汽液固多相流蒸发防除垢实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从理论和实验两个方面较深入研究了汽液固多相流态化技术对换热管中硫酸钙溶液结垢的影响,探讨了三相循环流化床蒸发器的防、除垢机理,对其防除垢和强化传热性能做了进一步考察,针对固体颗粒对硫酸钙结垢诱导期的影响进行了研究,并与不加入固体颗粒的实验结果进行了比较,同时对结垢诱导期的确定方法进行了改进。
     实验结果表明:惰性固体颗粒的加入不仅大大地延长了结垢诱导期,达到了防垢的目的,而且强化了传热,除垢效果明显。加入固体颗粒后的结垢诱导期要比未加颗粒的结垢诱导期延长将近5倍;加入固体颗粒浓度越大,传热效果越好;大粒径颗粒要比小粒径颗粒的传热效果好;加入的颗粒在较高速下要比低速情况下传热效果好。本文对结垢过程进行了理论分析,得出了不加固体颗粒和加入固体颗粒时硫酸钙结垢率的计算公式,数据显示,理论结果与实验结果比较吻合。
In this paper, further studies were carried out for the influence of CaSO4 fouling in heating tube through vapor-liquid-solid three-phase flow state technology on theory and experiment. The mechanisms of preventing and removing fouling were discussed in the vapor-liquid-solid three-phase circulating fluidized bed. The capability of preventing and removing fouling and enhancing the heat transfer were further reviewed. The influence of induction period of CaSO4 fouling from vapor-liquid-solid three-phase flow state technology was studied, and the result was compared with that of experiment without particle. The decided way of the induction period of fouling has been improved.
    The experimental results show that the induction period of fouling can be prolonged by adding particles, and solid particle can prevent fouling and enhance heat transfer. The induction period of fouling was lengthens to be nearly 5 times with solid particle than without particle. The more add particles, the more the effect of heat transfer was good. The effect of heat transfer was better when the diameter of particles was bigger. The effect of heat transfer was better in high speed than low speed with adding particles. The experiential equation of CaSO4 rate of mass deposited with particles and without particles was obtained from theoretic analysis to fouling. The agreement between predicted and measured results is excellent.
引文
1.伊王虞,传热面的结垢机理与阻垢剂阻垢作用机理的研究:[博士学位论文].北京:北京图书馆,1996
    2.程立新,杨杰辉.换热设备防垢技术进展.石油化工设备,2000,29(4):22-25
    3. Chandler, J. L. The effect of supersaturation and flow conditions on the initiation of scale formation. Trans. Inst. Chem. Engrs, 1962, 42: 24-34
    4. Andritsos N, Kontopoulou M, Karabelas A J. Koutsoukos P G. Can J of Chem Eng, 1996, 74(6): 911
    5. Hasson, D. Zahavi, J. Mechanism of calcium sulfate scale deposition on heat transfer surfaces, I&EC Fundamentals 1993, 9: 1-10
    6. Ritter, R. B. Crystalline fouling studies. ASME. J, Heat Transfer 1994, 105: 374-378
    7. Story M K. Surface temperature effects on the fouling characteristic of cooling water: [M. S. Thesis]. USA: Oregon State University, 1975
    8.王睿,丁洁,沈自求.换热设备的结垢机理研究现状.化工进展,1999,3:31-35
    9. S. H. Najibi, H. Mller-Steinbagen, M. Jamialahmadi. Calcium sulphate scale formation during subcooled flow boiling. Chemical Engineering Science, 1997, 52(8): 1265-1284
    10. Amedeo Lancia, Dino Musmarra, Marina Prisciandaro. Measuring Induction Period Calcium Sulfate Dihydrate Precipitation. AIChE Journal, 1999, 2
    11.李修伦,刘绍丛.汽液固三相流化床沸腾传热的研究.化工学报,1995,46(1):117~122
    12.李修伦,闻建平.三相流沸腾传热.高校化学工程学报,1995,9(4):326~331
    13.李修伦,闻建平.垂直管内三相流沸腾传热特性.化学工程,1995,23(4):50~54
    14.杨善让,徐志明.换热设备的污垢与对策.北京:科学出版社,(1995).17-18,124-131
    15. J. Taborek, T. aoki. fouling: The Major Unresolved Problem in Heat Transfer. Chem. Eng. Prog., 1972, 68(7): 69~78
    16. S. K. Beal, Deposition of Particles in Turbulent Flow on Channel or Pipe Walls. Nucl. Sci. Eng., 1970, 40: 1~11
    17. J. M. Bartlett. U. S. Atomic Energy Commission Report. BNWL 676, 1968, 5
    18.钟宏伟,张少峰.乳酸蒸发中CaSO_4的结垢机理.天津市化工过程及设备技术研究会,2001.11,146~149.
    19.天津化工研究院.无机盐工业手册(下册).第2版.北京:化学工业出版社,1996.209-210
    20.张少峰.三相循环硫化床蒸发器防除垢和强化沸腾传热的研究.[博士学位论文].天津:天津大学研究生院,2000
    21. F. G. Baryakhtar, R K. Knizhenkov. Experience in Using Current Reversal in Electrochemical Cleaning Metals of Dielectric Coatings. Soviet Surface Engineering and Applied Electrochemistry, 1988, 113~114
    
    
    22.刘天庆.换热表面防垢新方法的研究.表面技术,1993,2(5):214
    23. M. N. Mar. Enhanced Protein Binding on a Surface Plaomom Resomance Sensor Using a Plasma Deposited Functionalization Film. Proc. of the Int. Society for Optical Eng. 1995, 4: 2388
    24. S. M. Jackson, E. B. G. Tones. Fouling Film Development on Anti-fouling Paints with Special Reference to Thickness. International Biodeterioration, 1988, 24(4~5): 277~287
    25. W. J. Frederick, T. M. Grace. Analysis of Scaling in Black Liquor Evaporator. AICHE Symp. Ser., 1979, 42(8): 22-24
    26. B. Hultman. Inhibition of Calcium Daxait Deposit in a Sulfate Mill by Addition of Alumilum sulfate, Svensk Papperstldming, 1981, 84(18): 163~168
    27.时钧,汪家鼎.化学工业工程手册(上).第2版.北京:化学工业出版社,1996
    28.胡修慈.外沸式蒸发器的循环计算.河北工学院学报,1980,4:56
    29.赵景利.L型蒸发器的设计计算与应用.河北工业大学学报,1997,26(4):26~29
    30. S. G. Yiantaios, S. G Karabelas. Fouling of Tube Surfaces Modeling of Removal Kinetics. AICHEJ. 1994, 40 (11): 1804~1813
    31. P. Walker. on-line Automatic Tube Cleaning. Engineering Systems, 1994, 10: 58~62
    32. M. Hull and J. A. Kitchener. Interaction of Spherical Colloidal Particles with Planar Surfaces. Trans. Faraday Soc., 1969, 65: 3093
    33. Muller-Steinhagen H. Particulate Fouling for Low-finned Tubes and for Plate Heat Exchangers. Paper Delivered at International Conference on Fouling in Process Plant, Oxford, 1988.
    34. Sheikholeslami R, Watkinson A P. Scaling of Plain and Externally Finned Heat Exchanger Tubes. Heat Transfer, 1986, 108(1): 147~152
    35. Watkinson A P, Louis L. Brent R. Scaling of Enhanced Heat Exchanger Tubes. Can. J. Chem. Eng. 1974, 52(5): 558-562
    36. Webb R L, Kim N-H. Particulate Fouling in Enhanced Tubes. Paper Presented at the 1989 National Heat Transfer Conference, Philadelphia, 1989
    37. Muller-Steinhagen H, Zhao Q, Reiss M. Ion Implantation—a New Method Of Preparing Low Fouling Metal Surfaces. Engineering Foundation Conf—Understanding Heat Exchanger Fouling and its Mitigation. Italy, 1997
    38. Cheng Lixin, Yang Jiehui. a New Treated Surface for Achieving Dropwise Condensation. J. Enhanced Heat Transfer, 1998, 6(1): 1~8
    39. Cho. Y I, Choi B G. Electronic Anti-Fouling Technology to Mitigate Precitation Fouling in Plate and Framement Exchangers. Int. J. Heat Mass Transfer, 1998, 41(17): 2565~2571
    40. I. D. Gabor, ANS Fast Reactor Safety Meeting, Los Angeles CA 1970
    41. V. Dhir and L. Cattor. ASM J. of Heat Transfer, 1977, 99: 250
    42. S. W. Jone, Ph. D., Dissertation North Western University Evanston I. L. 1982
    43.张利斌,李修伦.三相循环流化床中沸腾传热特性.化工学报,1999,50(2):208~214
    44.邹克华.三相流循环流化床流动沸腾传热和压降的研究:[硕士学位论文).天津:天津大学研究生院,
    
    1999
    45.于志家,慕旭宏.气-液-固三相流载气蒸发传热研究.工程热物理学报,1993,14(3):305~308
    46.天津市制盐工业研究所.海盐工业分析,北京:燃料化学工业出版社,1973.103-104
    47.杨祖荣.蒸发器中结垢速率研究.化工学报,1992,43(2):154~159
    48. Chen, J, C. Correlation for boiling heat transfer to saturated fluids in convective flow. Ind. Eng. Chem, Process Design and Development, 1966: 5~322

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700