空气重介磁稳定流化床分选细粒煤的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空气重介流化床是一项高效干法选煤技术,可以成功处理50~6mm级粗粒煤的分选,但是由于气泡的存在而引起加重质一定程度的返混,所以分选粒度下限较高,无法满足<6mm煤炭的高效分选要求。通过引入磁场能量使空气重介流化床成为磁稳定流化床,可减小甚至消除流化床中的气泡,从而改善流态化质量,甚至达到气固散式流态化,是解决<6mm级细粒煤炭的高效干法分选方法。
     本论文主要研究了加重质的物理化学性质及其在磁稳定流化床中的流化特性;磁稳定流化床的消泡机理及密度稳定性;磁稳定流化床的屈服应力、表观粘度和流动性等流变学性质;颗粒在磁稳定流化床中的运动机理,建立了颗粒运动的动力学方程;错流磁稳定流化床中以模拟颗粒和<6mm细粒煤的分选实验。
     磁铁矿粉、磁珠和硼铁矿粉三种加重质的物理化学性质的研究表明三种加重质都是强磁性物质,有一定的强度、耐磨性和抗氧化性,可以作为空气重介质磁稳定流化床的分选介质。加重质的流化特性说明,初始流化速度Umf与磁场强度无关,而起始鼓泡速度Umb、颗粒带出速度Ut、稳定操作速度范围以及床层膨胀率随着磁场强度的增大而增大。外加磁场使磁性介质形成磁链是磁稳定流化床消除气泡的主要原因。密度稳定性研究表明磁稳定流化床的床层压力波动极小,始终处于稳定状态,且密度分布均匀;而普通流化床的压力波动较为明显,密度分布不均匀。
     拉板法测量磁稳定流化床屈服应力的研究表明屈服应力随床层深度的增加而变大,随磁场强度的增大而变大,随流化气速的增大而减小。同一磁性介质的不同粒级形成的磁稳定流化床的屈服应力随着介质粒度的减小而变大。落球法测量表观粘度的研究表明表观粘度随流化速度的增大减小,随磁场强度的增大而增大。借助Design-Expert试验设计软件对屈服应力和表观粘度进行正交试验,通过方差分析寻找显著影响因素,并得到了屈服应力和表观粘度的公式。错流磁稳定流化床的流动性实验表明增大床体倾角和流化气速使流动性增强,增大介质流量、磁场强度使流动性降低。并探讨了错流磁稳定流化床拟流体的本构关系。
     利用颗粒高速动态分析系统研究颗粒沉降的试验表明颗粒在磁稳定流化床中所受到的阻力可分为二部分:运动阻力和磁稳定流化床的屈服力,且屈服力对颗粒的作用非常大。基于以上的受力分析建立了颗粒沉降的动力学方程。
     在自行设计研制的错流磁稳定流化床分选模型机中研究了直径为4~4.5mm模拟颗粒和<6mm细粒煤的分选。模拟颗粒的分选实验重点研究了磁场强度和流化气速对分选效果的影响,为<6mm细粒煤的分选探索最佳的操作条件。<6mm细粒煤中-6+3mm、-3+1mm和-1+0.5mm三个粒级以及-6+0.5mm混合粒级细粒煤进行了分选,结果表明:错流磁稳定流化床可以实现-6+0.5mm粒级细粒煤的分选,分选结果的可能偏差Ep=0.068~0.095g/cm3。
Air Dense Medium Fluidized Bed is a highly effective technique for dry coal separation, which can separate successfully the coarse coal of 50~6mm. This technology can not satisfy the highly effective separation of fine coal of <6mm, however, because the bubbling turbulence that exists in the bed can cause a certain extent of intermixing of the medium, so the lower limit of the separation size is rather high. By introducing the magnetic field energy to the Air Dense Medium Fluidized Beds and making them be Magnetically Stabilized Fluidized Beds (MSBs), the bubbles will be minished or even eliminated. The fluidization quality of the fluidized bed will be improved, even the air-solid dispersive fluidization can be achieved. The MSB is a highly effective separation technique for the fine coal of <6mm.
     Research contents of this dissertation mainly involve physical and chemical properties of the mediums and fluidization properties of the mediums in the MSBs; mechanism of eliminating the bubbles and stability of the density in the MSBs; rheological properties like yield stress, apparent viscosity and the flowability of the MSBs; motion mechanism of the particles in the MSBs and building of the dynamics equation of the partiticles’motion; separation tests of model particles and fine coal of <6mm in the Crossflow Magnetically Stabilized Fluidized Beds (Crossflow MSBs).
     Physical and chemical properties of magnetic powder, magnetic beads and paigeite ore powder indicate that the three mediums are all ferromagnetic matter, with relative strength, abrasion resistance and antioxygenic properties, so they can be the separation mediums of the Air Dense Medium MSBs. Fluidization properties of the mediums in the MSBs show that initial fluidization velocity Umf is independent of the magnetic field intensity, while the initial bubbling velocity Umb, particle entrainment velocity Ut,the scope of stably operating velocity and bed expanding rate all increase with the augmentation of the magnetic field intensity. The major reason of the eliminating bubbles in the MSBs is that applied magnetic field makes the magnetic mediums be magnetic chains. Stability of density of the MSBs indicates that the pressure fluctuation of the bed is very small, the bed is always in the stable state and the density distributes uniformly. On the contrary, the pressure fluctuation of the ordinary fluidized beds is very obviously and the density distributes uneven.
     Measuring the yield stress of the MSBS by Drawing Plate show that the yield stress increases with the augment of the bed depths, increases with the augment of the magnetic field intensity, while decreases with the augment of the air velocity. The yield stress in the MSBs formed by various sizes of one magnetic medium increases with the decreasing of the size of the medium. Study of apparent viscosity of the MSBs by Falling Sphere indicate that the apparent viscosity decreases with the increasing of the air velocity, and increases with the increasing of the magnetic field intensity. Factorial experiment design was carried on by dint of Design-Expert software for studying the yield stress and apparent viscosity. By variance analysis finding the remarkably influential factors, thereout the equations of the yield stress and the apparent viscosity were obtained. The flowability of the Crossflow MSBs indicates that increasing the bed obliquity and the air velocity the flowability increases, while the flowability decreases when the solids throughput and the magnetic field intensity increase. The constitutive relation of the Crossflow MSBs was discussed in this dissertation.
     Settling tests of particles studied by MEMRECAM Ci3 High-speed Dynamic Analysis System show that the resistances on the particle in the MSBs can be divided into two parts: motion resistance and yield force. The yield force on the particle is very great. Based on the aforementioned analysis of the forces the dynamics equation was established.
     Separation tests of model particles of 4~4.5mm and fine coal of <6mm in Crossflow MSBs designed and developed by the author were done. Magnetic field intensity and air velocity were studied during the separation tests of model particles to seek after the optimal operating conditions of fine coal of <6mm. Three parts of -6+3mm, -3+1mm and -1+0.5mm of fine coal of <6mm and fine coal of -6+0.5mm were separated respectively. The results of the separation tests show that the Crossflow MSBs can achieve successfully the separation of fine coal of -6+0.5mm. The Ep values of these tests are in the range of 0.068~0.095g/cm3.
引文
[1]国家发展和改革委员会.煤炭工业发展“十一五”规划[GP/OL] .( 2007-1-22 )[2008-03-20].http://www.ndrc.gov.cn/fzgh/ghwb/115zxgh/P020070925583241015610.pdf.
    [2]中国煤炭新闻网. 2008年全国煤炭工业统计快报发布. 2009.1.20. http://www.feb2b.com/news08.php?id=144583
    [3]国家计委交通能源司.“97白皮书”中国能源[M].北京:中国物价出版社,1997:103-104.
    [4]沈丽娟.煤炭洗选加工是煤炭工业实施可持续发展的战略选择[J].选煤技术,1999,1:7-10.
    [5]陈清如,杨玉芬.21世纪高效干法选煤技术的发展[J].中国矿业大学学报,2001,30(6):527-528.
    [6]邢玉梅.对西部推广干法选燥技术的几点建议[J].中国煤炭,2005,31(9):70-70.
    [7]陈清如,骆振福.干法选煤评述[J].选煤技术,2003,6:34-41.
    [8]石燕峰,卢连永,薛守军,张文,胡丙升.干法选煤技术的发展应用[J].选煤技术,2006,5:39-43.
    [9] Thomas F., Yancey H. F.. A process of separating loosely mixed materials: U.S.A., 153846[P]. 1925-4-21.
    [10] Thomas F., Yancey H. F.. Artificial storm of air-sand floats coal in is upper surface leaving refuse to sink[J]. Coal Age, 1926: 325-327.
    [11] Evenson G. F.. Pneumatic process used in coal cleaning[J]. Coal preparation, 1996: 135-139.
    [12] Asthana H. N., et al. Coal cleaning in fluidized beds[J]. Chemical age of India, 1969(20): 792.
    [13] Rowe P. N., Niewow A. W.. Particle mixing and segregation in gas fluidised beds[J]. Powder Technology, 1976 (15): 141-147.
    [14] Rowe P. N., Niewow A. W., Agbin A.. The mechanisms by which particles segregate in gas fluidized beds-binary systems of near-spherical particles[J]. Trans. Inst. Chem. Eng., 1976, 50: 310.
    [15] Douglas E., Walsh T.. Dry separation of mixtures of solid materials: U.S.A., 344996[P].
    [16] Beeckmans J. M.. Separation of mixed granular solids using the fluidized counter-current cascade principle[J]. The Canada Journal of Chemical Engineering, 1977, 55: 493-496.
    [17] Muzyka D., Beeckmans J. M., Jeffs A.. Solid separation in a counter-current fluidized cascade: Jetsam-Rich Mixture at total reflux[J]. The Canada Journal of Chemical Engineering, 1978, 56: 286-291.
    [18] Muzyka D., Beeckmans J. M.. Effects of convective velocity on longitudinal diffusivities in a fluidized cascade separator[J]. The Canada Journal of Chemical Engineering, 1979, 57: 586-590.
    [19] Chan E. W., Beeckmans J. M.. Pneumatic of coal fines using the counter-current fluidized cascade[J]. International Journal of Mineral Processing, 1982: 157-165.
    [20] Beeckmans J. M., Goransson M., Butcher S. G.. Coal cleaning by counter-current fluidized cascade[J]. CIM BULL, 1982, 75: 191-194.
    [21] Germain R. J. et al. Dry cleaning of coal in the counter-current fluidized cascade[C]. XIV International Mineral processing Congress Paper, Toronto, Canada, 1982.
    [22] Weintraub M., Derbrouck A. E., Thomas R. H.. Dry cleaning coal in a fluidized bed medium[R]. Report of investigation, 1979, Department of Energy, Pittsburgh Mining Technology Center.
    [23] Baskakov A. P., et al. Heat and thermo-chemical treatment in fluidized and vibration-fluidized bed[J]. Heat transfer Engineering, 1980, 10(1): 9-17.
    [24] Weinteaub M., et al. Separation of particulate solid of varying densities in a fluidized bed: U.S.A., 3774759[P]. 1993-11-27.
    [25] Dong X., Beeckmans J. M.. Separation of particulate solid in a pneumatically driven counter-current fluidized cascade[J]. Powder Technology, 1990, 62: 261-267.
    [26]陈清如.空气重介选煤技术[J].矿业科技情报,中国矿业大学科技情报室,1983(3).
    [27]中国矿业大学煤综合利用系空气重介干法选煤公关组[R].空气重介质干法选煤技术科学研究第一阶段报告,1986.10.
    [28]俞少功.空气重介质气固系统的散式流化[D].中国矿业大学硕士论文,1986.5.
    [29]余智敏.干式流化床选煤工艺特性研究[D].中国矿业大学硕士学位论文,1987.7.
    [30]谢广元.干式流化床选煤工艺参数研究-流化介质制备及其研究[D].中国矿业大学硕士论文,1987.7.
    [31] Chen Qingru, et al. 5~10t/h fluidized bed dense medium coal cleaning system[C]. Fluidized 91 science and Technology Conference Paper, Beijing China, 1991.
    [32] Yang Yi, et al.Dry cleaning of coal with air dense medium fluidized bed[C]. Mining science and Technology Proceeding of the 2 th International Symposium on Mining Technology and science, 1991.
    [33] Chen Qingru et al.Dry cleaning of coarse coal with air dense medium fluidized bed at 10 ton per hour[C]. Eighth Annual International Pittsburgh Coal Conference proceedings, Oct 1991, Pittsburgh. USA.
    [34]李建民.空气重介质流化床分选机选煤过程的动态分析[D].中国矿业大学硕士学位论文,1988.12.
    [35]何亚群.空气重介质流化床密度在线测量研究[D].中国矿业大学硕士学位论文,1990.7.
    [36]骆振福.空气重介质流化床分选过程数学模型的研究[D].中国矿业大学硕士学位论文,1990.11.
    [37]安振连.干法分选技术参数的测试-γ射线测试浓相分选流化床的密度[D].中国矿业大学硕士学位论文,1987.7.
    [38]王连栋.两种不同密度加重质形成低密度流化床特性的研究[D].中国矿业大学硕士学位论文,1992.1.
    [39]章新喜.空气重介质流化床干法选煤系统非磁性介质回收净化的研究[D].中国矿业大学硕士学位论文,1992.1.
    [40]吴立新.空气重介质流化床干法选煤深床层的研究[D].中国矿业大学硕士学位论文,1992.12.
    [41]韦鲁滨.双密度层空气重介质流化床形成特性的研究[D].中国矿业大学博士学位论文,1995.1.
    [42]徐守坤.空气重介质流化床动力学模拟研究[D].中国矿业大学博士学位论文,2001.5.
    [43]丁玉.空气重介质流化床内气泡行为及颗粒运动规律的研究[D].中国矿业大学博士学位论文,2001.5.
    [44]雷灵琰.空气重介流化床分选机理及气泡规律的研究[D],中国矿业大学硕士学位论文,2001.5.
    [45]陈清如等.振动流化床分选细粒煤的研究[J].煤炭学报,1993(6):26-32.
    [46]王亭杰.振动流化床的流化特性和分选细粒煤的研究[D].中国矿业大学博士论文,1993.7.
    [47]王亭杰,陈清如.振动床中颗粒介质的混合[J].中国矿业大学学报,1993, 22(3):12-20.
    [48]骆振福.<6mm级煤炭振动流化床分选机理及分选效果的研究[D].中国矿业大学博士学位论文,1996.4.
    [49]骆振福, FAN Maoming,陈清如,等.振动参数对流化床分选性能的影响[J].中国矿业大学学报,2006,35(2):209-213.
    [50]骆振福, FAN Maoming,赵跃民,等.物料在振动力场流化床中的分离[J].中国矿业大学学报,2007,36(1):27-28.
    [51] Luo Zhenfu, Fan, Maoming, Zhao Yuemin, et al. Density-dependent separation of dry fine coal in a vibrated fluidized bed[J]. Powder Technology, 2008, 187(2): 119-123.
    [52]樊茂明.磁稳定流化床的流化特性及其分选机理[D].中国矿业大学博士学位论文,2000.4.
    [53] Rosensweig R. E., Lee W. K., Siegell J. H.. Magnetically stabilized fluidized beds for solids separation by density[J]. Separation Science and Technology, 1987, 22(1): 25-45.
    [54] Colberg R. D., Liu, Y. A.. Studies in magnetochemical engineering. Part V. An experimental study of fluidized beds with screen packing and applied magnetic field[J]. Powder Technology, 1988, 56(4): 279-292.
    [55] Liu Y. A., Wagner R. G., Pehler F. A., McCord T. H.. Studies in magnetochemical engineering: Part IV. A fluidized-bed superconducting magnetic separation processes for dry coal desulfurization[J]. Powder Technology, 1988, 56(4): 259-277.
    [56] Hamby R. K., Liu Y. A.. Studies in Magnetochemical Engineering: Part VI. An experimental study of screen packed and conventional fluidized beds in axial and transverse magnetic fields[J]. Powder Technology, 1991, 64(1-2), 103-113.
    [57] Shao M., Kwauk M.. Particle mixing and segregation in a moving fluidized bed in gravity and magnetic field[J]. Journal of Chemical and Industrial Engineering (China), 1991, 6(1): 109-117.
    [58] Hristov J. Y.. Magnetic field assisted fluidization-A unified approach. Part 4: Moving gas-fluidized beds[J]. Reviews in Chemical Engineering, 2004b, 20(5-6): 377-550.
    [59] Luo Z., Chen Q.. Effect of fine coal accumulation on dense phase fluidized bed performance[J]. International Journal of Mineral Processing, 2001, 63(2): 217-224.
    [60] Fan Maoming, Chen Qingru, Zhao Yuemin, Luo Zhenfu. Fine coal (6-1 mm) separation in magneticallystabilized fluidized beds[J]. Int. J. Miner. Process. 2001 (63): 225-232.
    [61] Fan Maoming, Chen Qingru, Zhao Yuemin, Luo Zhenfu, Guan Yuping, Li Bei.. Magnetically stabilized fluidized beds for fine coal separation[J]. Powder Technology, 2002 (123): 208-211.
    [62] Luo Z., Zhao Y., Chen Q., Fan M., Tao X.. Separation characteristics for fine coal of the magnetically fluidized bed[J]. Fuel Processing and Technology, 2002, 79(1): 63-69.
    [63] Luo Z., Zhao Y., Chen Q., Tao X., Fan M.. Separation lower limit in a magnetically gas-solid two-phase fluidized bed[J]. Fuel Processing and Technology, 2003, 85(2-3): 173-178.
    [64]骆振福,樊茂明,陈清如.磁场流化床的稳定性研究[J].中国矿业大学学报,2001, 30(4):350-353.
    [65]樊茂明,陈清如,赵跃民,骆振福.磁稳定流化床干法选煤试验研究[J].选煤技术,2002(3):6-9.
    [66]骆振福,赵跃民,邢洪波,樊茂明,陶秀祥.磁场流化床分选粒度下限的研究[J].中国矿业大学学报,2002, 31(4):335-337.
    [67] Filippov M. V.. The effect of a magnetic field on a ferromagnetic particle suspension bed[J]. Prik. Magrcit. Lat. SSR, 1960(12): 215.
    [68] Rosensweig R. E.. Fluidization: Hydrodynamic Stabilization with a Magnetic Field[J]. Science, 1979, 204(6):57-60.
    [69] Rosensweig R. E.. Process for operating a magnetically stabilized bed: U.S.A., 4115927[P]. 1978.
    [70] Liu Y.A., Hamby R. K., Colberg R. D.. Fundamental and practical developments of magnetofluidized beds: a review[J]. Powder Technology, 1991, 64: 3-41.
    [71] Cohen A. H., Tien C.. Aerosol filtration in a magnetically stabilized fluidized bed[J].Powder Technology, 1991, 64: 147-158.
    [72] Saxena S. C., Shrivastava S.. Some hydrodynamic investigating of a magnetically stabilized air-fluidized bed of ferromagnetic particles[J]. Powder Technology, 1991, 64: 57-67.
    [73] Saxena S. C., Shrivastava S.. The influence of an external magnetic field on an air-fluidized bed of ferromagnetic particles[J]. Chemical Engineering Science, 1990, 45 (4): 1125-1130.
    [74] Siegell J. H.. Magnetically frozen beds[J]. Powder Technology, 1988, 55: 127-132.
    [75] Sergeev Y. A., Dobristyn D. A.. Linear, nonlinear small-amplitude, steady and shock waves in magnetically stabilized liquid-solid and gas-solid fluidized beds[J]. Int. J. Multiphase Flow, 1995, 21 (1): 75.
    [76] Rosensweig R. E.. Magnetic stabilization of the state of uniform fluidization[J]. Ind. Eng. Chem., Fundam., 1979, 18: 260-274.
    [77] Ganser G. H., Drew D. A.. Nonlinear stabilized analysis of a uniformly fluidized bed[J]. Int. J. Multiphase Flow, 1990, 16(3): 447-460.
    [78] Sergeev Y. A., Muromsky M. Y.. On propagation of concentration disturbances in a magnetically stabilized fluidized bed[J]. Int. J. Multiphase Flow, 1994, 20 (5): 927-938.
    [79] Stefano Brandani, Gianni Astarita. Analysis of the discontinuities in magnetized bubbling fluidizedbeds[J]. Chemical Engineering Science, 1996, 51(20): 4631-4637.
    [80] Albert R. V., Tien C.. Particle collection in magnetically stabilized fluidized filters[J]. AIChE J., 1985, 31:288-295.
    [81] Warrio M., Tien C.. Experimental investigation of aerosol filtration magnetically stabilized solids fluidized bed filters[J]. Chem. Eng. Sci., 1986, 41: 1711-1721.
    [82] Cohen A. H., Tien C.. Aerosol filtration in a magnetically stabilized fluidized bed[C]. AIChE. Annu. Meet., NewYork, NY, Nov., 1987.
    [83] Rosensweig R. E.. Hydrocarbon conversion process utilizing a magnetic field in a fluidized bed of catalytic particles, U.S. Pat. 4136016[P]. 1979.
    [84] Mutsers S. M. P., Rietema K.. The effect of interparticle forces on the expansion of a homogeneous gas-fluidized bed[J]. Powder Technology, 1977, 18(2): 239-248
    [85] Rosensweig R. E.. Ferrohydrodynamics[M]. Cambridge Univ. Press, New York, 1985.
    [86]归柯庭,巢江辉,施明恒等.气固磁流化床的双相模型[J].东南大学学报,1997, 27 (4): 83-91.
    [87] Lucchesi P. J., Hatch W. H., Mayer F. X., Rosensweig R. E.. Magnetically stabilized beds: new gas-solids contacting technology, Proc[C]. 10th World Petroleum Congress, Bucharest, Heyden, Philadelphia, PA, 1979, 4: 419.
    [88] Lucas A., Casal J. and Puigjaner L.. Fluidized-bed stabilization with a magnetic field: transition conditions and mixed systems, in D. Kunii and R. Toei (eds), Fluidization IV[J], Engineering Foundation, New York, 1983, 129.
    [89] Arnaldos J., Casal J., Lucas A. Puigjaner L.. Magnetically stabilized fluidization: modeling and applications to mixtures[J]. Powder Technology, 1985, 44(1): 57-62.
    [90] Wu W. Y., Smith K. L., Saxena S. C.. Rheology of magnetieally stabilized bed consisting of mixtures of magnetic and non-magnetic partieles[J]. Powder Teehnology, 1997, 91(3):181-187.
    [91] Wu W. Y., Navada A., Saxena S. C.. Hydrodynamic characteristics of magnetically stabilized air fluidized bed of an admixture of magnetic and non-magnetic partieles[J]. Powder Technology, 1997, 90(1): 39-46.
    [92] Lee W. K.. A Review of the rheology in magnetieally stabilized fluidized beds[J]. Powder Techology, 1991, 64: 69-80.
    [93] Ganzha V. L., Saxena S. C.. Hydrodynamic behavior of magnetically stabilized fluidized beds of magnetic particles[J]. Powder Technology, 2000, 107(1-2): 31-35.
    [94] Siegell J. H.. Radial dispersion and flow distribution of gas in magnetically stabilized beds[J]. Ind. Eng. Chem. Process Des. Dev.,1982, 21:135-141.
    [95] Geuzens P., Thoenes D.. Magnetically stabilized fluidization, part I: gas and solids flow[J]. Chem. Eng. Comm., 1988, 67: 217.
    [96] Chen Chia-min, Leu Lii-ping. Hydrodynamics and mass transfer in three-phase magnetically fluidizedbeds[J].Powder Technology, 2001, 117(3): 198-206.
    [97] Motonobu Goto, Takahiro Imammura, Tsutomu Hirose. Axial dispersion in liquid magnetically stabilized fluidized beds[J]. Journal of Chromatography A, 1995, 690(1): 1-8.
    [98] Arnaldos J., Puigjaner L., Casal J.. Heat and mass transfer in magnetically stabilized fluidized beds, in Ostergarrd K. and Sorenson A. (eds.) FluidizationⅤ[J]. Engineering Foundation, New York, 1986.
    [99] Ganzha V. L., Saxena S. C.. Heat-transfer rate variations from the surface of a heater probe in a magnetofluidized Bed[J]. Int. J. Multiphase Flow, 1998, 41(1): 203-208.
    [100] Al-Qodah Z., Al-Husoul M., Al-Hassan M.. Hydro-thermal behavior of magnetically stabilized fluidized beds[J]. Powder Technology, 2001, 115 (1): 58-67.
    [101]张宏,丁晓军.固定化增殖细胞磁场流化床反应器连续生产转化[J].工业微生物,1992(04): 19-23.
    [102]胡宗定,吴建勇.磁场生物流化床特性的研究[J].化工学报,1988(1) :120-126.
    [103]程琳娜,徐书明,李强亮,欧阳藩.固定化细胞磁场流化床反应器连续生产乙醇的研究[J].化工冶金,1990, 11(1):53-56.
    [104] Webb Colin, Kang Hong-Ku, Moffat Gillian, etc.The magnetically stabilized fluidized bed reactor: a tool for improved mass transfer in immobilized enzyme system[J].The Biochemical Engineering Journal, 1996, 61: 241.
    [105] Tahsin Bahar, Serdar S. Celebi.Performance of immobilized glucoamylase in a magnetically stabilized fluidized bed reactor (MSFBR)[J].Enzyme and Microbial Technology, 2000, 26(1): 28-33.
    [106] Hu Tsing-ting, Wu Jian-yong.Study on the characteristics of a biological fluidized bed in a magnetic field[J]. Chem. Eng. Res. Des., 1987, 65: 238-242.
    [107] Lisa J. Graham, Goran Jovanovic. Dechlorination of p-chlorophenol on a Pd/Fe catalyst in a magnetically stabilized fluidezed bed: implications for sludge liquid remediation[J]. Chemical Engineering Science, 1999, 54(15-16): 3085-3093.
    [108] Lochmüller C. H., Wigman L.S.. Separation Science and Technology, 1987, 22: 2111.
    [109] Burns M., Graves D. J.. Application of magnetically stabilized beds to bioseparations[J]. Reactive Polymers, 1987, 6: 45-50.
    [110] Chetty A. S., Burns M. A. Continuous protein separation in a magnetically stabilized bed using non-magnetic supports[J]. Biotechnology & Bioengineering, 1991, 38(9): 963–971.
    [111] Siegell J. H.. Applications of crossflow magnetically stabilized fluidized beds[J]. Chemical Engineering Communications, 1988, 67(1): 43-54.
    [112] Siegell J. H., Pirkle J. C., Jr., Dupre G. D. Crossflow magnetically stabilized fluidized bed chromatography[J]. In G. Ganetsos & P. E. Barker (Eds.), Preparative and production scale chromatography. New York:Marcel Dekker, 1992, 143-170.
    [113] Broomberg J.. Development of magnetic carriers for metal ion removal[D]. Master Thesis, McGillUniversity, Montreal. 1998.
    [114] Nu?ez L., Kaminski M. D.. Magnetically assisted chemical separation process[J]. Filtration & Separation, 1998, 35: 349-352.
    [115] Nu?ez L., Buchholtz B. A., Ziemer M., Dyrcacz G., Kaminski M., Vanderfrift G. F., Atkins K. J., Bos F. M., Elder G. R., Swift C. A.. Development for magnetically assisted chemical separations: Evaluation of caesium removal from Hanford tank supernatant[R]. Argonne National Laboratory report, ANL-94/47. 1994.
    [116] Feng D., Aldrich C., Tan H.. Removal of heavy metal ions by carrier magnetic separation of adsorptive particulates[J]. Hydrometallurgy, 2000, 56(3): 359-368.
    [117] Stefanowicz T., Napieralska-Zagozda S., Osinska M.. Copper recovery by cementation method[J]. Hydrometallurgy, 1997, 47(1): 69-90.
    [118]纪冬丽,张茂润.用磁场流化床从电镀废液中直接回收铬和镍[J].合肥工业大学学报(自然科学版), 2000, 23(5):757-760.
    [119] Niu S., Liu Y., Xu X., Lou Z.. Removal of hexavalent chromium from aqueous solution by iron nanoparticles[J]. Journal of Zhejiang University of Science, 2005, 6B(10): 1022-1027.
    [120] Anacleto A. L., Carvalho J. R.. Mercury cementation from chloride solutions using iron, zinc and aluminium[J]. Mineral Engineering, 1996, 9(4): 385-397.
    [121] Zhang H. G., Doyle J. A., Kenna C. C., La Brooy, S. R., Hefter, G.. T., Ritchie I. M.. A kinetic and electrochemical study of the cementation of gold onto mild steel from acidic thiourea solutions[J]. Electrochimica Acta, 1996, 41(3): 389-395.
    [122] Hao Z., Xu X., Wang D.. Reductive denitrification of nitrate by scrap iron fillings[J]. Journal of Zhejiang University of Science, 2005, 6B(3): 182-186.
    [123] Hao Z., Xu X., Jin J., He P., Liu Y., Wang D.. Simultaneous removal of nitrate and heavy metals by iron metal[J]. Journal of Zhejiang University of Science, 2005, 6B(5): 307-310.
    [124] Zouboulis A. I., Katsoyiannis I. A.. Arsenic removal using iron oxide loaded alginate beads[J]. Industrial Engineering Chemistry Research, 2002, 41(24): 6149-6155.
    [125] Ohe K., Tagai Y., Nakamura S., Ohshima T., Baba Y.. Adsorption behaviour of arsenic (III) and arsenic (IV) using magnetite[J]. Journal of Chemical Engineering of Japan, 2005, 38(8): 671-676.
    [126] Tuthill E. J.. Magnetically stabilized fluidized beds. U. S. Pat., 3440731[P]. 1969.
    [127] Geuzens P., Thoenes D.. Magnetically stabilized fluidization, part II:continuous gas filtration[J].Chem. Eng. Comm., 1988, 67: 229-235.
    [128] Rincon J.. Removal of fine particles from gases in magnetically stabilized fluidized filter[J].Separation Science and Technology, 1993, 28 (6): 1241-1248.
    [129]归柯庭,郅育红,施明恒.磁稳流化床空气过滤器特性研究[J].燃烧科学与技术,2000, 6 (2): 135-139.
    [130] Gui Ke-ting, Zhang Hui, Shi Ming-heng, etc.Collecting aerosol in a magnetically stabilized fluidized bed[J].Journal of Environment Science, 2001, 13 (4): 497-502.
    [131]邵曼君,赖全胜,张均荣.气固移动流化床内颗粒的混合与分级Ⅱ磁场和重力场中的行为[J].化工冶金, 1992,13(4):331-336.
    [132]黎浩明.空气重介流化床低密度分选技术[D].中国矿业大学硕士学位论文,1992.
    [133]刘昆仑.空气重介流化床新型低密度加重质的研究[D].中国矿业大学硕士学位论文,2008.
    [134]吴良士,白鸽.袁忠信.矿物与岩石[M].化学工业出版社,2005:1.
    [135]王振国,边炳鑫,崔广,等.磁珠——重介质选煤的新型加重质[J].选煤技术,1990,(2):9-12.
    [136]黄作良,王培君,王濮.辽吉内生硼矿硼镁铁矿—硼铁矿系列的矿物学研究[J].化工地质,1994,16(3):189-190.
    [137]夏学惠,阎飞,赵玉海.辽东裂谷硼铁矿床地质及成矿作用[J].矿床地质,2006,25(1):83-88.
    [138] Ergun S. Chem. Eng. Progr. 1952, 48: 89.
    [139] Wen C. Y., Yu Y. H.. AICHE, J. 1966, 12: 610.
    [140] Toome R. D., Johnstone H F, Chem. Eng. Progr. 1952, 48: 220.
    [141] Geldart D.. Types of gas fluidization[J]. Powder Technol., 1973, 7(5): 285-292.
    [143] Geldart D.. Homogeneous fluidization of fine powders using various gases and pressures[J]. Powder Technology, 1978, 19(1): 133-136.
    [144]朱庆山,李洪钟.C类物料磁场流态化(Ⅰ)机理研究[J].化工学报,1996,47(1):53-58.
    [145] Zhu Q., Li H.. Study on magnetic fluidization of group C powders[J]. Powder Technology, 1996, 86:179-185.
    [146]朱庆山.磁场作用下C类物料流化质量的改善[D].硕士论文,中国科学院化工冶金研究所,北京,1994.
    [147]朱庆山,李洪钟. C类物料磁场流态化(Ⅱ)实验研究[J].化工学报,1996,47(1):59-64.
    [148] Zhu Q., Li H.. Fluidization of group C powder with external magnetic force, in Fluidization’94 Science and Technology, edited by Organizing Committee of CJF-5[G]. Chemical Industry Press, Beijing, 1994: 45-52.
    [149]骆振福,赵跃民.流态化分选理论[M].徐州:中国矿业大学出版社, 2002.
    [150] Rosensweig R.E., Zahn M., Lee W.K., Hagan P.S.. Theory of dispersed multiphase flow (Meyer R.E. ed.)[J]. Academic, New York, 1983: 359.
    [151] Lee W. K.. AICHE Symp. Ser., 79(222), 87(1983).
    [152] Lee W. K.. AICHE Annual Meeting, San Francisco, 1984.
    [153] Cheremisinoff N.P., Siegell J.H., Coulaloglou C.A.. Ind. Eng. Chem., Process Des. Dev., 1985, 24: 719.
    [154]陈惠钊.粘度测量,第2版[M].北京:中国计量出版社,2003:142-147,165-171.
    [155]陈文芳.非牛顿流体的一些本构方程[J].力学学报,1983(1):16-26.
    [156]刘大有.二相流体动力学[M].高等教育出版社,1993:.26-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700