光学成像研究大鼠皮层激活与缺血后的血流动态变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑是高度依赖持续血流供应的器官,脑组织中存在着精巧的神经血管调节机制来稳定地维持大脑正常生理功能活动所需的能量和氧。生理状态下,这种神经血管耦合调节机制(也称为功能性充血)是脑功能成像信号的基础,而在缺血等病理状态下,这种血管调节机制就会被影响和破坏,进而造成脑功能的失活和组织的损伤。对这种生理和缺血状态下血流调节分布规律以及内在机制的深入探讨,对理解功能成像探测信号的神经生理基础,确立缺血半暗带的诊断标准以及寻找新的缺血治疗作用靶点有着重要的科学和临床意义。内源信号光学成像与激光散斑成像等光学成像手段可以同时提供非常好的时间和空间分辨率,已被广泛应用于神经组织血流动力学过程的监测中,为常规的脑功能成像研究提供了新的信息以及有益的补充。
     在本文中,我们联合应用内源信号光学成像与激光散斑成像技术监测了皮层在外周伤害性刺激诱发的功能激活状态下血容量的动态变化过程,皮层微小缺血和再灌注后的血流调节分布特征,以及微小缺血后皮层自发扩散性抑制波(Spreading depression, SD)的区域异质性与其局部血流灌注水平之间的联系。主要研究内容和结论如下:
     1)利用内源信号光学成像方法监测了不同强度外周神经刺激在大鼠对侧初级躯体感受皮层激活的血容量相关时空响应模式,发现了伤害性刺激和非伤害性刺激所激活的功能性充血早期响应空间模式的差异性。伤害性刺激诱发的空间响应范围可明显地扩展到邻近动脉分支供应区域,同时在激活皮层区域周围诱发出更明显的光强上升信号。镇痛剂芬太尼可以显著减少伤害性刺激响应的空间范围和峰值幅度。以上结果表明初级躯体感受皮层参与了伤害性刺激的传导与调制过程,激活区域周围的反信号可能可能影响了功能成像研究结果的一致性。
     2)提出了一种新的皮层微小缺血再灌注模型,可以方便地实现结扎微动脉的再通,在先前的缺血中心区域形成充分的再灌注。利用激光散斑成像方法,在成像皮层区域可以明确地观察到整个重度缺血中心区域,半暗带区域以及部分的正常脑实质组织。在再灌注24小时后可出现明显的再通后高灌注现象。此外这种新模型还可以部分地限制目标缺血区域周围的侧枝循环,使得缺血的区域更加局限地定位于特定的功能区域中,因而适用于光学成像方法来研究神经血管耦合、再灌注损伤以及中风康复机制。
     3)结合激光散斑成像与内源信号光学成像技术,发现了微小缺血后皮层自发SD波相关光信号与局部血流水平之间的相关性,提出SD波相关光信号的综合特征参数可以反映脑组织缺血后血流分布的四种状态:光强波动不明显的区域已处于梗死状态;以显著光强上升相为主的区域为趋于梗死的半暗带组织;光强上升相与下降相幅值相近的区域对应为预后较好的轻度缺血区域;正常的四相光强变化则表现在正常灌注水平的皮层区域。
The brain is critically dependent on a continuous supply of blood to function. The cerebral vasculature is endowed with neurovascular control mechanisms that assure that the blood supply of the brain is commensurate to the needs of energy and oxygen. In the normal state of brain, this neurovascular coupling regulation mechanism (functional hyperemia) is the basis for several modern imaging techniques that have revolutionized the study of human brain activity. However, in several brain pathologies, such as the cerebral ischemia, the control of cerebral blood flow (CBF) is influenced and disrupted, and the resulting homeostatic unbalance may contribute to brain dysfunction and even irreversible massive damage. To study this evolution and essential mechanism of the regulation of CBF in brain normal and ischemic state is benefit to promote understanding of neurophysiological basis of the detected signals in neuroimaging techniques, to determine the standard of the diagnosis of the ischemic penumbra tissue and seek a therapeutic target for ischemia. Optical intrinsic signal imaging (OISI) and laser speckle imaging (LSI), which can simultaneously provide high temporal and spatial resolution, have been extensively applied into the studies focusing on cortical hemodynamic response , and bring on fresh insight, validation and relavant supplement to the conventional brain functional imaging studies.
     In this dissertation, OIIS combined with LSI was applied into our study to monitor the dynamic changes of cerebral blood volume (CBV) in primary somatosensory cortex evoked by peripheral noxious stimuli, the distribution of CBF associated with cortical mini-ischemia/reperfusion, and to elucidate the relationship between the regional heterogeneity of ischemia induced spontaneous spreading depression (SD) and the local CBF level. The main results and conclusion are listed as following:
     1) Although the dimensions of peak response defined in the spatial domain (CBV increase) in the S1 cortex presented no significant difference under non-/noxious stimuli, its early response component revealed by OISI technique was suggested to differentiate the loci of activated cortical region due to different stimulation in this study. The magnitude and duration of the optical intrinsic signal (OIS) response was found increasing with the varying stimulus intensity. Regions activated by the delivery of a noxious stimulus were surrounded by a ring of inverted optical intrinsic signal, the amplitude of that was inversely proportional to the strength of the optical signal attributable to activation. The selective hypoalgesic effect of fentanyl could suppress the magnitude of OIS and evoke different response pattern while suffering from the same nociceptive stimuli. These results indicated that the contralateral S1 cortex acts a role in the perception of nociception.
     2) A new mini-ischemia/reperfusion stroke model was developed by sharing feathers from previous mini-stroke model and cortical compression model. Our results showed that a distinct CBF gradient from ischemic core, penumbra zone to normal tissue immediately after cortical ischemia was clearly presented in the imaged cortex. This model could facilicate vascular recannulation, while confining the collateral flow and draining veins to localize the infarct into a special cortical area.
     3) In the early phase of ischemia, the maximum increase in OIS related the saoteneous SD was inversive propational to the rCBF, whereas the maximum decrease in OIS has an opposite tendency. The spontenous SD originated from the penumbra zone and bypassed the severe ischemic core, and presented four types of OIS through the propagation of the imaged cortex: SD could not invade the ischemic core, and dominated with significant increase of optical reflectance in the mild ischemic region distal to infarct core. In the normal tissue with fully perfusion, the OIS was represented as the typical four-phase fluctuation. In the oligemic tissue abuts on the fully perfused region, the increase and decrease phases in the OIS were equivalent in amplitude and prominence. This comparison suggests that the OIS characteristics could reflect the severity of ischemia and collateral flow, beside for the regional CBF level.
引文
[1] Hossmann K. A. Viability thresholds and the penumbra of focal ischemia. Ann. Neurol., 1994, 36(4): 557~565
    [2] Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci, 2004, 5(5): 347~360
    [3] Van Lieshout J. J., Wieling W., Karemaker J. M., et al. Syncope, cerebral perfusion, and oxygenation. J. Appl. Physiol., 2003, 94(3): 833~848
    [4] Aaslid R., Lindegaard K. F., Sorteberg W., et al. Cerebral autoregulation dynamics in humans. Stroke, 1989, 20(1): 45~52
    [5] D'Esposito M., Deouell L. Y., Gazzaley A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat. Rev. Neurosci., 2003, 4(11): 863~872
    [6] Haydon P. G., Carmignoto G. Astrocyte Control of Synaptic Transmission and Neurovascular Coupling. Physiol. Rev., 2006, 86(3): 1009~1031
    [7] Brozici M., van der Zwan A., Berend Hillen M. D. Anatomy and Functionality of Leptomeningeal Anastomoses. A Review. Stroke, 2003, 34: 2750~2762
    [8] Liebeskind D. S. Collateral Circulation. Stroke, 2003, 34(9): 2279~2284
    [9] Warlow C., Sudlow C., Dennis M., et al. Stroke. Lancet, 2003, 362(9391): 1211~1224
    [10] Muir K. W., Buchan A., von Kummer R., et al. Imaging of acute stroke. Lancet Neurology, 2006, 5(9): 755~768
    [11] Dirnagl U., Iadecola C., Moskowitz M. A. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci., 1999, 22(9): 391~397
    [12] Schaller B., Graf R. Cerebral Ischemia and Reperfusion: The Pathophysiologic Concept as a Basis for Clinical Therapy. J. Cereb. Blood Flow Metab., 2004, 24: 351~371
    [13] Astrup J., Symon L., Branston N. M., et al. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke, 1977, 8(1):51~57
    [14] Astrup J., Siesjo B. K., Symon L. Thresholds in cerebral ischemia-the ischemic penumbra. Stroke, 1981, 12(6): 723~725
    [15] Kalender W. A. X-ray computed tomography. Phys. Med. Biol., 2006, 51: 29~43
    [16] Konig M. Brain perfusion CT in acute stroke: current status. Eur. J. Radiol., 2003, 45(1): 11~22
    [17] Imaging D. W. New Magnetic Resonance Imaging Methods for Cerebrovascular Disease: Emerging Clinical Applications. Ann. Neurol., 2000, 47(5)
    [18] Chalela J. A., Alsop D. C., Gonzalez-Atavales J. B., et al. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke, 2000, 31(3): 680~687
    [19] Ogawa S., Lee T. M., Kay A. R., et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl Acad. Sci. USA, 1990, 87: 9868~9872
    [20] Ogawa S. Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc. Natl Acad. Sci. USA, 1992, 89: 5951~5955
    [21] Herholz K., Heiss W. D. Positron emission tomography in clinical neurology. Mol Imaging Biol, 2004, 6(4): 239~269
    [22] Niell C. M., Smith S. J. Live Optical Imaging of Nervous System Development. Annu. Rev. Physiol., 2004, 66(1): 771~798
    [23] Pouratian N., Sheth S. A., Martin N. A., et al. Shedding light on brain mapping: advances in human optical imaging. Trends Neurosci., 2003, 26(5): 277~282
    [24] Conchello J. A., Lichtman J. W. Optical sectioning microscopy. Nat Methods, 2005, 2(12): 920~931
    [25] Denk W., Strickler J. H., Webb W. W. Two-photon laser scanning fluorescence microscopy. Science, 1990, 248(4951): 73~76
    [26] Weiss S. Fluorescence spectroscopy of single biomolecules. Science, 1999, 283(5408): 1676~1683
    [27] Murthy V. N. Optical detection of synaptic vesicle exocytosis and endocytosis. Curr. Opin. Neurobiol., 1999, 9(3): 314~320
    [28] Drexler W. Ultrahigh-resolution optical coherence tomography. J. Biomed. Opt, 2004, 9(1): 47~74
    [29] Grinvald A., Lieke E., Frostig R. D., et al. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature, 1986, 324(6095): 361~364
    [30] Frostig R. D., Lieke E. E., Ts'o D. Y., et al. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc. Natl. Acad. Sci. U. S. A., 1990, 87(16): 6082~6086
    [31] Briers J. D., Webster S. Laser speckle contrast analysis (LASCA): A nonscanning, full-field technique for monitoring capillary blood flow. J. Biomed. Opt, 1996, 1(2): 174~179
    [32] Culver J. P., Durduran T., Furuya D., et al. Diffuse Optical Tomography of Cerebral Blood Flow, Oxygenation, and Metabolism in Rat During Focal Ischemia. J. Cereb. Blood Flow Metab., 2003, 23: 911~924
    [33] Cheng H., Luo Q., Zeng S., et al. Modified laser speckle imaging method with improved spatial resolution. J. Biomed. Opt, 2003, 8(3): 559~564
    [34] Li P., Ni S., Zhang L., et al. Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging. Opt. Lett., 2006, 31(12): 1824~1826
    [35] Jones M., Berwick J., Johnston D., et al. Concurrent optical imaging spectroscopy and laser-Doppler flowmetry: the relationship between blood flow, oxygenation, and volume in rodent barrel cortex. Neuroimage, 2001, 13(6 Pt 1): 1002~1015
    [36] Villringer A., Chance B. Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci., 1997, 20(10): 435~442
    [37] Sato K., Nariai T., Sasaki S., et al. Intraoperative Intrinsic Optical Imaging of Neuronal Activity from Subdivisions of the Human Primary Somatosensory Cortex. Cereb. Cortex, 2002, 12(3): 269~280
    [38] Pouratian N., Cannestra A. F., Martin N. A., et al. Intraoperative optical intrinsic signal imaging: a clinical tool for functional brain mapping. Neurosurg Focus, 2002, 13(4): e1
    [39]李鹏程.脑皮层活动的内源信号光学成像及其应用研究[博士学位论文].华中科技大学, 2003.
    [40]王征.应用时间聚类分析提取脑功能成像信号[硕士学位论文].华中科技大学, 2003.
    [41] Fercher A. F., Briers J. D. Flow visualization by means of single-exposure speckle photography. Opt. Commun., 1981, 37(5): 326~330
    [42] Choi B., Kang N. M., Nelson J. S. Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model. Microvasc. Res., 2004, 68(2): 143~146
    [43] Fujii H. Visualisation of retinal blood flow by laser speckle flowgraphy. Med. Biol. Eng. Comput., 1994, 32(3): 302~304
    [44] Haiying C., Qingming L. U. O., Shaoqun Z., et al. Optical dynamic imaging of the regional blood flow in the rat mesentery under the effect of noradrenalin.自然科学进展(英文版), 2003, 13(5): 397~400
    [45] Dunn A. K., Bolay H., Moskowitz M. A., et al. Dynamic imaging of cerebral blood flow using laser speckle. J. Cereb. Blood Flow Metab., 2001, 21(3): 195~201
    [46] Atochin D. N., Murciano J. C., Gu?rsoy-O?zdemir Y., et al. Mouse model of microembolic stroke and reperfusion. Stroke, 2004, 35(9): 2177~2182
    [47] Paul J. S., Luft A. R., Yew E., et al. Imaging the development of an ischemic core following photochemically induced cortical infarction in rats using Laser Speckle Contrast Analysis (LASCA). Neuroimage, 2006, 29(1): 38~45
    [48]程海英.利用激光散斑成像技术实时监测微循环血流的动态变化: [博士学位论文].华中科技大学, 2003.
    [49]刘谦.激光散斑衬比成像技术及其应用的研究[博士学位论文].华中科技大学, 2005.
    [50]倪松林.激光散斑成像中散斑衬比影响因素的研究[硕士学位论文].华中科技大学, 2006.
    [51] Guadagno J. V., Donnan G. A., Markus R., et al. Imaging the ischaemic penumbra. Curr. Opin. Neurol., 2004, 17(1): 61~67
    [52] Baron J. C. Clinical use of positron emission computed tomography incerebrovascular disease. Neurosurg Clin Amer, 1996, 7: 653~664
    [53] Schlaug G., Benfield A., Baird A. E., et al. The ischemic penumbra Operationally defined by diffusion and perfusion MRI. Neurology, 1999, 53(7): 1528~1528
    [54] Fisher M., Ginsberg M. Current Concepts of the Ischemic PenumbraIntroduction. Stroke, 2004, 35(90111): 2657~2658
    [55] Sobesky J., Weber O. Z., Lehnhardt F. G., et al. Does the Mismatch Match the Penumbra?: Magnetic Resonance Imaging and Positron Emission Tomography in Early Ischemic Stroke. Stroke, 2005, 36(5): 980
    [56] Wintermark M., Reichhart M., Thiran J. P., et al. Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann. Neurol., 2002, 51(4): 417~432
    [57] Ward N. S., Cohen L. G. Mechanisms underlying recovery of motor function after stroke. Arch of Neurology(Chicago), 2004, 61(12): 1844~1848
    [58] Zhao B. Q., Wang S., Kim H. Y., et al. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat. Med., 2006, 12: 441~445
    [59] Carmichael S. T. Plasticity of cortical projections after stroke. Neuroscientist, 2003, 9(1): 64~75
    [60] Heiss W. D., Teasel R. W. Brain recovery and rehabilitation. Stroke, 2006, 37(2): 314~316
    [61] Baron J. C., Warach S. Imaging. Stroke, 2005, 36(2): 196~199
    [62] Logothetis N. K., Pauls J., Augath M., et al. Neurophysiological investigation of the basis of the fMRI signal. Nature, 2001, 412: 150~157
    [63] Bushnell M. C., Duncan G. H., Hofbauer R. K., et al. Pain perception: is there a role for primary somatosensory cortex? Proc. Natl. Acad. Sci. U. S. A., 1999, 96(14): 7705~7709
    [64] Buxton R. B. The Elusive Initial Dip. Neuroimage, 2001, 13(6): 953~958
    [65] Roy C., Sherrington C. On the regulation of the blood-supply of the brain. J. Physiol. (Lond.), 1890, 11: 85~108
    [66]陈尚宾.大鼠皮层扩散性抑制时空动态过程的光学成像研究[博士学位论文].华中科技大学, 2006.
    [67] Stucky C. L., Gold M. S., Zhang X. Mechanisms of pain. Proc. Natl. Acad. Sci. U. S. A., 2001, 98(21): 11845~11846
    [68] Chang C., Shyu B. C. A fMRI study of brain activations during non-noxious and noxious electrical stimulation of the sciatic nerve of rats. Brain Res., 2001, 897(1-2): 71~81
    [69] Moulton E. A., Keaser M. L., Gullapalli R. P., et al. Regional intensive and temporal patterns of functional MRI activation distinguishing noxious and innocuous contact heat. J. Neurophysiol., 2005, 93(4): 2183~2193
    [70] Bingel U., Lorenz J., Glauche V., et al. Somatotopic organization of human somatosensory cortices for pain: a single trial fMRI study. Neuroimage, 2004, 23(1): 224~232
    [71] Creac'h C., Henry P., Caille J. M., et al. Functional MR imaging analysis of pain-related brain activation after acute mechanical stimulation. AJNR. Am. J. Neuroradiol., 2000, 21(8): 1402~1406
    [72] Treede R. D., Kenshalo D. R., Gracely R. H., et al. The cortical representation of pain. Pain, 1999, 79(2-3): 105~111
    [73] Disbrow E., Baron R., Baron Y. Examination of the Role of the Cerebral Cortex in the Perception of Pain Using Functional Magnetic Resonance Imaging. Curr Rev Pain, 1999, 3(4): 281~290
    [74] Talbot J. D., Marrett S., Evans A. C., et al. Multiple representations of pain in human cerebral cortex. Science, 1991, 251(4999): 1355~1358
    [75] Jones A. K., Friston K., Frackowiak R. S. Localization of responses to pain in human cerebral cortex. Science, 1992, 255(5041): 215~216
    [76] Apkarian A. V., Stea R. A., Manglos S. H., et al. Persistent pain inhibits contralateral somatosensory cortical activity in humans. Neurosci. Lett., 1992, 140(2): 141~147
    [77] Zepeda A., Arias C., Sengpiel F. Optical imaging of intrinsic signals: recent developments in the methodology and its applications. J. Neurosci. Methods, 2004, 136(1): 1~21
    [78] Sheth S. A., Nemoto M., Guiou M., et al. Linear and nonlinear relationships between neuronal activity, oxygen metabolism, and hemodynamic responses. Neuron, 2004, 42(2): 347~355
    [79] Vanzetta I., Slovin H., Omer D. B., et al. Columnar resolution of blood volume and oximetry functional maps in the behaving monkey; implications for FMRI. Neuron, 2004, 42(5): 843~854
    [80] Culver J. P., Siegel A. M., Franceschini M. A., et al. Evidence that cerebral blood volume can provide brain activation maps with better spatial resolution than deoxygenated hemoglobin. Neuroimage, 2005, 27(4): 947~959
    [81] Friedman R. M., Chen L. M., Roe A. W. Modality maps within primate somatosensory cortex. Proc. Natl. Acad. Sci. U. S. A., 2004, 101(34): 12724~12729
    [82] Favorov O. V., Whitsel B. L., Chiu J. S., et al. Activation of cat SII cortex by flutter stimulation of contralateral vs. ipsilateral forepaws. Brain Res., 2006, 1071(1): 81~90
    [83] Bonhoeffer T., Grinvald A. Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature, 1991, 353(6343): 429~431
    [84] Rubin B. D., Katz L. C. Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron, 1999, 23(3): 499~511
    [85] Sheth S. A., Nemoto M., Guiou M. W., et al. Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity. J. Cereb. Blood Flow Metab., 2005, 25(7): 830~841
    [86] Tommerdahl M., Delemos K. A., Favorov O. V., et al. Response of anterior parietal cortex to different modes of same-site skin stimulation. J. Neurophysiol., 1998, 80(6): 3272~3283
    [87] Tommerdahl M., Delemos K. A., Vierck C. J., Jr., et al. Anterior parietal cortical response to tactile and skin-heating stimuli applied to the same skin site. J. Neurophysiol., 1996, 75(6): 2662~2670
    [88] Zhao F., Wang P., Hendrich K., et al. Spatial specificity of cerebral blood volume-weighted fMRI responses at columnar resolution. Neuroimage, 2005, 27(2): 416~424
    [89] Luo W., Li P., Chen S., et al. Diferentiating hemodynamic responses in rat primarysomatosensory cortex during non-noxious and noxious electrical stimulation by optical imaging. Brain Res., 2007, 1133(1): 67~77
    [90] Paxinos G., Watson C. The rat brain in stereotaxic coordinates. 2nd. Acadernic Pres, New York, 1998,
    [91] Li P., Luo Q., Luo W., et al. Spatiotemporal characteristics of cerebral blood volume changes in rat somatosensory cortex evoked by sciatic nerve stimulation and obtained by optical imaging. J. Biomed. Opt, 2003, 8(4): 629~635
    [92] Chen-Bee C. H., Polley D. B., Brett-Green B., et al. Visualizing and quantifying evoked cortical activity assessed with intrinsic signal imaging. J. Neurosci. Methods, 2000, 97(2): 157~173
    [93] Ureshi M., Kershaw J., Kanno I. Nonlinear correlation between field potential and local cerebral blood flow in rat somatosensory cortex evoked by changing the stimulus current. Neurosci. Res., 2005, 51(2): 139~145
    [94] Simons S. B., Tannan V., Chiu J., et al. Amplitude-dependency of response of SI cortex to flutter stimulation. BMC Neurosci, 2005, 6(1): 43
    [95] Norup Nielsen A., Lauritzen M. Coupling and uncoupling of activity-dependent increases of neuronal activity and blood flow in rat somatosensory cortex. J Physiol, 2001, 533(Pt 3): 773~785
    [96] Devor A., Ulbert I., Dunn A. K., et al. Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity. Proc. Natl. Acad. Sci. U. S. A., 2005, 102(10): 3822~3827
    [97] Erinjeri J. P., Woolsey T. A. Spatial integration of vascular changes with neural activity in mouse cortex. J. Cereb. Blood Flow Metab., 2002, 22(3): 353~360
    [98] Blood A. J., Pouratian N., Toga A. W. Temporally staggered forelimb stimulation modulates barrel cortex optical intrinsic signal responses to whisker stimulation. J. Neurophysiol., 2002, 88(1): 422~437
    [99] Erdos B., Lacza Z., Toth I. E., et al. Mechanisms of pain-induced local cerebral blood flow changes in the rat sensory cortex and thalamus. Brain Res., 2003, 960(1-2): 219~227
    [100] Le Bars D., Gozariu M., Cadden S. W. Animal models of nociception. Pharmacol. Rev., 2001, 53(4): 597~652
    [101] Silva A. C., Lee S. P., Yang G., et al. Simultaneous blood oxygenation level-dependent and cerebral blood flow functional magnetic resonance imaging during forepaw stimulation in the rat. J. Cereb. Blood Flow Metab., 1999, 19(8): 871~879
    [102] Ichimi K., Kuchiwaki H., Inao S., et al. Cerebral blood flow regulation under activation of the primary somatosensory cortex during electrical stimulation of the forearm. Neurol. Res., 1999, 21(6): 579~584
    [103] Nemoto M., Nomura Y., Sato C., et al. Analysis of optical signals evoked by peripheral nerve stimulation in rat somatosensory cortex: dynamic changes in hemoglobin concentration and oxygenation. J. Cereb. Blood Flow Metab., 1999, 19(3): 246~259
    [104] Kalliomaki J., Weng H.-R., Nilsson H.-J., et al. Nociceptive C fibre input to the primary somatosensory cortex (SI). A field potential study in the rat. Brain Res., 1993, 622(1-2): 262~270
    [105] Lamour Y., Willer J. C., Guilbaud G. Rat somatosensory (SmI) cortex: I. Characteristics of neuronal responses to noxious stimulation and comparison with responses to non-noxious stimulation. Exp. Brain Res, 1983, 49(1): 35~45
    [106] Derdikman D., Hildesheim R., Ahissar E., et al. Imaging spatiotemporal dynamics of surround inhibition in the barrels somatosensory cortex. J. Neurosci., 2003, 23(8): 3100~3105
    [107] Takashima I., Kajiwara R., Iijima T. Voltage-sensitive dye versus intrinsic signal optical imaging: comparison of optically determined functional maps from rat barrel cortex. Neuroreport, 2001, 12(13): 2889~2894
    [108] Schuett S., Bonhoeffer T., Hubener M. Mapping retinotopic structure in mouse visual cortex with optical imaging. J. Neurosci., 2002, 22(15): 6549~6559
    [109] Schwartz T. H., Bonhoeffer T. In vivo optical mapping of epileptic foci and surround inhibition in ferret cerebral cortex. Nat. Med., 2001, 7(9): 1063~1067
    [110] Tommerdahl M., Delemos K. A., Whitsel B. L., et al. Response of anterior parietal cortex to cutaneous flutter versus vibration. J. Neurophysiol., 1999, 82(1): 16~33
    [111] Haglund M. M., Ojemann G. A., Hochman D. W. Optical imaging of epileptiform and functional activity in human cerebral cortex. Nature, 1992, 358(6388): 668~671
    [112] Suh M., Bahar S., Mehta A. D., et al. Temporal dependence in uncoupling of blood volume and oxygenation during interictal epileptiform events in rat neocortex. J. Neurosci., 2005, 25(1): 68~77
    [113] Toth L. J., Rao S. C., Kim D. S., et al. Subthreshold facilitation and suppression in primary visual cortex revealed by intrinsic signal imaging. Proc. Natl. Acad. Sci. U. S. A., 1996, 93(18): 9869~9874
    [114] Fayuk D., Aitken P. G., Somjen G. G., et al. Two different mechanisms underlie reversible, intrinsic optical signals in rat hippocampal slices. J. Neurophysiol., 2002, 87(4): 1924~1937
    [115] Ji R. R., Kohno T., Moore K. A., et al. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci., 2003, 26(12): 696~705
    [116] de Tommaso M., Guido M., Libro G., et al. Abnormal brain processing of cutaneous pain in migraine patients during the attack. Neurosci. Lett., 2002, 333(1): 29~32
    [117] Ngai A. C., Ko K. R., Morii S., et al. Effect of sciatic nerve stimulation on pial arterioles in rats. Am. J. Physiol., 1988, 254(1 Pt 2): H133~139
    [118] Casey K. L., Svensson P., Morrow T. J., et al. Selective Opiate Modulation of Nociceptive Processing in the Human Brain. J. Neurophysiol., 2000, 84(1): 525~533
    [119] Firestone L. L., Gyulai F., Mintun M., et al. Human brain activity response to fentanyl imaged by positron emission tomography. Anesth. Analg., 1996, 82(6): 1247~1251
    [120] Hendrich K. S., Kochanek P. M., Melick J. A., et al. Cerebral perfusion during anesthesia with fentanyl, isoflurane, or pentobarbital in normal rats studied by arterial spin-labeled MRI. Magn. Reson. Med., 2001, 46(1): 202~206
    [121] Yaksh T. L. Pharmacology and mechanisms of opioid analgesic activity. Acta Anaesthesiol. Scand., 1997, 41(1): 94~111
    [122] Carmichael S. T. Rodent models of focal stroke: Size, mechanism, and purpose. NeuroRx, 2005, 2(3): 396~409
    [123] Hossmann K. A. Experimental models for the investigation of brain ischemia. Cardiovasc. Res., 1998, 39(1): 106~120
    [124] Dirnagl U. Bench to bedside: the quest for quality in experimental stroke research. J. Cereb. Blood Flow Metab., 2006, 26: 1465~1478
    [125] Ginsberg M. D., Busto R. Rodent models of cerebral ischemia. Stroke, 1989, 20(12): 1627~1642
    [126] Traystman R. J. Animal models of focal and global cerebral ischemia. ILAR J, 2003, 44(2): 85~95
    [127] Dirnagl U., Kaplan B., Jacewicz M., et al. Continuous measurement of cerebral blood flow by laser-Doppler flowmetry in a rat stroke model. J. Cereb. Blood Flow Metab., 1989, 9: 589~596
    [128] Longa E. Z., Weinstein P. R., Carlson S., et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 1989, 20(1): 84~91
    [129] Belayev L., Alonso O. F., Busto R., et al. Middle Cerebral Artery Occlusion in the Rat by Intraluminal Suture: Neurological and Pathological Evaluation of an Improved Model. Stroke, 1996, 27(9): 1616~1623
    [130] Shigeno T., Teasdale G. M., McCulloch J., et al. Recirculation model following MCA occlusion in rats. Cerebral blood flow, cerebrovascular permeability, and brain edema. J. Neurosurg., 1985, 63(2): 272~277
    [131] Buchan A. M., Xue D., Slivka A. A new model of temporary focal neocortical ischemia in the rat. Stroke, 1992, 23(2): 273~279
    [132] Johansson B. B. Brain plasticity and stroke rehabilitation: The Willis lecture. Stroke, 2000, 31(1): 223~230
    [133] Wei L., Rovainen C. M., Woolsey T. A. Ministrokes in rat barrel cortex. Stroke, 1995, 26(8): 1459~1462
    [134] Watanabe S., Hoffman J. R., Craik R. L., et al. A new model of localized ischemia in rat somatosensory cortex produced by cortical compression. Stroke, 2001, 32(11): 2615~2623
    [135] Watson B. D., Dietrich W. D., Prado R., et al. Argon laser-induced arterial photothrombosis. J. Neurosurg., 1987, 66: 748~754
    [136] Nakayama H., Dietrich W. D., Watson B. D., et al. Photothrombotic occlusion of rat middle cerebral artery: Histopathological and hemodynamic sequelae of acuterecanalization. J. Cereb. Blood Flow Metab., 1988, 8: 357~366
    [137] Ayata C., Dunn A. K., Gursoy-Ozdemir Y., et al. Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex. J. Cereb. Blood Flow Metab., 2004, 24(7): 744~755
    [138] Durduran T., Burnett M. G., Yu G., et al. Spatiotemporal Quantification of Cerebral Blood Flow during Functional Activation in Rat Somatosensory Cortex Using Laser-Speckle Flowmetry. J. Cereb. Blood Flow Metab., 2004, 24(5): 518~525
    [139] Strong A. J., Bezzina E. L., Anderson P. J. B., et al. Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: Quantitation of perfusion and detection of peri-infarct depolarisations. J. Cereb. Blood Flow Metab., 2006, 26(5): 645~653
    [140] Wang Z., Hughes S., Dayasundara S., et al. Theoretical and experimental optimization of laser speckle contrast imaging for high specificity to brain microcirculation. J. Cereb. Blood Flow Metab., 2007, 27(2): 258~269
    [141] Wei L., Craven K., Erinjeri J., et al. Local cerebral blood flow during the first hour following acute ligation of multiple arterioles in rat whisker barrel cortex. Neurobiol. Dis., 1998, 5(3): 142~150
    [142] Chen S. T., Hsu C. Y., Hogan E. L., et al. A model of focal ischemic stroke in the rat: reproducible extensive cortical infarction. Stroke, 1986, 17(4): 738~743
    [143] Wei L., Brunstrom J., Rovainen C. M., et al. Microvascular proliferation and remodeling after local ischemia in rat barrel cortex. Somatosens. Mot. Res., 1998, 15(1): 84
    [144] Wei L., Erinjeri J. P., Rovainen C. M., et al. Collateral growth and angiogenesis around cortical stroke. Stroke, 2001, 32(9): 2179~2184
    [145] Joshi C. N., Jain S. K., Murthy P. S. An optimized triphenyltetrazolium chloride method for identification of cerebral infarcts. Brain Res Protoc, 2004, 13(1): 11~17
    [146] Tsuchidate R., He Q. P., Smith M. L., et al. Regional cerebral blood flow during and after 2 hours of middle cerebral artery occlusion in the rat. J. Cereb. Blood Flow Metab., 1997, 17(10): 1066~1073
    [147] Briers J. D. Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging. Physiol. Meas., 2001, 22(4): R35~66
    [148] Ayata C., Shin H. K., Salomone S., et al. Pronounced hypoperfusion during spreading depression in mouse cortex. J. Cereb. Blood Flow Metab., 2004, 24(10): 1172~1182
    [149] Lo E. H., Dalkara T., Moskowitz M. A. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci, 2003, 4(5): 399~415
    [150] Zhang Z. G., Zhang L., Ding G., et al. A model of mini-embolic stroke offers measurements of the neurovascular unit response in the living mouse. Stroke, 2005, 36(12): 2701~2704
    [151] Zepeda A., Sengpiel F., Guagnelli M. A., et al. Functional reorganization of visual cortex maps after ischemic lesions is accompanied by changes in expression of cytoskeletal proteins and NMDA and GABA(A) receptor subunits. J. Neurosci., 2004, 24(8): 1812~1821
    [152] Kidwell C. S., Saver J. L., Mattiello J., et al. Diffusion-perfusion MRI characterization of post-recanalization hyperperfusion in humans. Neurology, 2001, 57(11): 2015~2021
    [153] Marchal G., Young A. R., Baron J. C. Early postischemic hyperperfusion: pathophysiologic insights from positron emission tomography. J. Cereb. Blood Flow Metab., 1999, 19(5): 467~482
    [154] Nakase H., Heimann A., Kempski O. Local Cerebral Blood Flow in a Rat Cortical Vein Occlusion Model. J. Cereb. Blood Flow Metab., 1996, 16(4): 720~728
    [155] Le?o A. A. P. Spreading depression of activity in the cerebral cortex. J. Neurophysiol., 1944, 7: 359~390
    [156] Martins-Ferreira H., Nedergaard M., Nicholson C. Perspectives on spreading depression. Brain Res. Brain Res. Rev., 2000, 32(1): 215~234
    [157] Somjen G. G. Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol. Rev., 2001, 81(3): 1065~1096
    [158] Nedergaard M., Hansen A. J. Spreading depression is not associated with neuronal injury in the normal brain. Brain Res., 1988, 449(1-2): 395~398
    [159] Richter F., Mikulik O., Ebersberger A., et al. Noradrenergic agonists and antagonists influence migration of cortical spreading depression in rat-a possible mechanism of migraine prophylaxis and prevention of postischemic neuronal damage. J. Cereb.Blood Flow Metab., 2005, 25(9): 1225~1235
    [160] Mies G., Iijima T., Hossmann K. A. Correlation between peri-infarct DC shifts and ischaemic neuronal damage in rat. Neuroreport, 1993, 4(6): 709~711
    [161] Nedergaard M. Spreading depression as a contributor to ischemic brain damage. Adv. Neurol., 1996, 71: 75~83; discussion 83~74
    [162] Gill R., Andine P., Hillered L., et al. The effect of MK-801 on cortical spreading depression in the penumbral zone following focal ischaemia in the rat. J. Cereb. Blood Flow Metab., 1992, 12(3): 371~379
    [163] Otori T., Greenberg J. H., Welsh F. A. Cortical spreading depression causes a long-lasting decrease in cerebral blood flow and induces tolerance to permanent focal ischemia in rat brain. J. Cereb. Blood Flow Metab., 2003, 23(1): 43~50
    [164] Chen S., Feng Z., Li P., et al. In vivo optical reflectance imaging of spreading depression waves in rat brain with and without focal cerebral ischemia. J. Biomed. Opt, 2006, 11(3): 1~13
    [165] Chen S., Li P., Luo W., et al. Origin sites of spontaneous cortical spreading depression migrated during focal cerebral ischemia in rats. Neurosci. Lett., 2006, 403: 266~270
    [166] Li P. C., Chen S. B., Luo W. H., et al. In vivo optical imaging of intrinsic signal during cortical spreading depression in rats. Progress in Biochemistry and Biophysics, 2003, 30(4): 605~611
    [167] Muller M., Somjen G. G. Intrinsic optical signals in rat hippocampal slices during hypoxia-induced spreading depression-like depolarization. J. Neurophysiol., 1999, 82(4): 1818~1831
    [168] Solenski N. J., diPierro C. G., Trimmer P. A., et al. Ultrastructural changes of neuronal mitochondria after transient and permanent cerebral ischemia. Stroke, 2002, 33(3): 816~824

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700