基于声表面波技术的新型气体传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声表面波(Surface Acoustic Wave, SAW)是沿物体表面传播的弹性波,外界的扰动对声表面波传感器来说或多或少会影响传播媒质的粘滞特性、质量密度、刚度系数、电导率和介电常数的变化;还有外界温度和压强的变化也会影响传播特性的改变,这些变化都会影响声表面波速度的变化,进而引起振荡器振荡频率的变化,因此通过对频率信号的检测就能获得外界微小扰动的信息。目前声表面波传感器已多方面的应用于不同的场合。
     声表面波气体传感器是涉及声表面波理论、器件工艺、薄膜理论、电磁、检测技术等科学领域的新型传感器,由于它具有高精度、高可靠性和动态响应快的特点,并且能广泛用于环保、安全检测领域,因而具有重要的经济和社会效益。
     声表面波气体传感器,是在延迟线上涂上能与被测气体有相互作用的薄膜,由此来改变声表面波的传播速度。这种相互作用直接决定了传感器的灵敏度、选择性和工作的可逆性。本文以声表面波传感技术为基础,研制了五通道声表面波气体传感器,其中包括叉指换能器的设计,基底材料的选择,敏感薄膜的选择和处理电路的设计。其主要内容包括:
     1.介绍了声表面波的基本原理和声表面波器件的常用分析模型。
     2.介绍了声表面波用压电材料的选择原则。并比较了基底为不同晶体及相同晶体不同切向时输出叉指上的电压。
     3.分别采用1/4和1/8波长分裂叉指,研制了多对并行的阵列叉指换能器,构成多通道传感器,分别为延迟型和谐振型声表面波传感器。声表面波传感器的中心频率分别选取为100MHz、148.5MHz和315MHz。
     4.重点分析了不同的气敏薄膜吸附气体后对频率移动的影响机理;理论推导了薄膜厚度对SAW传感器灵敏度的影响,给出了响应的最佳膜厚,并分析了传感器频率响应的线性区域;介绍了几种常用的敏感膜如酞菁化合物薄膜、氧化铟、氧化锌和氧化锡薄膜,以此作为多通道气体传感器薄膜选择的基础;用酞菁铜作为检测二氧化氮气体的敏感薄膜,采用双通道气体传感器进行了初步实验,验证了SAW传感器的灵敏度、可重复性以及电路模块的实用性。利用石英延迟线型和谐振型器件测试了一氧化碳和水蒸气响应的幅度特性。
     5.在原有文献和数据的基础上,克服传统声表面波气体传感器检测方法单一的缺点,制作频率和幅度检测电路,将频率检测和幅度检测统一在一起,对同一种气体,检测方法更加合理,精确。
Surface Acoustic wave (SAW) is elasticitive wave propagating along the object surface,external perturbation affect more or less viscosity,mass density,stiffness,electrical conductivity and permittivity, The extrinsic temperature and pressure affect also the change of propagating characteristic.At present,The sensor based SAW has been widely applied in many different fields.
     Surface Acoustic Wave gas sensor is a new kind of sensor which involved Surface Acoustic Wave theory, device technology, film theory, electromagnetic, detection technology and other new scientific fields. As it has the characteristics of high precision, high reliability and rapid dynamic response and is widely applied in the fields of environment protection and safety detection, the SAW gas sensor has the significant economic and social benefit.
     For SAW gas sensors, the propagation velocity of SAW can be changed by painting film to the delay line.The interaction between the film and the measured gas directly determines the sensitivity, selectivity and reversibility of the sensor.In this paper, we develop the five channel gas sensors of SAW including the design of IDT,the choice of substrate material and sensitive film and design of circuit. The main contents are listed as follows:
     1.Introduce the basis theory of SAW and the analytical model of SAW device.
     2.Introduce the selection of piezo-materical and compare the voltage of output IDT which the substrate are the diffent crystals or the diffent cut of the same crystal
     3.Developed a number of parallel IDT arrays which constructed multi-channel SAW sensors for delay and resonance types by adopting 1/4 and 1/8 wavelength interdigital splits, respectively.The center frequencies of the SAW sensors were selected as 100MHz,148.5MHz and 315MHz, respectively
     4.Analyze particularly the main physical properties of various films which adsorbed gases. The influence of the thickness of the films on the sensitivities of the sensors is derived theoretically, and the best thickness is obtained. The linear response region of the measured frequency is analyzed. Several kinds of commonly used sensitive films, such as copper phthalocyanine, indium oxide, zinc oxide and tin oxide thin films, are introduced. With the copper phthalocyanine film detected nitrogen dioxide gas, the sensitivity, repeatability, and the practicality of the circuit module are validated by using a dual-channel gas sensor. In addition, the responses of the sensor on the carbon monoxide and water vapor are experimentally investigated by using Quartz delay-line type and resonator type devices.
     5.Based on former literatures and dates,we desigen the frequency and amplitude detection ways and unify the tow seperated mathods so as to make it more scientific, reasonable, accurate.
引文
[1.1]Lord Rayleigh:on waves propagated along the plane surface of an elastic body, Proc. Math. Soc. London,17,p.4(1885)
    [1.2]R. M. White and F. W. Voltmer, "Direct piezoelectric coupling to surface elastic waves," Appl. Phys. Lett, Vol.17, pp.314-316,1965
    [1.3]武以立,邓盛刚,王永德编著. 声表面波原理及其在电子技术中的应用,北京:国防工业出版社,
    [1.4]Li Shuhong,Zhao Qida,Liao Tongqing.ed al.Novel force sensor based on a high-birefringence fiber loop mirror and a freely supported beam. Proc. SPIE.2007:6781 OB 1-5.
    [1.5]Cullen D E,Montress G K.Progress in the devepment of SAW resonator pressure transducers,IEEE Ultrasonics Symp,1980:696-701
    [1.6]董永贵,程卫东等.一种新型多反射栅声表面波化学量传感器的研究[J],压电与声光2000:22卷第6期
    [1.7]H.Wohltjen and R.Dessy,analytical Chen.,Vol.51,no9,p.1485,1979.
    [1.8]Waston G,Staples E.SAW Resonators as vapor sensors. IEEE Ultrasonics Symp,1990:311-314.
    [1.9]Tooru Nomura,Atsushi Saitoh gas sensor using complete reflection at free edge of SH-SAW Ferroeletrics,2002.Vol.273.pp.113-118
    [1.10]岳素芳.联合化学战剂探测器(JCAD)舰船防化[J],2006(3):41—44.
    [1.11]马晋毅,汪洪敏等.声表面波化学战剂气体传感器的研究[J],压电与声光.2005,05.
    [1.12]章安良,朱大中.S型双声路声表面波质量传感器[J],Vol.27 No.12005 p.7-9
    [1.13]喻洪麟,吴永烽等人.SAW传感器在智能血凝仪中的应用[J],传感技术学报vol.19No.4 2006.
    [1.14]Anisimkin V. I, et al., Integrated array of gas sensor, Electronics Letters, Vol.34, No.13, 1998,1360-1361.
    [1.15]Moriizumi, Toyosaka, et al., Multi-channel SAW chemical sensor using 90MHz SAW resonator and partial casting molecular films. Proceedings of the IEEE Ultrasonics Symposium, Vol.1, No.1,1994,499-502.
    [1.16]Mariani E. A., Skudera W. J., Surface acoustic wave multi-channel sensor for simultaneous detection of several chemical agents, US5325704, US SEC of ARMY,1994,07.05.
    [2.1]武以立等, 声表面波原理及其在电子技术中的应用, 国防工业出版社1983
    [2.2]陈明,范东员,李岁芳。声表面波传感器
    [2.3]徐家跃,声表面波用压电晶体的新进展[J],人工晶体学报2004,04
    [2.4]C.S. Hartmann, P.V. Wright, R.J.Kansy et al, "An analysis of SAW interdigital transducers with internal reflections and application to the design of single-phase unidirectional transducers" 1982 IEEE Ultrasonics Sym posium Proceeding, pp40-45.
    [2.5]W.R. Smith, H. M. Gerard, J.H. Collins, T.M. Reeder, and H J.Shaw, Analysis of Interdigital Surface Wave Transducers by use of an Equivalent Circuit Model, IEEE Transactions on Microwave Theory and Techniques, vol.17, pp.856-864, Nov 1969.
    [2.6]K.Inagama, M.Koshiba, Equivalent networks for SAW inter-digital
    Tranducers,1994 IEEE Transactions on Ultrasonics and Frequency control, UFFC-41,P402-411
    [2.7]K.Nakamura, K.Hirota, Equivalent circuits for directional SAW-IDT's based on the coupling-of-modes theory,1993 IEEE Ultrasonics Symposium Pro ceeding, P 215.
    [2.8]Pierce, Coupling of Modes of Propagation. J. Appl. Phys.25,179 (1954);
    [2.9]Y.Suzuki,H.Shimizu, M.takeuchi et al," Some studies on SAW r esonator and multiple-mode filters" 1976 IEEE Ultrasonics Symposium Proceeding,P297-302
    [2.10]H.A.Haus, "Bulk scattering loss of SAW grating cascades" 1977 IEEE Tr ansactions of sonics and Ultrasonics, SU-24.
    [2.11]C.S. Hartmann, P.V. Wright, R.J.Kansy et al, "An analysis of SAW interdigital transducers with internal reflections and application to the design of single-phase unidirectional transducers" 1982 IEEE Ultrasonics Sym posium Proceeding, P40-45.
    [2.12]D.P.Chen, H.A.Haus, "Analysis of metal-strip SAW gratings and t ransducers"1985 IEEET ransactions of sonics and Ultrasonics,SU-32P 395-408
    [2.13]P.V. Wright," A new generalized modeling of SAW transducers and g ratings",1989 Proceeding of the 43rd Annual Symposium on Frequency Control,P596-605.
    [2.14]P.V.Wright," Analysis and design of low-loss SAW devices with internal reflections using coupling-of-modes theory",1989 IEEE Ultrasonics Symposium Proceeding,P141-152.
    [2.15]K.Hashimoto,M.Yamaguchi, "Analysis of excitation and propagation of acoustic waves under periodic metallic-grating structure for SAW device modeling",1993 IEEE Ultrasonics Symposium Proceeding,P143-148.
    [2.16]K.H ashimoto, M.Yamaguchi," Precise simulation of surface transverse wave devices by discret Green function theory",19942 53-258.
    [2.17]Benjamin P.Abbott,Ken-ya hashimoto," A coupling-of modes formalism for surface transverse wave devices",1995 IEEE Ultrasonics Symposium Proceeding,P239-245.
    [2.18]G.Tobolka, "Mixed matrix representation of SAW transducers" 1979 IEEE Transactions of sonics and Ultrasonics,SU-26
    [2.19]G.Scholl,W.Ru ile,P.H. Russer, "P-matrix modeling of transverse-mode coupled resonator filters" 1993 IEEE Ultrasonics Symposium Proceeding,P4 1
    [2.20]C.C.W. Ruppel, W. Ruile, G. Scholl, Karl Ch. Wagner, and O. M'anner, "Review of Models for Low-Loss Filter Design and Applications," in Proceedings of IEEE Ultrasonics Symposium, pp.313-324,1994.
    [2.21]ENDOH G.; HASHIMOTO K.-Y.; YAMAGUCHI M.;"Surface acoustic wave propagation characterisation by finite-element method and spectral domain analysis"Japanese journal of applied physics 1995, vol.34 (1) pp.2638-2641
    [2.22]Xu, G. "Direct finite element analysis of the frequency response of a Y-Z lithium niobate SAW filter," Smart Materials and Structures,9.:973-980. (2000)
    [2.23]M. Hofer, N. Finger, G. Kovacs, J. Schoberl, U. Langer, and R. Lerch, Finite-element simulation of bulk and surface acoustic wave (SAW) interaction in SAW devices, IEEE Ultrasonics Symposium (2002)
    [2.24]M. Hofer, N. Finger, G. Kovacs, J. Schoberl, S. Zaglmayr, U. Langer, and R. Lerch, Finite-element simulation of wave propagation in periodic piezoelectric SAW structures, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,53,1192-1201 (2006)
    [2.25]T. Kannan, Finite Element Analysis of Surface Acoustic Wave Resonators, Master Thesis, University of Saskatchewan, (2006)
    [2.26]K. Bathe, Finite Element Procedures, Prentice-Hall, New Jersey (1996).
    [2.27]T. Hughes, The Finite Element Method, Prentice-Hall, New Jersey,1 edn. (1987).
    [2.28]O. Zienkiewicz, The Finite Element Method, McGraw-Hill, New York,4 edn. (1994).
    [2.29]S. C. Brenner, R. L. Scott, The Mathematical Theory of Finite Element Methods, Springer, New York (1994).
    [2.30]K.J. Bathe, Finite Element Procedures. New Jersey:Prentice Hall,1996.
    [2.31]R.C.Peach A General Green Function Analysis for SAW Devices IEEE Ultrasonics symposium pp.221-225(1995)
    [2.32]A,R,Baghai-Wadji,H.Reichinger,Green,s Function Applications in SAW-Devices,IEEE SU Proc.,pp.11-20,1991.
    [2.33]D.Qiao and P.M.Smith, Approximate Expressions for Generalized Green,s Function,IEEE Ultrasonics Symposium pp187-189 (1998)
    [2.34]邹小红,郭成海,史瑞雪化学传感器第20卷第3期2000
    [2.35]郝俊杰,徐廷献,声表面波用基片材料,硅酸盐通报2000第六期pp.32-36
    [3.1]苟永明,声表面波传感器原理及应用,传感器世界1998(10)pp17-22
    [3.2]秦树基,叶坚。酞菁气体传感器发展趋势。传感器技术23(3)2004
    [3.3]R.Lec,J.F.Velelino.ect.Macroscopic theory of surface acoustic wave gas microsensors.IEEE.Ultrasonics Symposium. pp.585-588(1988)
    [3.4]袁小平,国外声表面波传感器开发近况,压电与声光,17(4)1995。
    [3.5]许昌昆等人译,声表面波器件及其应用,科学出版社1984
    [4.1]H. Wohltjen and R. E. Dessy, Surface Acoustic Wave Probe for Chemical Analysis Ⅰ. Introduction and Instrument Description, Anal. Chem.[J],1979(51):1458-1475.
    [4.2]V.I.Anisimkin,I.M.Kotelyanskii,P.verardi, and E.Verona. "Elastic Properties of Thin-film palladium for SAW sensors",Sensors and Actuators[J],
    [4.3]A.J.Ricco,S.J.MartinA and T.E.Zipperian,surfaceacoustic wave gas sensor based on conductivity changes.sensors and actuators[J],1985(8):319-333.
    [4.4]李淑红,赵启大,廖同庆等,基于声表面波技术探测微量气体的理论分析,传感器与微系统.2008(8)pp.63-64.
    [4.5]J. W Grate, S J Patrash. Sensitive, selective chemical-sensing layers produced by plasma organic film technology [J].Anal. Chem,1996,68(5):913-917.
    [4.6]C Zimmermann, P Mazein, D Rebiere et al.Detection of GB ad DMMP vapors by love wave acoustic sensor using strong acidic fluride polymers[J], IEEE Sensors J.,2004,4(4):479-487.
    [4.7]J W Grate, M Klusty, R A McGill et al. The predominant role of swelling-induced modulus changes of the sorbant phase in determing the response of polymer-coated surface acoustic wave vapor sensors[J], Anal. Chem.,1992,64(6):610-624.
    [4.8]余道建,沈瑞琪.N02气体敏感材料,传感器技术,2001,20(4):1-4
    [4.9]殷焕顺,邓建成,周燕.酞菁在高新技术领域中的应用,精细化工中间体,2003(10):12-15.
    [4.10]Heilmann A, Muller M, Lantto V, et al. Gas sensitivity measurement on NO2 sensors based on lead phthalocyanine thin films. Sensors and Actuators B,1991,4(3-4):511-513.
    [4.11]Mockert H, Graf K, Ahmad Z A, et al. Characterization of gas sensitive lead phthalocyanine film surfaces by X-ray photoelectron spectroscopy. Sensors and Actuators B,1990,2(2): 133-141.
    [4.12]Campbell D, Collins R A. A study of the interaction between nitrogen dioxide and lead phthalocyanine using electrical conduction and optical absorption. Thin Solid Film,1997, 295(1-2):277-282.
    [4.13]赵湛,游幼.酞菁铜薄膜传感器的气敏特性.传感器技术,1993,(6):16-18
    [4.14]张彤,孙良彦,车吉泰.酞菁铜敏感材料的制备及其特性研究.传感技术学报,1995,(4):71-74.
    [4.15]Fedoruk G G, Sagaidak D I, Misevish A V, et al. Electrical and gas sensing properties of copper phthalocyanine-polymer composites. Sensors and Actuators B,1998,48(1-3): 351-355.
    [4.16]Capobinachi A, Paoletti A M, Pennesi G, et al. Effect of nitrogen dioxide on titanium bisphthalocyaninato thin film. Sensors and Actuators B,1998,48(1-3):333-338.
    [4.17]谢丹,蒋亚东,吴志明等.酞菁铜LB膜的制备及特性.传感器技术,1999,18(6):8-10.
    [4.18]Jin Z H, Jin Z L, Savinell R F, et al. [J]. Sensors and Actuators 1998,52(122):1882194
    [4.19]Williams G, ColesG S V.[J]. Journal of Materials Chemistry 1998,8(7):165721664.
    [4.20]Tanaka S, Esaka T. High Nox sensitivity of oxide thin films prepared by RF sputtering. Materials Research Bullitin,2000,35(14-15):2491-2502.
    [4.21]Chaturvedi A, Dwivedi R. Sricastaca S.K.et al. Selectivity&sensitivity studies on plasma treated thick film tin oxide gas sensors. Microelectronic Journal,2000,31 (4):283-290.
    [4.22]Larciprete R, DePadova P, Perfetti P.et al. "Organization films deposited by laser-induced CVD as active layers in chemical gas sensors. Thin Solid Films,1998,323(1-2):291-295.
    [4.23]张硕,周桢来,吴兴惠.低功耗CO敏感元件的研制.云南大学学报,1997,19(2):125-128.
    [4.24]Wei P.H, Zhao,S.Y, Chen L.R. et al. Gas-sensing properties of Th/SnO2 thin-film gas sensor to trimethylamine. Journal of the Electrochemical Society,1999,146(9):3536-3537.
    [4.25]Zhao S.Y, Chen L.R, Wei P.H. et al. Enhancement of trimethylamine sensitivity of MOCVD-SnO2thin film gas sensor by thorium. Sensors and Actuators 2000,62(2):117-120.
    [4.26]Sung J.H, Lim J.M, Hong Y.H. et al. Sensing characteristics of tin dioxide/gold sensor prepared by coprecipitation method. Sensors and Actuators,2000,66(1-3):149-152.
    [4.27]Katsuki A, Fukui K. H-2 selective gas sensor based on SnO2. Sensors and Actuators,1998, 52(1-2):30-37.
    [4.28]Teterycz H., Nitsch K, Wisniewski K. et al. Anomalous behavior of new thick film gas sensitive composition. Sensors and Actuators,1998,47(1-3):153-157.
    [4.29]黄泳,姜明,李锋等.Sn02基可燃气体陶瓷传感器.中国陶瓷,1998,34(1):27-29.
    [4.30]Comini E., Faglia G., Sberveglieri G. Light enhanced gas sensing properties of indium oxide &tin dioxide sensors. Sensors and Actuators,2000,65(1-3):260-263.
    [4.31]Malyshev V.V., Pislyakov A.V.. SnO2-based thick-film-resistive sensor for H2S detection in the concentration range of 1-10 mgm(-3). Sensors and Actuators,1998,47(1-3):181-188.
    [4.32]GosvhnickJ., Sommer M., Zudock F.et al. Depth profiling of non-conductive miultilayers with plasma-basedSNMS in HF-mode. Thin Solid Films,1998,332(1-2):215-219.
    [4.33]Sun L.Y., Quan B.F, Qiu F.B. Investigation of a new catalytic combustion-type CH4 gas sensor with low power consumption" Sensors and Actuators,2000,66(1-3):289-292.
    [4.34]赵全明.二氧化锡膜气敏传感器最新研究成果.传感器世界,2002.7.
    [4.35]氧化铟纳米材料及其在气体传感器中的应用。传感器世界,2006.5.
    [4.36]常剑,詹自力等人.In203基气敏材料的催化性能及敏感机理研究。电子元件与材料。26(9)2007.
    [4.37]Hu.J.Q,Zhu.F.R,Zhang J,.et al. A room temperature indium tinoxide/quartz crystal microbalance gas sensor for nitric oxide[J].Sens.Actuators.2003,B93:175-180
    [4.38]王承遇,王波,陶英等.用微波电子自旋共振等离子源离子注入增强溅射沉积法在玻璃表面制备氧化铟膜[J].硅酸盐通报。2000, (2):22-24
    [4.39]Ali.E.B,Maliki.H.E,Bemede.J.C,et.al.In2O3 deposited by reactive evaporation of indium in oxygen atmosphere influence of post-annealing treatment on optical and electrical properties[J].Mater.Chem.Phys.2002,73:78-85.
    [4.40]Jiao Z.Wu M.H,et al.The gas sensing characteristics of ITO thin film prepared by sol-gel method[J].Sensors and Actuatora.2003,B94:216-221.
    [4.41]Tang S.C.,Yao J.S.,et al.Preparation of indium tin oxide(ITO)with a single-phase structure[J].J.ma't'erProcess Technol.2003,137:82-85.
    [4.42]刘明朗,龚鸣明等.超精细氧化铟粉的研制[J].有色冶炼。1999,28(6):32-36.
    [4.43]程知萱等人.氧化铟纳米线的水热—退火合成及其N02气敏性能研究.传感技术学报。21(1)2008。
    [4.44]Belysheva T.V.,Kazachkov E.A.,Gutman E.E.,gas sensing propeties of In2O3 and Au-doped films for detecting carbon monoxide in air[J].J.Anal.Chem.2001,56(7):676-678.
    [4.45]Yamaura H.,Tamaki J.,et al.Selective CO detection by using indium Oxide-based semiconductor gas sensor[J].J.Electrochem.Soc.1996,143 (2):L36-L37.
    [4.46]Gurlo A.,Barsan N.,et al.Polycrystalline well-shaped blocks of indium oxide obtained by the sol-gel method and their gas sensing properties[J].Chem.Mater.2003,15:4377-4383.
    [4.47]M.Epifani,S.Capone,et al.In2O3 thin films obtained through a chemical complexation based sol-gel process and their application as gas sensor devices [J]. J.Sol-gel Sci.Technol.2003,26:741-744.
    [4.48]Faglia G.,Allieri B.,et al.Electrical and structural properties of RGTO-In2O3 sensors for ozone detection[J].Sens.Actuators.1999,B57:188-192。
    [4.49]Gurlo A.,IvanovskayaM.,et al.Grain size control in nanocrystalline In2O3 semiconductor gas sensors[J]Sebs.Actuators.1997,B44:327-333.
    [4.50]Jiao Z.,Wu h.,et al.The gas sensing characteristic of ITO thin film prepared by sol-gel method[J].Sens.Actuators.2003,B94:216-221.
    [4.51]Shukla S.,Seal S.,et al.Nanocrytalline indium oxide-doped tin oxide thin film as low temperature hydrogen sensor[J].Sens.Actuators.2004,B97:256-265.
    [4.52]Patel N.G.,Makhija K.K.,et al.Fabrication of semiconducting In2O3 nanofibers [J].Adv.Mater.2001,13(17):1330-1333.
    [4.53]蔡起善.声表面波传感器.四川压电与声光技术研究所
    [4.54]R.S.Falconer,R.Lec,J.F.Vetelino and Z.Xu. surface acoustic wave mercuryvapor sensors[J].IEEE Ultrasonics.Symposium.,1989:585-589
    [4.55]A.Rvgemer,S.Reiss.surface acoustic wave NO2 sensing using attenuatin as the measured sensor and Actuators B 56(1999)45-49.
    [5.1]刘长军.高频电子线路.北京:高等教育出版社,2004:114—137.
    [5.2]张肃温.射频通信电路设计.北京:高等教育出版社,2004:127—164.
    [5.3](日)森荣二.LC滤波器设计与制作

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700