基于虚拟仪器的醇类重整制氢微反应器测控技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究工作依托国家自然科学基金重点项目“面向醇类制氢的多尺度微通道反应器设计与制造基础研究”(资助号:50930005),针对微凸台阵列型微通道反应器,研究了基于虚拟仪器的醇类重整制氢微反应器测控技术。论文对微凸台阵列型醇类重整制氢微反应器的温度场和微反应器温度控制算法,以及微凸台阵列型微反应器的流量控制方法进行了研究,并设计了基于虚拟仪器的醇类重整制氢微反应器测控系统,开发了基于LabVIEW的测控软件,同时对微反应器测控系统的温度、流量等参数控制性能以及不同控制条件下的醇类重整制氢原料转化率、生成气体组分等反应效率问题进行了研究。
     第一章,阐述了论文研究的背景与意义,对重整制氢微反应器及其测控技术的国内外研究现状、虚拟仪器技术的发展现状和虚拟仪器技术在微反应器测控系统中的应用做了详细的介绍,并提出了论文的主要研究内容与框架。
     第二章,对微凸台阵列型醇类重整制氢微反应器的温度场进行了分析与优化。根据微凸台阵列的特性计算了对应的对流换热系数,采用了瞬态热分析对微凸台阵列型微反应器的温度场分布情况进行了研究,并以反应载体上表面的温度差和温度标准差最小为优化目标,优化了加热棒的布置,确定了合理的热电偶测温点。
     第三章,针对醇类重整制氢微反应器温度系统的特点和要求,提出了微反应器温度模糊自整定PID控制算法。建立了微反应器温度系统特性的理论模型,并采用实验辨识法完成了模型参数的辨识,得到了温度系统的传递函数。按照PID控制参数的整定原则,设计了模糊控制器,确定了模糊控制器输入、输出的模糊化和去模糊化方法,并在Simulink中仿真分析了模糊自整定PID温度控制的效果。
     第四章,按照醇类重整制氢反应的流程提出了测控系统的总体方案,确定了基于虚拟仪器的重整制氢反应温度、流量控制方法。选择、配置了传感器型号、数据采集卡连接方式和执行机构等微反应器测控系统硬件。在LabVIEW中以事件驱动队列状态机的设计模式,编写了温度模糊自整定PID控制程序、质量流量控制器控制程序和注射泵控制程序,完成了具有用户交互功能的醇类重整制氢微反应器图形化测控系统软件开发。
     第五章,实验研究分析了微反应器温度模糊自整定PID控制系统在催化剂还原阶段和重整制氢反应阶段的控制性能以及还原气体的流量控制性能。同时研究了在不同的反应控制条件下,醇类重整制氢反应的原料转化率、生成气体成分等反应效率问题。
     第六章,对本论文的研究内容进行了总结,并展望了未来的研究工作。
Supported by the key project named "Fundamental research on design and manufacture of multi-scale micro-channel reactor for hydrogen production from alcohols" from National Natural Science Foundation of China (Grant No.59030005), aiming at the micro-channel reactor with micro-pin-fin arrays, the measurement and control technology about micro-reactor for hydrogen production from steam reforming of alcohols based on virtual instrument was studied in this thesis. Temperature distributions of the micro-channel reactor with micro-pin-fin arrays, temperature control algorithm and flow control method for the micro-reactor were studied. Then a measurement and control system for the micro-reactor was designed based on virtual instrument and its test software was also developed in LabVIEW. Finally the performances on temperature and flow control of the micro-reactor and reaction efficiency such as conversion percent of alcohols and composition percent of reactant gas under various controlled conditions were studied.
     In Chapter 1, the background and significance of this research, the current research situation about micro-reactor for hydrogen production from steam reforming and measurement and control technology, the development of virtual instrument and its applications in measurement and control system on micro-reactor were introduced, and then the research contents of this thesis were proposed.
     In Chapter 2, analysis and optimization for the temperature distribution of the micro-reactor with micro-pin-fin arrays for hydrogen production from steam reforming of alcohols were carried out. Convection coefficient on the surface of micro-pin-fin arrays was calculated and transient heat analysis was carried out to get the temperature distribution of micro-reactor with micro-pin-fin arrays. Aiming at the minimum of difference and standard deviation of temperatures on surface of the reactor support, optimization for position layout of the cartridge heater was achieved and the positions for thermocouples were determined.
     In Chapter 3, fuzzy auto-tuning on parameters of PID algorithm was adapted to control the temperature of the micro-reactor. The theoretical model of the temperature characteristic of the micro-reactor was established and the model parameters were determined through the experiment identification. According to the tuning principle of PID control of temperature, a fuzzy controller was designed as well as the input parameter's fuzzification and the output parameter's defuzzification, then this temperature control system was verified in Simulink.
     In Chapter 4, a general measurement and control scheme including control methods of temperature and flow of the micro-reactor based on virtual instrument was proposed. Hardware of the measurement and control system such as type of sensors, connection type of data acquisition card (DAQ) and actuators was selected and configured. Control programs of the temperature using fuzzy auto-tuning PID algorithm, mass flow controller and syringe pump were programmed in LabVIEW using the design pattern of queue-state-machine driven by event, and a graphical measurement and control software with user interaction was developed.
     In Chapter 5, the experimental setup for hydrogen production from steam reforming of alcohols was built up. Performances on temperature control using fuzzy auto-tuning PID algorithm during catalyst deoxidation and steam reforming and flow control of reducing gas were studied, as well as the reaction efficiency of hydrogen production from steam reforming of alcohols, such as the conversion percent of alcohols and the composition percent of reactant gas under various controlled conditions.
     In Chapter 6, the chief work of this thesis was summarized, and research objects were proposed in future.
引文
[1]吴涛涛,张会生.重整制氢技术及其研究进展.能源技术,2006,27(4):161-167.
    [2]陈光文,袁权.微化工技术.化工学报,2003,54(4):427-439.
    [3]李吉刚,孙杰,程玉龙,张立功.微反应器在重整制氢系统中的应用与进展.现代化工,2010,30(8):22-27.
    [4]Terazaki T, Nomura M, Takeyama K, et al. Development of multi-layerd microreactor with methanol reformer for small PEMFC. Journal of Power Sources,2005,145:691-696.
    [5]Park G C, Seo D J, Park S H, et al. Development of microchannel methanol steam reformer. Chemical Engineering Journal,2004,101:87-92.
    [6]Sohna J M, Byun Y C, Cho J Y, et al. Development of the integrated methanol fuel processor using micro-channel patterned devices and its performance for steam reforming of methanol. International Journal of Hydrogen Energy,2007,32:5103-5108.
    [7]Lee J H, Do G S, Moon H J, et al. An annulus-type micro reforming system integrated with a two-staged micro-combustor. International Journal of Hydrogen Energy,2010,35: 1819-1828.
    [8]Gorke O, Pfeifer P, Schubert K. Kinetic study of ethanol reforming in a microreactor. Applied Catalysis A:General,2009,360:232-241.
    [9]Xinhai Yu, Tu Shan-Tung, Zhengdong Wang, et al. Development of a microchannel reactor concerning steam reforming of methanol. Chemical Engineering Journal,2006,116: 123-132.
    [10]穆昕,潘立卫,郏景省,等.微型平板式反应器中甲醇水蒸气重整制氢的研究.燃料化学学报,2008,36(3):338-342.
    [11]Jamelyn D. Holladay, Yong Wang, Evan Jones. Review of developments in portable hydrogen production using microreactor technology. Chemical reviews,2004,104: 4767-4790.
    [12]A Gavriilidis, P Angeli, E Cao, et al. Technology and applications of microengineered reactors. Chemical Engineering Research and Design,2002,80:3-30.
    [13]Lee F. Brown. A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles. International journal of hydrogen energy,2001,26: 381-397.
    [14]Taegyu Kim, Sejin Kwon. Design, fabrication and testing of a catalytic microreactor for hydrogen production. Journal of micromechanics and microengineering,2006,16: 1760-1768.
    [15]Jung Min Sohn, Young Chang Byun, Jun Yeon Cho, et al. Development of the integrated methanol fuel processor using micro-channel patterned devices and its performance for steam reforming of methanol. International journal of hydrogen energy,2007,32: 5103-5108.
    [16]Wei Zhou, Yong Tang, Minqiang Pan, et al. A performance study of methanol steam reforming microreactor with porous copper fiber sintered felt as catalyst support for fuel cells. International journal of hydrogen energy,2009,34:9745-9753.
    [17]Qiang Zhang, Xiaohong Wang, Yiming Zhu, et al. Optimized temperature control system integrated into a micro direct methanol fuel cell for extreme environments. Journal of Power Sources,2009,192:494-501.
    [18]Thomas Stief, Ulrich Schygulla, Hans Geider, et al. Development of a fast sensor for the measurement of the residence time distribution of gas flow through micro structured reactors. Chemical Engineering Journal,2008,135S:S191-S198.
    [19]T Jacobs, A Kienle, P Hauptmann. Capillary type thermal mass flow sensors for monitoring esterification reactions in residence time micro-reactors. Chemical Engineering Journal, 2010,160:827-833.
    [20]G Hetsroni, A Mosyak, E Pogrebnyak, et al. Infrared temperature measurements in micro-channels and micro-fluid systems. International Journal of Thermal Sciences,2011, 50:853-868.
    [21]Chien-Wei Liu, Chie Gau, Chin-Gi Liu, et al. Design consideration and fabrication of a microchannel system containing a set of heaters and an array of temperature sensors. Sensors and Actuators A,2005,122:177-183.
    [22]L Scholer, B Lange, K Seibel, et al. Monolithically integrated micro flow sensor for lab-on-chip applications. Microelectronic Engineering,2005,78-79:164-170.
    [23]Zhenlan Xue, Huihe Qiu. Integrating micro machined fast response temperature sensor array in a glass microchannel. Sensors and Actuators,2005,122:189-195.
    [24]Yoshihiro Kawamura, Naotsugu Ogura, Tadao Yamamoto, et al. A miniaturized methanol reformer with Si-based microreactor for a small PEMFC. Chemical engineering science, 2006,61:1092-1101.
    [25]Dae-Eun Park, Taegyu Kim, Sejin Kwon, et al. Micromachined methanol steam reforming system as a hydrogen supplier for portable proton exchange membrane fuel cells. Sensors and actuators A,2007,135:58-66.
    [26]Keyur Shan, R.S. Besser. Understanding thermal integration issues and heat loss pathways in a planar microscale fuel processor:Demonstration of an integrated silicon microreactor-based methanol steam reformer. Chemical engineering journal,2008,135S: S46-S56.
    [27]W C Shin, R S Besser. A micromachined thin-film gas flow sensor for microchemical reactors. Journal of micromechanics and microengineering,2006,16:731-741.
    [28]W C Shin, R S Besser. Toward autonomous control of microreactor system for steam reforming of methanol. Journal of power sources,2007,164:328-335.
    [29]Chi-Yuan Lee, Shuo-Jen Lee, Chia-Chieh Shen, et al. Micro-sensors with novel micro-channels in a micro-reformer. International journal of hydrogen energy,2010,35: 10630-10634.
    [30]孙亚飞,陈仁文,周勇等.测试仪器发展概述.仪器仪表学报,2003,5(24):480-484.
    [31]张毅刚.虚拟仪器技术介绍.国外电子测量技术,2006,6(24):1-6.
    [32]郭俊峰,戴飞,徐小文等.基于虚拟仪器的电磁环境监测系统.电子测量技术,2006,2(29):47-49.
    [33]陈辉,徐小军,陈剑等.基于LabVIEW的汽车NVH测试分析系统设计.合肥工业大学学报(自然科学版),2008,3(31):343-346.
    [34]国家仪器应用案例分析. NI TestStand Provides the Framework to Texas Instruments $4 Billion Division. http://sine.ni.com/cs/app/doc/p/id/cs-577.
    [35]王淑芳.基于虚拟仪器技术的直流伺服电机控制系统.机床与液压,2007,7(35):144-146.
    [36]国家仪器应用案例分析.原油——运筹LabVIEW之中,配送千里之外.http://sine.ni.com/cs/app/doc/p/id/cs-12136.
    [37]国家仪器应用案例分析.水电健康顾问.http://sine.ni.com/cs/app/doc/p/id/cs-12199.
    [38]张孝桂,何为,周静等.基于嵌入式系统的便携式心音分析仪的研究.仪器仪表学报,2007,2(28):303-307.
    [39]国家仪器应用案例分析.基于CompactRIO的家居监控机器人.http://sine.ni.com/cs/app/doc/p/id/cs-13162.
    [40]国家仪器应用案例分析.采用LabVIEW及CompactRIO为视力障碍人群设计半自动车辆.http://sine.ni.com/cs/app/doc/p/id/cs-12449.
    [41]D J Quiram, K F Jensen, M A Schmidt, et al. Integrated microreactor system for gas-phase catalytic reactions.1. Scale-up microreactor design and fabrication. Industrial & engineering chemistry research,2007,46:8292-8305.
    [42]D J Quiram, K F Jensen, M A Schmidt, et al. Integrated microreactor system for gas-phase catalytic reactions.2. Microreactor packing and testing. Industrial & engineering chemistry research,2007,46:8306-8318.
    [43]D J Quiram, K F Jensen, M A Schmidt, et al. Integrated microreactor system for gas-phase catalytic reactions.3. Microreactor system design and system automation. Industrial & engineering chemistry research,2007,46:8319-8335.
    [44]Kap-Seung Choi, In-Jae Choi, Se-joon Hwang, et al. An experimental study of methanol autothermal reformation as a method of producing hydrogen for transportation applications. International journal of hydrogen energy,2010,35:6210-6217.
    [45]刘红,阮灵伟,蒋兰芳等.基于ANSYS的热板温度场模拟与优化设计.模具工业,2010,9(36):18-21.
    [46]花丹红,汪超,李金国.橡胶注射剂模具加热系统温度场优化设计.模具工业,2008,10(34): 55-59.
    [47]花丹红.注射剂热板温度场数值分析及优化设计.硕士学位论文,杭州:浙江工业大学,2009年3月.
    [48]李爽,董林福,李旭日等.电热平板硫化机热板温度场优化设计.橡胶工业,2006,12(53):747-749.
    [49]王泽鹏,张秀辉,胡仁喜.ANSYS 12.0热力学有限元分析从入门到精通.北京:机 械工业出版社,2010.
    [50]杰姆斯.苏赛克.传热学.北京:人民教育出版社,1980-1981.
    [51]李书臣,肖军.模糊控制在聚丙烯反应釜温控中的应用.自动化与仪器仪表,1997,1:32-34.
    [52]刘教瑜,柏昱.模糊控制在电弧炼钢中的应用.自动化与仪表,1997,12(2):34-35.
    [53]冯江,王晓燕,赵书玲.退火炉燃烧过程的模糊自寻优控制器设计.仪器仪表用户,2004,11(5):12-13.
    [54]张念祖,朱汝辉.模糊控制在机器人定位控制中应用.控制与决策,1995,10(2):133-136.
    [55]林粤彤,王飞跃.基于模糊神经元网络的智能车辆个性自动驾驶系统的设计与实现.自动化学报,2001,27(4):531-542.
    [56]王庆香,孙炳达.自学习模糊智能洗衣机的一种设计方案.自动化与仪器仪表,2001,4:20-21.
    [57]张锦荣.家用空调变频模糊控制器的设计.电工技术杂志,2003,1:25-27.
    [58]李中华,毛宗源,邬依林.一种新的基于模糊控制的电梯群控策略.控制与决策,2004,8(19):857-866.
    [59]沈国江,孙优贤.城市交通干线递阶模糊控制及其神经网络实现.系统工程理论与实践,2004,4:99-105.
    [60]张化光等.模糊自适应控制理论及其应用.北京:北京航空航天大学出版社,2002.
    [61]李国勇.过程控制系统.北京:电子工业出版社,2009.
    [62]游伯砷,阚家钜,江兆章.温度测量与仪表:热电偶与热电阻.北京:科学技术文献出版社,1990.
    [63]厦门宇电AI-702M/704M/706M型多路巡检显示仪使用说明书(V7.6).
    [64]Leader Sensors. LDN500系列压力传感器、变送器.
    [65]National Instrument. NI 625X Specifications.2007.
    [66]National Instrument. DAQ M Series User Manual.2008.
    [67]杭州西子固体继电器有限公司.单相交流固体继电器.http://www.xizissr.com.cn/html/index.html.
    [68]SevenStar. CS200MFC/MFM User's Manual.2009.
    [69]SevenStar. Digital MFC Communication Protocol User's Manual.2008.
    [70]LongerPump. LSP01-A Syringe Pump. http://www.longerpump.com/enproduct/user/view.asp?product_id=26.
    [71]LongerPump. LSP系列注射泵485接口规约.
    [72]陈树学,刘萱LabVIEW宝典.北京:电子工业出版社,2011.
    [73]杨乐平LabVIEW高级程序设计.北京:清华大学出版社,2003.
    [74]侯国屏,王砷,叶齐鑫LabVIEW7.1编程与虚拟仪器设计.北京:清华大学出版社,2005.
    [75]阎昌琪.气液两相流.哈尔滨:哈尔滨工程大学出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700