船舶电站柴油发电机组自整定PID控制与虚拟仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶电站在船上占有极重要的地位。电站供电的连续性、可靠性和供电品质,将直接影响船舶的经济指标、技术指标和生命力。同时,近三十年来,随着计算机技术特别是微型计算机技术的飞速发展,计算机在自动化领域的应用越来越广,也为电站自动化的广泛运用提供了技术支持。这样,对电站操作人员的素质要求也相应要提高,就需要对船员进行培训并提供相应的实验设备。本文旨在设计一种纯软件的船舶电站模拟器,在独立的PC机上运行,船舶电站设备都虚拟到计算机上,训练时操作人员通过键盘或鼠标调用存储在内存中的船舶电站设备的图形,在图形显示的控制屏上实施操作。在本课题中,就是利用计算机辅助软件来模拟实物,开发出柴油发电机组控制屏及其动画效果,通过编程实现对仿真系统的运行和控制,并在此基础上研究其先进的控制方式。
     本文首先分析了船舶电站系统的数学模型,分别对原动机、同步发电机和励磁系统进行了深入的研究,并在Simulink中建立了系统模型,为虚拟仿真打下了良好的基础。然后研究了柴油发电机系统的白整定PID控制技术,首次将内模控制方法引入其中,并对各种方法进行了仿真和比较分析。在此基础上,利用LabVIEW和Matlab辅助软件建立了船舶电站的虚拟仿真系统,对遇到的问题进行了分析并提供了解决办法。当然,本课题涉及的方面很多,工作量很大,从目前为止所完成的工作看,还远未达到理想的效果。但这是一次有益的尝试,也对船舶电站虚拟仿真中遇到的问题和解决办法进行了深入研究,主要包括以下几个方面:
     1.将虚拟现实的概念引入到了船舶电站仿真系统中来,为船舶系统的仿真提供了新的思路;
     2.用软件的方法实现了单台柴油发电机组的虚拟仿真,其中包括运行的动画效果、控制面板和声光报警等。并对多台发电机组联合运行的虚拟仿真进行了初步的探索;
     3.将内模控制方法运用于PID参数的调整,实现了船用柴油发电机组的内模自整定PID控制,利用Matlab软件实现了控制系统的仿真,并与其他控制方法进行了深入的比较分析;
     4.综合使用LabVIEW、Matlab和Access等软件工具,深入研究了软件间的控制、通信和同步等问题,首次将这些工具综合应用于对同一系统的仿真。
     此外,本文对船舶电站仿真系统国内外的现状与发展进行了探讨,指出软件仿真的发展前景,并结合虛拟现实技术,指出了船舶电站系统仿真进一步研究要做的主要工作。同时引入智能方法,展望了智能控制在船舶电站系统中应用的前景。
Marine power stations play extremely roles in ships. The ship's economic, technological performances and its security are directly regulated by the continuity, reliability and quality of the power supply from the marine power station. On the other hand, automation of marine power station has been forcefully stimulated by the outstanding progress of the microcomputer technology which has found wide uses in the areas of automation since 1970's. As a result, better quality is required for the managers of marine power systems and the corresponding experimental facilities are needed to supply training functions. In this dissertation, a PC-based marine power station simulator taking the form of software is developed. In such a system, all equipments in the marine power station, including diesel generator and its control panel, are simulated via computer-aided software like LabVIEW and Matlab. The operator can artificially run the power station through keyboard and mouse for the training courses. Based on this simu
    lator, some advanced control techniques for marine power station have been investigated.
    As the basis of the further research and development, at first the mathematical models of the marine power station are analyzed, involving the diesel, electrical machine and excitation system, with the simulation models on Matlab being built up. Then the self-tuning PID control for the marine diesel generator is studied, and the internal model control (IMC) technique is introduced for the first time to achieve better control, with the control performances being compared with the other control methods. At last, a virtual simulation system for the marine power station is established by using LabVIEW and Matlab. The key solutions to the major problems of this project are proposed in this dissertation.
    As the research involved in this dissertation is just a part of a complicated project, it is still far from perfect. However, it provides new ways to solve the critical problems in the virtual simulation and control of the marine power station in the light of the following aspects.
    1.The concept of virtual reality is introduced into marine power station simulation, which is proved to be feasible.
    2. The virtual simulation of marine diesel generator, together with its control panel and sound/flash alarming is realized via proper
    
    
    
    computer-aided tools.
    3. The IMC-based self-tuning PID control is investigated and applied to control the marine diesel generator. Better robustness and stability are obtained.
    4. Several kinds of software tools, such as LabVIEW, Matlab and Microsoft Access are integrated in this project, with the problems on the communication, control and synchronization among them being resolved.
    Furthermore, the state-of-the-art and the trends of marine -power station are summarized and reviewed in this dissertation, indicating the expansive development of the software simulator. The problems which need to be solved for further research are also discussed from the viewpoint of virtual reality. The applications of the intelligent control in the marine power station are briefly surveyed.
    Ren Wei (Control Theory and Engineering) Directed by Associate Prof. Xu ShanLin and Prof. Ye YinZhong
引文
[1] 许明华“现代船舶电站自动化和机舱监控系统”《引进与咨询》2000年第2期
    [2] http://www.sunymaritime.edu/core.makka
    [3] 张少华“船舶自动化电站模拟器系统” 《世界海运》2002年12月第25卷第6期
    [4] 施伟峰“船舶电站仿真器系统的研究与开发”《中国航海》2002年第1期P63-68
    [5] http://www.km.kongsberg.com/
    [6] 赵士滨“虚拟现实技术进入高校教学的研究与实现”《电化教育研究》2001,第2期:30-35
    [7] 李尊营“虚拟现实系统及应用”《临沂师范学院学报》2002,12,第6期:124-126
    [8] 刘菊明“虚拟现实与虚拟实验教学研究”《东南亚纵横》2003,第1期:74-76
    [9] Ziegler J G and Nichols N B .Optimum settings for automatic controllers.Trans.ASME, 1942, 65:759768
    [10] Astrom K J, Hagglund T. PID Controllers: Theory, Design, and Tuning, 20d Edition. Research Triangle Park, North Carolina: Instrument Society of America, 1995
    [11] 杨智“自整定PID调节器设计方法”《甘肃工业大学学报》第24卷第1期,1998年3月,P77-82
    [12] Hang C C,Astrom K J,Ho 1V K.Refinement of the Ziegler-Nichols tuning formula.Proceedings IEEE.Pt D,1991,138:111118
    [13] 王亚刚“基于频域辨识的自整定PID控制器”《自动化仪表》2000,8,第8期:9-14
    [14] 张卫东“一类非自衡对象的PID控制”《自动化学报》,1999,25(4):518523
    [15] Chien I, P S Fruehauf.Consider IMC tuning to improve controller performance. Chem. eng. prog., 1990, 10:3341
    [16] Tyreus B D, W L Luyben.Tuning PI controllers for integrator/dead time processes. Ind. eng. chem. res., 1992, 31:26252628
    [17] Zhang M, Atherton D P. Automatic tuning of optimum PID controllers IEEE, Pt D, 1993, 140:216224
    [18] 陶永华 尹怡欣 葛芦生:《新型PID控制及其应用》机械工业出版社1998.9
    [19] 陶吉利“PID参数自整定的改进遗传算法”《工业仪表与自动化装置》2004,第2期:30-32
    [20] 刘伯春“智能自整定PID调节器的进展”《化工自动化及仪表》2000,1,第1期:46-50
    [21] Bristol E H. Pattern recognition: An alternative to parameter identification in adaptive control. Automatica, 1997,13:197-202.
    [22] 蒋新华“自适应PID控制”《信息与控制》1988,17(5):41-50
    [23] 王顺晃“舒迪前智能控制系统及其应用”机械工业出版社,1999
    
    
    [24] 陆绮荣 刘羽“LabVIEW仪器驱动器的设计与研究”《广西物理》2003,第4期:19-25
    [25] 杨乐平 李海涛 肖相生《LabVIEW程序设计与应用》电子工业出版社 2002,2
    [26] 安雪滢 赵勇 杨乐平“基于LabVIEW的程序结构化设计”《测控技术》2002,第11期:35-37
    [27] 杨乐平《abVIEW高级程序设计》清华大学出版社 2003
    [28] 林康红“基于LabVIEW的远程虚似仪器多线程技术”《自动化仪表》2002,8,第8期:25-28
    [29] 何强《Matlab扩展编程》清华大学出版社 2002,6
    [30] 张秋红 李玉忍“用MATLAB制作图形用户界面”《电脑开发与应用》2003,第3期:10-12
    [31] 何希琼《实用Access详解》电子工业出版社 1996,6
    [32] 夏永明“船舶电站仿真系统数学模型”《上海海运学院学报》1998年第4期P52-58
    [33] 林桦 常风云“船舶电站原动机机调速系统的混合仿真”《海军工程学院学报》1997,第3期:7-12
    [34] 王振永《电机的数学模型和参数辨识》机械工业出版社 1991,7
    [35] "Recommended Practice for Excitation System Models for Power System Stability Studies," IEEE Standard 421.5-1992, August, 1992.
    [36] 李甲申“实用二自由度PID控制”《自动化仪表》第21卷第11期,2000,11:10-14
    [37] A. Leva and A. M. Colombo, Method for optimising set-point weights in ISA-PID autotuners, lEE Proc. -Control Theory Appl. Vol. 146, No. 2, pp.137-146, 1999.
    [38] Astrom K J and Hagglund T. PID controllers,2nd Edition. Research Triangle Park, North Carolina: Instrument Society of America, 1995
    [39] Astrom K J, Hagglund T .Automatic tuning of simple regulators with specification on phase and amplitude margins. Automatica, 1984, 20:645651
    [40] Luyben, W.L. (1986). Industrial and Engineering Chemistry Process Design and Development, 25, 654.
    [41] 董红生 李战明“基于阶跃辨识的自整定PID控制器”《兰州工业高等专科学校学报》2003,6,第2期:12-17
    [42] Oarc(?)a C. E Morari M Internal model control. 1. A unifying review arid some new results, Ind. Eng. Chem. Proc. Des. Dev.21 308-323 1982.
    [43] 韩曾晋《自适应控制》清华大学出版社 1995
    [44] Rivera D E, Morari M, Skogestad S. Internal model control-4 PID controller design [J]. Ind. Eng. Chem. Pro.Des. Dev., 1986, 25: 252-265.
    [45] Fruehauf, P.S., Chien, I.-L. and Lauritsen, M.D., Simplified IMC-PID tuning rules, Proceedings of the ISA/93 Advances in Instrumentation and Control, Chicago, Illinois, U.S.A., 1993, pp. 1745-1766
    [46] 王东风 王剑东 韩璞“基于内模原理的PID控制器参数整定” 《华北电力大学学报》2003,7,第4期:42-47
    [47] 胡琳静 孙政顺“SIMULINK中自定义模块的创建与封装”《系统仿真学报》
    
    2004,第3期:488-451
    [48] 黄文梅《信号分析与处理:MATLAB语言及应用》国防科技大学出版社2002,2
    [49] 施阳 李俊《MATLAB语言工具箱——TOOLBOX实用指南》西北工业大学出版社1998,5
    [50] 杨国豪《船舶电站控制装置及动态模拟系统》大连海事大学出版社 1999,9
    [51] 刘红显“LabVIEW的外部代码接口”《湖南大学学报》2002,6,第3期:41-46
    [52] 聂延生“船舶发电机并车操作仿真装置” 《航海技术》2000,第4期:44-45
    [53] 聂延生 王学忠“船舶电站控制系统的结构和特点”《世界海运》1995,No.3:26-28
    [54] Douglas J.Reilly《基于服务器的应用程序技术内幕》清华大学出版社 2000,11
    [55] 李建文“基于ADO技术的LabVIEW访问数据库的方法”《自动化仪表》2003年9月P15-18
    [56] Jeffrey Travis, http://www.jeffreytravis.com/lost/labsql.html
    [57] 邵引平 朗勇 钟长征“建立自己的虚拟现实实验室”《计算机仿真》2002,7,第4期:97-99
    [58] 曹恒“柴油机模糊自校正PID控制器”《大连理工大学学报》2000,7,第4期:465-470
    [59] 马金祥 余发山 董爱华“一种模糊自适应PID控制器的设计与仿真” 《焦作工学院学报》第21卷,第3期P197-200
    [60] 胡晚霞“专家式PID自整定控制器的设计和实现”《自动化仪表》1997,17(3):21-25
    [61] 王迎旭 刘国繁 伍萍辉“基于神经网络的自适应PID控制器及其应用”《电力电子技术》2002,第4期:89-92
    [62] Cano J.M., Ara(?)zo M.J., Y.A. Dimitriadis y I(?)pez J., "Non linear processes adaptive control using fuzzy neural systems", EUFIC'97 5th European Congress on Intelligent Techniques and Soft Computing, Aachen, Germany. September 8-12, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700