铜、锌在猪粪—蚯蚓系统中迁移积累和调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,畜牧业的规模化、集约化和机械化发展,使产生的大量畜禽粪便面临集中处理和处置;同时,由于饲料添加剂的广泛、大量使用,致使猪粪中重金属元素如Cu和Zn等的含量升高,从而给粪便的安全处理处置以及资源化利用的二次污染风险控制带来隐患。用猪粪饲养蚯蚓(简称猪粪-蚯蚓系统)用作动物饲料的方法是在畜禽废弃物资源化利用技术研究中开发的一种很有前景的循环途径,已经取得了显著的环境、经济和社会效益,并得到广泛的推广应用。但对蚯蚓养殖过程中重金属Cu和Zn的累积情况以及它对下游生物的潜在风险并没有相应的研究报道。为了进一步明确猪粪-蚯蚓系统的应用前景,本文在室外抽样调查的基础上,利用温室开展了猪粪饲养蚯蚓过程中重金属Cu、Zn的迁移积累规律,并考查了草炭、磷矿粉和粉煤灰等几种重金属调理剂对降低蚯蚓蚓体中Cu和Zn、蚓粪中Cu和Zn含量及其生物有效性等的效果,主要取得了如下结果:
     1.室外抽样调查研究,主要针对蚯蚓吸收积累猪粪中Cu、Zn进行了抽样调查研究。选取余杭区四个正利用猪粪饲养蚯蚓的室外大棚进行抽样调查,以此了解蚯蚓对猪粪中Cu、Zn的吸收积累程度及积累量与猪粪中Cu、Zn生物有效性的关系。结果表明:猪粪饲养的蚯蚓体内含有较高的Cu,浓度为24.22-81.44 mgkg~(-1);Zn浓度更高,达到177.85-481.79 mg kg~(-1),是Cu浓度的5.92-7.34倍。显然,蚯蚓对猪粪中Cu、Zn存在明显的吸收积累作用,但对Cu和Zn的积累程度或能力存在显著差异,蚯蚓对Cu的吸收积累能力远小于Zn。基于生物富集因子计算显示,蚯蚓体内Cu、Zn的生物富集因子分别为0.030-0.099和0.318-0.738。
     蚯蚓体内Cu含量与猪粪中可交换态和铁锰氧化物结合态铜的浓度存在显著的正相关关系;蚯蚓体内Zn含量则与猪粪中可交换态、碳酸盐结合态和铁锰氧化物结合态锌的浓度存在明显的线性关系。猪粪中Cu、Zn可交换态浓度分别与蚯蚓体内Cu、Zn含量存在极显著的正相关性(Cu(r=0.973,p<0.01)、Zn(r=0.702,p<0.01),表明猪粪中Cu、Zn可交换态浓度越高,则蚯蚓体内Cu、Zn含量越高。
     2.重金属Cu、Zn在猪粪-蚯蚓系统中形态转化研究。利用温室开展了猪粪饲养蚯蚓试验,比较了猪粪和蚓粪中Cu、Zn的形态分布、总量及部分理化性质(pH、有机质浓度、总磷浓度),研究了蚯蚓对其影响,并探讨了蚓粪中Cu、Zn形态分布与蚓粪理化性质的关系。结果表明:蚯蚓将猪粪中Cu、Zn形态进行了重新分配,使有机结合态铜的含量从60%提高到75%,显著降低了Cu的生物有效性,有助于降低蚓粪中Cu向周边环境扩散的风险;有机结合态锌的含量从50%降低到25%,同时碳酸盐结合态锌的含量从15%提高到30%,两者累加明显提高了Zn的生物有效性,增加了蚓粪中Zn向周边环境扩散的风险。
     蚯蚓对猪粪的理化性质(pH、有机质浓度、总磷浓度)和Cu、Zn总量也存在明显的影响效果。猪粪经蚯蚓肠道作用后,pH和有机质浓度均显著下降,但总磷与Cu、Zn浓度却明显上升。多元回归分析显示,蚓粪中Cu的形态分布受蚓粪有机质、总磷和Cu浓度的影响;Zn形态分布却只受Zn浓度的影响。
     3.重金属调理剂对蚯蚓体内Cu、Zn吸收积累量、蚓粪中Cu、Zn浓度和生物有效性影响的试验研究。选用草炭、磷矿粉和粉煤灰作为重金属调理剂,分别使用单一调理剂按0%、5%、10%和15%(质量比)添加到猪粪中,在温室利用猪粪混合物进行了蚯蚓的饲养试验,结果表明:猪粪中分别添加草炭、磷矿粉和粉煤灰都明显降低蚯蚓体内Cu、Zn随时间积累的浓度。当蚯蚓体内Cu、Zn浓度维持稳定后,与空白组(调理剂添加量为0%)相比,草炭处理单元中蚯蚓体内Cu浓度下降1.82-9.72 mg kg~(-1),最大降幅为29.16%,Zn浓度下降4.56-67.58 mgkg~(-1),最大降幅为42.09%;磷矿粉处理单元中蚯蚓体内Cu浓度下降1.25-8.26 mgkg~(-1),最大降幅为24.41%,Zn浓度下降3.85-45.63 mg kg~(-1),最大降幅为28.42%;粉煤灰处理单元中蚯蚓体内Cu浓度下降1.76-10.83 mg kg~(-1),最大降幅为32.02%,Zn浓度下降5.67-59.52 mg kg~(-1),最大降幅为32.82%。显然,粉煤灰对降低蚯蚓体内Cu浓度的效果最佳;而草炭则对降低蚯蚓体内Zn浓度的效果最佳。但三种调理剂均没有明显降低蚓粪中Cu、Zn浓度和生物有效性,而且在部分处理单元中三种调理剂反而提高蚓粪中Cu、Zn浓度和生物有效性。
The intensive pig farming has developed rapidly in recent two decades.As a consequence,the amount of pig manure increases significantly and its component varies a lot compared with that before.Pig manure is moderately to heaily polluted with heavy metals(e.g.Cu and Zn).This is caused by feed additives overuse(largely exceeds physiological requirement levels for waine disease control and weight improvement).The growth of the swine industry has caused a surplus of manure to be disposed of in comparison to the areas available for it to be spread.As a result,there are a lot of environmental problems such as water,air and soil pollution as well as safety of agricultural food.Additionally,the great deal of pig manure restricts the sustainable development for pig production.
     A new approach of pig manure treatment,pig manure-earthworm system(i.e., breeding earthworms with pig manure),has been developed in recent years.By this way,the pig maure is reclaimed and disposed,and protein-rich earthworm biomass, the perfect feed for livestock,is obtained.The earthworms play an important role in the pig manure-earthworm system.Based on the spot check,we investigate the migration and accumulation of Cu and Zn in pig manure-earthworm system in the greenhouse,and the possibility of reducing the risk of heavy metals accumulated in earthworms and earthworm cast by adding additives such as peat,phosphate rock and fly ash.The study was done as follow:
     1.Study on the accumulaltion of Cu and Zn in earthworm(Eisenia fetida) by spot check.Pig manure samples and earthworms were collected from four different greenhouses located in Yuhang country,Zhejiang Province,China.The four greenhouses selected were Site 1(S1),Site 2(S2),Site 3(S3) and Site 4(S4), respectively.The study was investigated whether and to what extent E.fetida accumulated Cu and Zn in the pig manure-earthworm system,and the relationship between bioavailability of Cu and Zn in pig manure and their bioaccumulation in E. fetida.It was found that E.fetida did accumulate Cu and Zn although the concentrations of Zn in earthworm were between 5.92 and 7.34 times higher than those of Cu;the concentrations of Cu in E.fetida were between 24.22 and 81.44 mg kg~(-1),and the concentrations of Zn in E.fetida were between 177.85 and 481.79 kg mg~(-1).Based on the bioaccumulation factor(BAF) in earthworm E.fetida,the BAFs of Cu were between 0.030 and 0.099,whereas those of Zn were between 0.318 and 0.738.
     Significant relationships were found between bioavailability of heavy metals in pig manure and their bioaccumulation in E.fetida.The variation in the Cu concentration of E.fetida was best explained by the concentration of exchangeable and Fe-Me oxides-bound fractions,while that of Zn was best explained by the concentrations of exchangeable,carbonates-bound and Fe-Me oxides-bound fractions. Furthermore,there were strong positive correlations between the concentrations of the exchangeable fraction in the pig manure and the concentrations of corresponding metal accumulated in E.fetida,e.g.,Cu(R=0.973,p<0.01) and Zn(R=0.702,p<0.01).It confirmed that the higher the concentration of exchangeable fraction in pig manure was,the higher the corresponding metal concentration of earthworm was.
     2.Study on the effect of the transit through the gut of earthworm(E.fetida) on fractionation of Cu and Zn in pig manure.The study was investigated the fractionation of Cu and Zn in the earthworm(E.fetida) casts from pig manure,the effect of the gut transit on the factors affecting the metal fractionation,like pH, organic matter(OM),total phosphorous(TP) and the amount of Cu and Zn,and the relationship between fractionation of metal in the earthworm cast and factors.It showed that the content of Cu bound to organic matter in pig manure increased from 60%to 75%after transit through the gut of earthworm,whereas that of Zn decreased from 50%to 25%.Based on these changes,Cu was less bioavailable,whereas Zn was more bioavailable.
     The factors affecting metal fractionation,like pH,organic matter(OM) and total phosphorous(TP) contents,and total metal concentration,were also affected significantly by the transit through the gut of earthworm.The pH value was significantly lower(p<0.05) in the earthworm casts compared with the pig manure.As well as the pH,OM content decreased significantly(p<0.05).On the contray,the contents of TP and total Cu and Zn increased significantly.Stepwise multiple regression analysis revealed that the fractionation of Cu in the earthworm casts was influenced by OM,TP and the amount of Cu in the earthworm casts.The total Zn concentration in the earthworm casts was the primary factor that explained most of the variation in Zn fractionation.
     3.Study on the control of Cu and Zn in the pig manure-earthworm system.The peat was added to the pig manure at the level of 0%,5%,10%and 15%(mass ratio), respectively,so were phosphate rock and fly ash.Earthworms were reared with the mixture in the greenhouse.The study was investigated the effect of additives on the accumulation of Cu and Zn in earthworms(E.fetida),the concentrations of Cu and Zn in earthworm cast and,the bioavailability of Cu and Zn in earthworm cast.It showed that the amount of Cu and Zn accumulated in E.fetida was reduced by adding additives;the concentrations of Cu in E.fetida were reduced between 1.82 and 9.72 mg kg~(-1) by adding peat to pig manure,with the maximal extent to 29.16%,and those of Zn were reduced between 4.56 and 67.58 mg kg~(-1),with the maximal extent to 42.09%.As for phosphate rock,the concentrations of Cu in E.fetida were reduced between 1.25 and 8.26 mg kg~(-1),with the maximal extent to 24.41%,and those of Zn were reduced between 3.85 and 45.63 mg kg~(-1),with the maximal extent to 28.42%. The concentrations of Cu in E.fetida were reduced between 1.76 and 10.83 mg kg~(-1) by adding fly ash to pig manure,with the maximal extent to 32.02%,and those of Zn were reduced between 5.67 and 59.52 mg kg~(-1),with the maximal extent to 32.82%. Obviously,the fly ash played the most significant role in the reducing the amount of Cu accumulated in E.fetida,whereas the peat was the optimal additive for that of Zn. The additives did not reduce but increase the concentrations and bioavailability of Cu and Zn in earthworm cast.
引文
[1]中华人民共和国国家统计局.2005年中国统计年鉴[M].北京:中国统计出版社,2005:416.
    [2]徐天勇.畜禽养殖场污染治理技术研究[J].安徽农业科学,2004,32(1):135-136.
    [3]孔源,韩鲁佳.我国畜牧业粪便废弃物的污染及其治理对策的探讨[J].中国农业大学学报,2002,7(6):92-96.
    [4]王秀丽,孙波.红壤旱地施用有机肥的氮素淋湿过程[J].土壤学报,2008,45(4):745-749.
    [5]李远.我国规模化畜禽养殖业存在的环境问题与防治对策[J].上海环境科学,2002,21(10):597-599.
    [6]王德霞.农业乡镇循环经济模式研究[D].济南:山东师范大学,2006.
    [7]王志杰.利用蚯蚓处理畜禽养殖业固体废弃物的技术研究[D].济南:山东师范大学,2007.
    [8]王洪涛,陆文静.农村固体废物处理处置与资源化技术[M].北京:中国环境科学出版社.2006.
    [9]Bonazzi G.,Cortellini L.,Piccinini S.Presenza di rame e zinco nei liquami suinicoli e rischio di contaminazione dei suoli[J].L'Informatore Agrario,1994,36:55-59.
    [10]程海翔,贾秀英,朱维琴,吴汶滢,梅凌斐.杭州地区猪粪重金属含量及形态分布的初步研究[J].杭州师范大学学报(自然科学版),2008,7(4):294-297.
    [11]董占荣,陈一定,林咸永,章永松,倪丹华.杭州市郊规模化养殖场猪粪的重金属含量及其形态[J].浙江农业学报,2008,20(1):35-39.
    [12]Cang L.,Wang Y.J.,Zhou D.M.,Dong Y.H.Heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu Province,China[J].Journal of Environmental Science,2004,16:371-374.
    [13]Scholten R.H.J.,Van der Peet-Schwering C.M.C.,Verstegen M.W.A.,Den Hartog L.A.,Schrama J.W.,Vesseur P.C.Fermented co-products and fermented compound diets for pigs:a review[J].Animal Feed Science and Technology,1999,82:1-19.
    [14]Dean D.M.,Foran M.E.The effect of farm liquid waste application on tile drainage[J].Journal of Soil and Water Conservation,1992,47(5):368-369.
    [15]Adams P.L.,Daniel T.,Edwards D.Poultry litter and manure contributions to nitrate leaching through the vadose zone[J].Soil Science Society of America Journal,1994,58(4):1206-1211.
    [16]姚丽贤,李国良,党志.集约化养殖畜禽粪中主要化学物质调查[J].应用生态学报,2006,17(10):1989-1992.
    [17]王辉,董元华,张绪美,李德成,安琼.集约化养殖畜禽粪便农用对土壤次生盐溃化的影响评估[J].环境科学,2008,29(1):183-188.
    [18]秦广军,张隐,霍宝怀.鸡粪再生饲料的制作与利用[J].现代畜牧兽医,2009,5.
    [19]龚传书,李国碧.沼肥在玉米生产上施用效果初探[J].安徽农业科学,2008,36(9):3767-3768
    [20]Abdul Rida,A.M.M.Les vers de terre et l'environnement[J].La Recherche,1994,263:260-267.
    [21]傅规玉.蚯蚓粉代替鱼粉饲喂育肥猪的试验[J].湖南畜牧兽医,2006,3:11-12.
    [22]汪倬.蚯蚓作为新型动物性蛋白饲料的可行性研究[J].江西饲料,2008,2:29-31.
    [23]邓厚群.亟待开发的生物饲料-蚯蚓[J].四川畜牧兽医,2005,3:43.
    [24]刁治民,王生财,邓君,冯欣.蚯蚓的经济价值及开发应用前景[J].青海草业,2005,14(3):7-13.
    [25]陈琳,唐皖江.在饲料中添加蚯蚓对虹鳟稚鱼生长的影响试验[J].淡水渔业,1988,4:16
    [26]Ibanez,I.A.,Herrera,C.A.,Velasquez,L.A.,Hebel,P.Nutritional and toxicological evaluation on rats of earthworm(Eisenia fetida) meal as protein source for animal feed[J].Animal Feed Science Technology,1993,42:165-172.
    [27]Hameed R.,Boucheet M.B.,Cortez J.Etudes in situ des transferts d'azote d'origine lombricienne(Lumbricus terrestris L.) vers les plantes[J].Soil Biology and Biochemistry,1994,26(4):495-501.
    [28]Cortez J.,Hammeed R.,Bouche M.B.C and N transfer in soil with or without earthworms fed with C14 and N15 labelled wheat straw[J].Soil Biology and Biochemistry,1989,21(4):491-497.
    [29]崔玉珍,牛明芬.蚯蚓粉对土壤的培肥作用及草莓产量和品质的影响[J].土壤通报,1998,29(4):156-157.
    [30]Bouche,M.B.Les vers de terre[M].La Recherche,1984,156:796-804.
    [31]Ma Y.,Dickinson N.M.,Wong M.H.Toxicity of Pb/Zn mine tailings to the earthworms Pheretima and the effects of burrowing on metal availability[J].Biology and Fertilty of Soils,2002,36(1):79-86.
    [32]邱江平.蚯蚓及其在环境保护上的应用Ⅰ蚯蚓及其在自然生态系统中的作用[J].上海农学院学报,1999,17(3):227-232.
    [33]刘亚纳,杨世关,张百良.赤子爱胜蚓处理猪粪的试验研究[J].农业环境科学学报,2005,24(4):816-819.
    [34]Gunadi B.,Blount C.,Edwards C.A.The growth and fecundity of Eisenia foetida in cattle solids pre-composted for different periods[J].Pedobiologia,2002,46(1):15-23.
    [35]Neuhauser E.F.,Cukic Z.V.,Malecki M.R.,Loehr R.C.,Durkin P.R.Bioconcentration and biokinetics of heavy metals in the earthworm[J].Environmental Pollution,1995,89(3):293-301.
    [36]牛明芬,崔玉珍.蚯蚓对垃圾与底泥中镉的富集现象[J].农村生态环境,1997,13(3):53-54.
    [37]Kizilkaya R.Cu and Zn accumulation in earthworm Lumbricus terrestris L.in sewage sludge amended soil and fractions of Cu and Zn in casts and surrounding soil[J].Ecological Engineering,2004,22:141-151.
    [38]Morgan J.E.,Morgan A.J.The accumulation of metals(Cd,Cu,Pb,Zn and Ca) by two ecologically contrasting earthworm species(Lumbricus rubellus and Aporrectodea caliginosa):implications for ecotoxicological testing[J].Applied Soil Ecology,1999,13:9-20.
    [39]刘德鸿,刘德辉,成杰民.土壤Cu、Cd污染对两种蚯蚓种的急性毒性[J].应用与环境生物学报,2005,11(6):706-710.
    [40]Morgan J.E.,Richards S.P.G.,Morgan A.J.Contrasting accumulative patterns of two cationic analogues,Ca and Sr,in ecophysiologically contrasting earthworm species(Aporrectodea longa and Allolobophora chlorotica) from the field[J].Applied Soil Ecology,2002,21:11-22.
    [41]Kennette D.,Hendershot W.,Tomlin A.,Sauve S.Uptake of trace metals by the earthworm Lumbricus terrestris L.in urban contaminated soils[J].Applied Soil Ecology,2002,19: 191-198.
    [42] Laszczyca P., Augustyniak M., Babczynska A., Bednarska K., Kafel A., Migula P.L., Wilczek G, Witas I. Profiles of enzymatic activity in earthworms from zinc, lead and cadmium polluted areas near Olkusz (Poland) [J]. Environmental International, 2004, 30: 901-910.
    [43] Nahmani J., Hodson M.E., Black S. A review of studies performed to assess metal uptake by earthworms [J]. Environmental Pollution, 2007, 145: 402-424.
    [44] Tessier A., Campbell P.G.C., Bisson M. Sequential extraction procedure for the speciation of paniculate trace metals [J]. Analytical Chemistry, 1979, 51: 844-851.
    [45] Maiz I., Esnaola M.V., Millan E. Evaluation of heavy metal availability in contaminated soils by a short sequential extraction procedure [J]. Science of The Total Environment, 1997, 206: 107-115.
    [46] Maiz I., Arambarri I., Garcia R., Millan E. Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis [J]. Environmental Pollution, 2000, 110:3-9.
    [47] Peijnenburg, WJ.GM., Baerselman, R., De Groot, A.C., Jager, T, Posthuma, L., Van Veen, R.P.M. Relating environmental availability to bioavailability: soil-type-dependent metal accumulation in the oligochaete Eisenia Andrei [J]. Ecotoxicity Environmental Safety, 1999, 44:294-310.
    [48] Spurgeon, D.J., Hopkin, S.P. Comparisons of metal accumulation and excretion kinetics in earthworm (Eisenia fetida) exposed to contaminated field and laboratory soils [J]. Applied Soil Ecology, 1999, 11: 227-243.
    [49] Spurgeon, D.J., Weeks, J.M. Evaluation of factors influencing results from laboratory toxicity tests with earthworms [M]. In: Sheppard, S.C., Bembridge, J.D., Holmstrup, M., Posthuma, L. (Eds.), Proceeding from the Second International Workshop on Earthworm Ecotoxicology. Advances in Earthworm Ecotoxicology. SETAC, Amsterdam, 1998, pp. 15-25.
    [50] Marinussen M.P.J.C., Van Der Zee S.E.A.T.M. Cu accumulation by Lumbricus rubellus as affected by total amount of Cu in soil, soil moisture and soil heterogeneity [J]. Soil Biology and Biochemistry, 1997, 29: 641-647.
    [51] Crossley Jr., D.A., Blood, E.R., Hendrix, P.F., Seastedt, T.R. Turnover of cobalt-60 by earthworms (Eisenia foetida) (Lumbricidae, Oligochaeta) [J]. Applied Soil Ecology, 1995, 2: 71-75.
    [52]Sheppard,S.C.,Evenden,W.G.,Cornwell,T.C.Depuration and uptake kinetics of I,Cs,Mn,Zn and Cd by the earthworm(Lumbricus terrestris) in radiotracer-spiked litter[J].Environmental Toxicology Chemistry,1997,16:2106-2112.
    [53]Vijver M.G.,Vink J.P.M.,Miermans C.J.H.,Van Gestel C.A.M.Metal accumulation in earthworms inhabiting floodplain soils[J].Environmental Pollution,2007,148:132-140.
    [54]Marino,F.,Morgan,A.J.The time-course of metal(Ca,Cd,Cu,Pb,Zn) accumulation from a contaminated soil by three populations of the earthworm,Lumbricus rubellus[J].Applied Soil Ecology,1999,12:169-177.
    [55]Hobbelen P.H.F.,Koolhaas J.E.,Van Gestel C.A.M.Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils[J].Environmental Pollution,2006,144:639-646.
    [56]Atkins,G.L.Multicompartment Models for Biological Systems[M].Methuen & Co,London,1969.
    [57]冯凤玲.蚯蚓对Zn、Pb在土壤-植物系统中迁移转化的影响研究[D].济南:山东师范大学,2006.
    [58]黄懿梅,曲东,李国学.调理剂在鸡粪锯末堆肥中的保氮效果[J].环境科学,2003,24(2):156-160.
    [59]Samaras,P.,Papadimitriou,C.A.,Haritou,I.,Zouboulis,A.I.Investigation of sewage sludge stabilization potential by the addition of fly ash and lime[J].Journal of Hazardous Materials,2008,154:1052-1059.
    [60]Papadimitriou,C.A.,Haritou,I.,Samaras,P.,Zouboulis,A.I.Evaluation of leaching and ecotoxicological properties of sewage sludge-fly ash mixtures[J].Environmental Research,2008,106:340-348.
    [61]李国学,孟凡乔,姜华,史雅娟.添加钝化剂对污泥堆肥处理中重金属(Cu、Zn、Mn)形态影响[J].中国农业大学学报,2000,5(1):105-111.
    [62]姚岚,王成端.不同钝化剂对污泥堆肥过程中重金属形态的影响研究[J].环境卫生工程,2008,16(2):8-10.
    [63]姜华.污水污泥堆肥化处理过程中控制重金属污染的研究[D].中国科学院,1999.
    [64]Arnold R.E.,Hodson M.E.Effect of time and mode of depuration on tissue copper concentrations of the earthworms Eisenia Andrei, Lumbricus rubellus and Lumbricus terrestris [J]. Environ. Pollut. 2007, 148: 21-30.
    [65] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社,2000.
    [66] Leduc F., Whalen J.K., Sunahara G. Growth and reproduction of the earthworm Eisenia fetida after exposure to leachate from wood preservatives [J]. Ecotoxicity Environmental Safety, 2008, 69: 219-226.
    [67] Spurgeon, D.J., Hopkin, S.P. Effects of variations of the organic matter content and pH of soils on the availability and toxicity of zinc to the earthworm Eisenia fetida [J]. Pedobiologia, 1996, 40: 80-96.
    [68] Urbasek, F., Pizl, V. Activity of digestive enzymes in the gut of five earthworm species (Oligochaeta; Lumbricidae) [J]. Revue d'Ecologie et de Biologie du Sol. 1991, 28: 461-468.
    [69] Sanchez-Chardi, A., Nadal, J. Bioaccumulation of metals and effects of landfill pollution in small mammals. Part I . The greater white-toothed shrew, Crocidura russula [J]. Chemoshpere, 2007, 68: 703-711.
    [70] Van Vliet P.C.J., Van der Zee S.E.A.T.M., Ma W.C. Heavy metal concentrations in soil and earthworms in a floodplain grassland [J]. Environmental Pollution, 2005, 138: 505-516.
    [71] Dai, J., Becquer, T., Rouiller, J.H., Reversat, G., Bernhard-Reversat, F., Nahmani, J., Lavelle, P. Heavy metal accumulation by two earthworm species and its relationship to total and DTPA-extractable metals in soils [J]. Soil Biology Biochemistry, 2004, 36: 91-98.
    [72] Saxe, J.K., Impellitteri, C.A., Peijnenburg, W.J.G.M., Allen, H.E. Novel model describing trace metal concentrations in the earthworm, Eisenia Andrei [J]. Environmental Science Technology, 2001, 35: 4522-4529.
    [73] Qian, J., Wang, Z., Shan, X., Tu, Q., Wen, B., Chen, B. Evaluation of plant availability of soil trace metals by chemical fractionation and multiple regression analysis [J]. Environmental Pollution, 1996,91:309-315.
    [74] Oste, L.A., Dolfing, J., Ma, W.C, Lexmond, T.M. Cadmium uptake by earthworms as related to the availability in the soil and the intestine [J]. Environmental Toxicology Chemistry, 2001, 20: 1785-1791.
    [75] Vijver M.G., Vink J.P.M., Jager T, Wolterbeek H.T., Van Straalen N.M., Van Gestel C.A.M. Biphasic elimination and uptake kinetics of Zn and Cd in the earthworm Lumbricus rubellus exposed to contaminated floodplain soil [J]. Soil Biology and Biochemistry, 2005, 37: 1843-1851.
    [76] Grelle C, Descamps M. Heavy metal accumulation by Eisenia fetida and its effects on glutathione-S-transferase activity [J]. Pedobiologia, 1998,42: 289-297.
    [77] Heikens A., Peijnenburg W.J.G.M., Hendriks A.J. Bioaccumulation of heavy metals in terrestrial invertebrates [J]. Environmental Pollution, 2001, 113: 385-393.
    [78] L'Herroux, L., Roux, S.L., Appriou, P., Martinez, J. Behaviour of metals following intensive pig slurry applications to a natural field treatment process in Brittany (France) [J]. Environmental Pollution, 1997,97: 119-130.
    [79] Li L.X.Y., Wu J.Y., Tian G.M., Xu Z.L. Effect of the transit through.the gut of earthworm (Eisenia fetida) on fractionation of Cu and Zn in pig manure. Journal of Hazardous Materials, 2009, 167: 634-640.
    [80] Lu Y., Gong Z.T., Zhang G.L., Burghardt W.G. Concentrations and chemical speciations of Cu, Zn, Pb and Cr of urban soils in Nanjing, China [J]. Geoderma, 2003, 115: 101-111.
    [81] Liu X.L., Hu C.X., Zhang S.Z. Effects of earthworm activity on fertility and heavy metal bioavailability in sewage sludge [J]. Environment Internional, 2005, 31: 874-879.
    [82] Becquer, T., Dai, J., Quantin, C., Lavelle, P. Sources of bioavailable trace metals for earthworms from a Zn-, Pb- and Cd-contaminated soil [J]. Soil Biology Biochemistry, 2005, 37: 1564-1568.
    [83] Zheljazkov, V.D., Warman, PR. Phytoavailability and fractionation of copper, manganese, and zinc in soil following application of two composts to four crops [J]. Environmental Pollution, 2004, 131:187-195.
    [84] Drake H.L., Horn M. As the worm turns: the earthworm gut as a transient habitat for soil microbial biomes [J]. Annual Review Microbiology, 2007, 61: 169-189.
    [85] Tipping E., Hurley M.A. A unifying model of cation binding by humic substances [J]. Geochimica et Cosmochimica Acta, 1992, 56: 3627-3641.
    [86] Udovia M., Lestan D. The effect of earthworms on the fractionation and bioavailability of heavy metals before and after soil remediation [J]. Environmental Pollution, 2007, 148: 663-668.
    
    [87] Morera, M.T., Echeverria, J.C., Mazkiaran, C, Garrido, J.J. Isotherms and sequential extraction procedures for evaluating sorption and distribution of heavy metals in soils [J]. Environmental Pollution, 2001, 113: 135-144.
    [88] Udovic M., Plavc Z., Lestan D. The effect of earthworms on the fractionation, mobility and bioavailability of Pb, Zn and Cd before and after soil leaching with EDTA [J]. Chemosphere, 2007, 70:126-134.
    [89] Wen B., Liu Y., Hu X.Y., Shan X.Q. Effect of earthworm (Eisenia fetida) on the fractionation and bioavailability of rare earth elements in nine Chinese soils [J]. Chemosphere, 2006, 63: 1179-1186.
    [90] Wen B., Hu X.Y., Liu Y, Wang W.S., Feng M.H., Shan X.Q. The role of earthworms (Eisenia fetida) in influencing bioavailability of heavy metals in soils [J]. Biology Fertility Soils, 2004, 40: 181-187.
    [91] Cheng J.M., Wong M.H. Effects of earthworm on Zn fractionation in soils [J]. Biology Fertility Soils, 2002, 36: 72-78.
    [92] Atiyeh R.M., Dominguez J., Subler S., Edwards C.A. Changes in biochemical properties of cow manure during processing by earthworm (Eisenia andrei) and the effects on seedling growth [J]. Pedobiologia, 2000, 44: 709-724.
    [93] Chlopecka A., Bacon J.R., Wilson M.J., Kay J. Heavy metals in the environment [J]. Journal of Environmental Quality, 1996, 25: 69-79.
    [94] Zhang H., Schrader S. Earthworm effects on selected physical and chemical properties of soil aggregates [J]. Biology Fertility Soils, 1993, 15: 229-234.
    [95] Ma W.C., Edleman T., Van Beersum I., Jane T. Uptake of cadmium, zinc, lead and copper by earthworm near a zinc smelting complex: influence of soil pH and organic matter [J]. Bulletin of Environmental Contamination and Toxicology, 1983, 30: 424-427.
    [96] Bayon RX.Le., Binet F. Earthworms change the distribution and availability of phosphorous in organic substrates [J]. Soil Biology and Biochemistry, 2006, 38: 235-246.
    [97] Gupta R., Garg V.K. Vermiremediation and nutrient recovery of non-recyclable paper waste employing Eisenia fetida [J]. Journal of Hazardous Materials, doi:10.1016/j.jhazmat. 2008.05.055.
    [98] Lardy L.C., Brossard M., Lavelle P., Schouller E. Phosphorus transformations in a ferralsol through ingestion by Pontoscolex corethrurus, a geophagous earthworm [J]. European Journal of Soil Biology,1998,34:61-67.
    [99]Buck C.,Langmaack M.,Schrader S.Nutrient contents of earthworm casts influenced by different mulch types[J],European Journal of Soil Biology,1999,35:23-30.
    [100]Brossard M.,Lavelle P.,Laurent J.Y.Digestion of a vertisol by a endogeic earthworm (Polypheretima elongate,Mcgaloscolecidae) increases soil phosphate extractability[J].European Journal of Soil Biology,1996,32:107-111.
    [101]Bojeong K.,Murray B.M.A test of sequential extractions for determining metal speciation in sewage sludge-amended soils[J].Environmental Pollution,2006,144:475-482.
    [102]Banerjee,A.D.K.Heavy metal levels and solid phase speciation in street dusts of Delhi,India[J].Environmental Pollution,2003,123:95-105.
    [103]Leatan D.,Grcman H.,Zupan M.,Bacac N.Relationship of soil properties to fractionation of Pb and Zn in soil and their uptake into Plantago lanceolata[J].Soil and Sediment Contamination,2003,12:507-522.
    [104]Torri S.I.,Lavado R.Zinc distribution in soils amended with different kinds of sewage sludge[J].Journal of Environmental Management,2008,88:1571-1579.
    [105]张大庚,依艳丽,李亮亮,樊德祥,孙效文.草炭分解产物对铜、锌吸附的影响[J].土壤通报,2006,37(1):111-115.
    [106]Thawornchaisit U.,Polprasert C.Evaluation of phosphate fertilizers for the stabilization of cadmium in highly contaminated soils[J].Journal of Hazardous Materials,2009,165,1109-1113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700