immunology and linkage with autoimmune disorders. Int J Urol 2003; 10 Suppl:S35-8.
    [89]Teichman JM, Moldwin R. The role of the bladder surface in interstitial cystitis/painful bladder syndrome. Can J Urol 2007;14:3599-607.
    [90]Soler R, Bruschini H, Martins JR, Dreyfuss JL, Camara NO, Alves MT, Leite KR, Truzzi JC, Nader HB, Srougi M, Ortiz V. Urinary glycosaminoglycans as biomarker for urothelial injury:is it possible to discriminate damage from recovery? Urology 2008;72:937-42.
    [91]Shan Z, Wu P, Zheng S, Tan W, Zhou H, Zuo Y, Qi H, Zhang P, Peng H, Wang Y. Evaluation of upper urinary tract tumors by FISH in Chinese patients. Cancer Genet Cytogenet 2010;203:238-46.
    [92]Jones JS. DNA-based molecular cytology for bladder cancer surveillance. Urology 2006;67:35-45; discussion-7.
    [93]Halling KC, Kipp BR. Bladder cancer detection using FISH (UroVysion assay). Adv Anat Pathol 2008;15:279-86.
    [94]Halling KC, Kipp BR. Fluorescence in situ hybridization in diagnostic cytology. Human Pathology 2007;38:1137-44.
    [95]Hajdinjak T. UroVysion FISH test for detecting urothelial cancers:Meta-analysis of diagnostic accuracy and comparison with urinary cytology testing. Urologic Oncology:Seminars and Original Investigations 2008:26:646-51.
    [96]Marin-Aguilera M, Mengual L, Ribal MJ, Musquera M, Ars E, Villavicencio H. Algaba F, Alcaraz A. Utility of Fluorescence In Situ Hybridization as a Non-invasive Technique in the Diagnosis of Upper Urinary Tract Urothelial Carcinoma. European Urology 2007;51:409-15.
    [97]Akkad T, Brunner A, Pallwein L, Gozzi C, Bartsch G, Mikuz G, Steiner H, Verdorfer I. Fluorescence In Situ Hybridization for Detecting Upper Urinary Tract Tumors--A Preliminary Report. Urology 2007;70:753-7.
    [98]Pycha Ar Mian C, Posch B, Haitel A, El-Baz M, Ghoneim MA, Marberger M. Numerical aberrations of chromosomes 7,9 and 17 in squamous cell and transitional cell cancer of the bladder:a comparative study performed by fluorescence in situ hybridization. J Urol 1998; 160:737-40.
    [99]Waldman FM, Carroll PR, Kerschmann R, Cohen MB, Field FG, Mayall BH. Centromeric copy number of chromosome 7 is strongly correlated with tumor grade and labeling index in human bladder cancer. Cancer Res 1991:51:3807-13.
    [100]Reid-Nicholson MD, Ramalingam P, Adeagbo B, Cheng N, Peiper SC, Terris MK. The use of Urovysion fluorescence in situ hybridization in the diagnosis and surveillance of non-urothelial carcinoma of the bladder. Mod Pathol 2009:22:119-27.
    [101]Yin M, Bastacky S, Parwani AV, McHale T, Dhir R. p16ink4 immunoreactivity is a reliable marker for urothelial carcinoma in situ. Hum Pathol 2008;39:527-35.
    [102]Eleuteri P, Grollino MG, Pomponi D, de Vita R. Chromosome 9 aberrations by-fluorescence in situ hybridisation in bladder transitional cell carcinoma. European Journal of Cancer 2001;37:1496-503.
    [103]Jung I, Reeder JE, Cox C, Siddiqui JFM, O'Connell MJ, Collins L, Yang Z, Messing EM, Wheeless LL. Chromosome 9 monosomy by fluorescence in situ hybridization of bladder irrigation specimens is predictive of tumor recurrence. J Urology 1999;162:1900-3.
    [1]Ibrahim A, Fahal AH. Recovery of radiologically functionless obstructed kidneys. Br J Urol 1984:56:113-5.
    [2]沈杰,范乃建.新型毒品氯胺酮(K粉)的毒理作用、滥用趋势及危害.云南警官学院学报2004:2.
    [3]Ho CC, Pezhman H, Praveen S, Goh EH, Lee BC, Zulkifli MZ, Isa MR. Ketamine-associated ulcerative cystitis:a case report and literature review. Malays J Med Sci 2010;17:61-5.
    [4]Siegel RK. Phencyclidine and ketamine intoxication:a study of four populations of recreational users. NIDA Res Monogr 1978:119-47.
    [5]Chu PS, Kwok SC, Lam KM, Chu TY, Chan SW, Man CW, Ma WK, Chui KL, Yiu MK, Chan YC, Tse ML, Lau FL.'Street ketamine'-associated bladder dysfunction:a report of ten cases. Hong Kong Med J 2007; 13:311-3.
    [6]丘志馨.氯胺酮的药理作用及滥用问题探讨.广东公安科技2006.
    [7]王艳芬,张玉竹,连智,孙桂宽,鲍彦平,刘志民.北京地区三种新型毒品流行滥用特征.中国药物依赖性杂志2008.
    [8]Shahani R, Streutker C, Dickson B, Stewart RJ. Ketamine-associated ulcerative cystitis:a new clinical entity. Urology 2007;69:810-2.
    [9]Chu PS, Ma WK, Wong SC, Chu RW, Cheng CH, Wong S, Tse JM, Lau FL, Yiu MK, Man CW. The destruction of the lower urinary tract by ketamine abuse:a new syndrome? BJU Int 2008; 102:1616-22.
    [10]冯波,张慧锋,李妍.氯胺酮的临床应用及滥用危害.吉林医药学院学报2005.
    [11]Peyton SH, Couch AT, Bost RO. Tissue distribution of ketamine:two case reports. J Anal Toxicol 1988;12:268-9.
    [12]Hodshon BJ, Ferrer-Allado T, Brechner VL, Cho AK. A gas chromatographic assay procedure for ketamine in plasma. Anesthesiology 1972;36:506-8.
    [13]Moore KA, Kilbane EM, Jones R, Kunsman GW, Levine B, Smith M. Tissue distribution of ketamine in a mixed drug fatality. J Forensic Sci 1997;42:1183-5.
    [14]贾娟,曹洁,王玉瑾,负克明.氯胺酮在大鼠体内的分布.中国医院药学杂志2008.
    [15]贾娟,曹洁,王玉瑾,负克明,尉志文.氯胺酮在急性中毒大鼠体内的死后再分布研究.中国法医学杂志2009.
    [16]王大利,万东方,王勇,尉志文,王雪彦,负克明,王玉瑾.氯胺酮在大鼠体内死后的分布研究.中西医结合心脑血管病杂志2010.
    [17]Hansen G, Jensen SB, Chandresh L, Hilden T. The psychotropic effect of ketamine. J Psychoactive Drugs 1988:20:419-25.
    [18]Moore KA, Sklerov J, Levine B, Jacobs AJ. Urine concentrations of ketamine and norketamine following illegal consumption. J Anal Toxicol 2001;25:583-8.
    [19]Yung-Chien Huang C-MJ, Tzu-Chieh Cheng. Ketamine-associated Ulcerative Cystitis. Tzu Chi Medical Journal 2008;71:1232-3.
    [20]Wu S, Lai Y, He Y Li X, Guan Z, Cai Z. Lower urinary tract destruction due to ketamine:a report of 4 cases and review of literature. J Addict Med 2012;6:85-8.
    [21]Oxley JD, Cottrell AM, Adams S, Gillatt D. Ketamine cystitis as a mimic of carcinoma in situ. Histopathology 2009;55:705-8.
    [22]Mason K, Cottrell AM, Corrigan AG, Gillatt DA, Mitchelmore AE. Ketamine-associated lower urinary tract destruction:a new radiological challenge. Clin Radiol 2010;65:795-800.
    [23]Mak SK, Chan MT, Bower WF, Yip SK, Hou SS, Wu BB, Man CY. Lower urinary tract changes in young adults using ketamine. J Urol 2011;186:610-4.
    [24]Cottrell A, Warren K, Ayres R, Weinstock P, Kumar V, Gillatt D. The destruction of the lower urinary tract by ketamine abuse:a new syndrome? BJU Int 2008; 102:1178-9; author reply 9.
    [25]Colebunders B, Van Erps P. Cystitis due to the use of ketamine as a recreational drug:a case report. J Med Case Reports 2008;2:219.
    [26]Angela M. Cottrell DAG. Ketamine-associated urinary tract pathology:The tip of the iceberg for urologists? British Journal of Medical and Surgical Urology 2008:136-8.
    [27]Angela M Cottrell RA, Pete Weinstock, Kate Warren, David Gillatt. Urinary tract disease associated with chronic ketamine use. BMJ 2008;336:973-
    [28]周晓群,汪金生,祁先秀.氯胺酮滥用致泌尿系统损害34例临床分析.海军医学杂志2010.
    [29]吴芃,朱秀群,姚铭广,郑少斌,谭万龙,文志卫,韦安阳,程祎,吴威武.氯胺酮相关性泌尿系统损害.中华泌尿外科杂志2008;29:4.
    [30]王朝阳,吴天鹏,刘小兵,詹运运.长期吸食氯胺酮对泌尿系统的损害.武汉大学学报(医学版)2010.
    [31]史本涛,周德荣,关志忱.氯胺酮相关性下尿路症状1例报告并文献复习.现代泌尿外科杂志2010.
    [32]姜海洋,谭明波,张定,孙璇,程洁敏,林杨.滥用氯胺酮致膀胱炎2例.实用医学杂志2009.
    [33]黄志扬,林俊雄,吴文峰,沈倚天.氯胺酮致泌尿系统损害35例临床分析.山西医科大学学报2011.
    [34]郭炬,魏卓,梁铸林,蒋国松,罗兵锋,曾甫清.氯胺酮相关性膀胱功能障碍(附8例报告).临床泌尿外科杂志2011;26.
    [35]Ng SH, Tse ML, Ng HW, Lau FL. Emergency department presentation of ketamine abusers in Hong Kong:a review of 233 cases. Hong Kong Med J 2010;16:6-11.
    [36]Tsai TH, Cha TL, Lin CM, Tsao CW, Tang SH, Chuang FP, Wu ST, Sun GH, Yu DS, Chang SY. Ketamine-associated bladder dysfunction. Int J Urol 2009; 16:826-9.
    [37]Parsons CL, Dell J, Stanford EJ, Bullen M, Kahn BS, Waxell T, Koziol JA. Increased prevalence of interstitial cystitis:previously unrecognized urologic and gynecologic cases identified using a new symptom questionnaire and intravesical potassium sensitivity. Urology 2002;60:573-8.
    [38]Minaglia S. Ozel B, Nguyen JN, Mishell DR. Jr. Validation of Spanish version of Pelvic Pain and Urgency/Frequency (PUF) patient symptom scale. Urology 2005;65:664-9.
    [39]Neal DE. Interstitial cystitis:evaluation and related conditions. J Urol 2009:181:2414-5.
    [40]Selby N AJ, Bungay P. Lindsay J, Chesterton, Nitin V, Kolhe. Obstructive nephropathy and kidney injury associated with ketamine abuse. NDT Plus 2008;1:310-2.
    [41]Chiew YW. Yang CS. Disabling frequent urination in a young adult. Ketamine-associated ulcerative cystitis. Kidney Int 2009:76:123-4.
    [42]喻汉华,彭俊红.氯胺酮相关性泌尿系统损害MSCT表现及文献复习.放射学实践2009.
    [43]张克云,汪立娟,汪家骏,程奎山,陈爱娣,许达生.氯胺酮相关性肝胆、泌尿系统损害的CT诊断.影像诊断与介入放射学2011;20.
    [44]张克云.氯胺酮(K粉)相关性膀胱炎的CT表现.临床放射学杂志2011.
    [45]汪立娟.氯胺酮及其代谢产物在组织中分布与其致腹部器官损害的CT表现相关性分析.医学影像学杂志2011.
    [46]凌岳,赵小华.氯胺酮相关性泌尿系统损害典型影像表现1例.当代医学2011.
    [47]Agarwal A. Gupta D, Kumar M, Dhiraaj S, Tandon M, Singh PK. Ketamine for treatment of catheter related bladder discomfort:a prospective, randomized, placebo controlled and double blind study. Br J Anaesth 2006;96:587-9.
    [48]Homma Y, Ueda T, Tomoe H, Lin AT, Kuo HC, Lee MH, Lee JG, Kim DY, Lee KS. Clinical guidelines for interstitial cystitis and hypersensitive bladder syndrome. Int J Urol 2009; 16:597-615.
    [49]魏辉,黄英,张晓忠,程志刚,李国,罗旭杰,方少洪,邬绍文,梅骅.碱化利多卡因膀胱灌注治疗氯胺酮相关性膀胱炎.中华泌尿外科杂志2010;31.
    [50]Chen X. Shu S, Bayliss DA. HCN1 channel subunits are a molecular substrate for hypnotic actions of ketamine. J Neurosci 2009;29:600-9.
    [51]Chen RM, Chen TL, Lin YL, Chen TG, Tai YT. Ketamine reduces nitric oxide biosynthesis in human umbilical vein endothelial cells by down-regulating endothelial nitric oxide synthase expression and intracellular calcium levels. Crit Care Med 2005;33:1044-9.
    [52]Han J, Kim N. Joo H. Kim E. Ketamine blocks Ca2+-activated K+channels in rabbit cerebral arterial smooth muscle cells. Am J Physiol Heart Circ Physiol 2003;285:H1347-55.
    [53]Yeung LY, Rudd JA, Lam WP, Mak YT, Yew DT. Mice are prone to kidney pathology after prolonged ketamine addiction. Toxicol Lett 2009;191:275-8.
    [54]Galli F, Battistoni A, Gambari R, Pompella A, Bragonzi A, Pilolli F. Iuliano L Piroddi M, Dechecchi MC, Cabrini G. Oxidative stress and antioxidant therapy in cystic fibrosis. Biochim Biophys Acta 2011.
    [55]Xu DZ, Lu Q, Deitch EA. Nitric oxide directly impairs intestinal barrier function. Shock 2002;17:139-45.
    [56]Logadottir YR, Ehren I, Fall M, Wiklund NP, Peeker R, Hanno PM. Intravesical nitric oxide production discriminates between classic and nonulcer interstitial cystitis. J Urol 2004;171:1148-50; discussion 50-1.
    [57]Erickson DR. Urine markers of interstitial cystitis. Urology 2001;57:15-21.
    [58]Chertin B, Rolle U, Solari V, Cascio S, Puri P. The role of nitric oxide in bladder urothelial injury after bladder outlet obstruction. BJU Int 2004;94:392-9.
    [59]Romih R, Korosec P, Sedmak B, Jezernik K. Mitochondrial localization of nitric oxide synthase in partially differentiated urothelial cells of urinary bladder lesions. Appl Immunohistochem Mol Morphol 2008;16:239-45.
    [60]Zou X, Patterson TA, Sadovova N, Twaddle NC, Doerge DR, Zhang X, Fu X, Hanig JP, Paule MG, Slikker W, Wang C. Potential neurotoxicity of ketamine in the developing rat brain. Toxicol Sci 2009; 108:149-58.
    [61]Mak YT, Lam WP, Lu L, Wong YW, Yew DT. The toxic effect of ketamine on SH-SY5Y neuroblastoma cell line and human neuron. Microsc Res Tech 2010;73:195-201.
    [62]Lee ST, Wu TT, Yu PY, Chen RM. Apoptotic insults to human HepG2 cells induced by S-(+)-ketamine occurs through activation of a Bax-mitochondria-caspase protease pathway. Br J Anaesth 2009; 102:80-9.
    [63]陈伟豪,关志忱.氯胺酮相关性泌尿系统损伤.北京大学学报(医学版)2011.
    [64]Parsons CL. The role of the urinary epithelium in the pathogenesis of interstitial cystitis/prostatitis/urethritis. Urology 2007;69:9-16.
    [65]Laurent TC, Fraser JR. Hyaluronan. FASEB J 1992;6:2397-404.
    [66]Erickson DR, Xie SX, Bhavanandan VP, Wheeler MA, Hurst RE, Demers LM. Kushner L, Keay SK. A comparison of multiple urine markers for interstitial cystitis. J Urol 2002;167:2461-9.
    [67]Cheung RY, Chan SS, Lee JH, Pang AW, Choy KW, Chung TK. Urinary symptoms and impaired quality of life in female ketamine users:persistence after cessation of use. Hong Kong Med J 2011:17:267-73.
    [68]方烈奎,张泽键,杨江根,张轶庠.乙状结肠膀胱扩大成形术治疗氯胺酮所致膀胱挛缩.中华泌尿外科杂志2010;31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700