不对称催化合成手性3,3'-氮环螺环氧化吲哚
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手性3, 3′-氮环螺环氧化吲哚结构单元是大量生物碱和生物活性分子的核心部分。一方面,这些天然产物奇特的结构使它们成为有机化学家的合成目标;另一方面,药物化学家根据天然产物设计新的分子以期发现新的药物分子。因此发展高效合成这类分子的不对称方法学有重要意义。本文主要介绍了利用两种不对称催化的方法直接或间接构建手性3, 3′-氮环螺环氧化吲哚体系。
     不对称催化1,3-偶极环加成反应是构建结构多样的四氢吡咯衍生物的重要方法,但双取代端烯参与的1,3-偶极环加成反应研究很少。本文报道了手性布朗斯特酸催化的亚胺叶立德和双取代端烯之间的1, 3-偶极环加成反应,高选择性的得到手性的四氢吡咯环。我们将得到的多取代手性四氢吡咯化合物通过硝基还原/分子内内酰胺化得到手性3, 3′-四氢吡咯螺环氧化吲哚,实现了两个spirotryprostatin A的非对映异构体的全合成。通过生物测试发现对于MD MBA468乳腺癌细胞,两个异构体和天然产物表现出相当的生物活性,由此推测绝对构型(C9和C18)不是该系列分子构效关系的关键因素。
     将金属催化和有机小分子催化结合发展新的有价值的反应已经成为有机转化很有潜力的策略。该策略还有节约能源,减少溶剂排放等绿色化学优点,引起有机化学家们的广泛注意。本文首次实现了用有机小分子和金属配合物结合的方法催化制备了手性3, 3′-四氢哌啶螺环氧化吲哚。反应首先发生3-取代氧化吲哚和亚胺的Mannich反应,然后在对甲苯磺酸的协助下由金(I)催化发生分子内氨化关环。系统研究发现由1,2-二苯乙二氨衍生的催化剂5.5e和PPh3AuNTf2是该反应的最佳催化剂。该反应能够得到中等的收率和最高达97%的对映选择性。
The chiral spiro[nitrogencycle-3,3'-oxindole] unit constitutes a core structural element prevalent in a large family of natural products or biological active molecules On one hand, the unique structure of these natural compounds has attracted much attention from synthetic chemists; on the other hand, the significant biological activity has intrigued intense interest in the development of biologically promising analogues with improved efficiency and selectivity. Catalytic asymmetric methods to access these compounds would be highly valuable. In this manuscript, we have developed two new approaches for catalytic asymmetric synthesis of optically active derivatives containing the spiro[nitrogencycle-3,3'-oxindole] unit, respectively.
     The asymmetric 1, 3-dipolar cycloaddition of azomethine ylides to alkene represents an efficient and atom-economic method for enantioselective synthesis of pyrrolidine derivatives. However, methyl 2-(2-nitrophenyl)acrylate and its analogues were seldom successfully involved in highly enantioselective catalytic variants. In this manuscript, we have described a chiral Br?nsted acid-catalyzed 1,3-dipolar cycloaddition reaction of methyl 2-(2-nitrophenyl)acrylate with azomethine ylides, yielding highly enantioenriched pyrrolidine derivatives, which can be readily transformed to spiro[pyrrolidin-3,3'-oxindole] unit by easily operative reactions. The methodology holds great potential in total synthesis as demonstrated by its applications to the synthesis of diastereoisomers of spirotryprostatin A. The biological evaluation suggested that the configuration of the stereogenic center of spirooxindole (C9 and C18) was not the key element affecting the anti-cancer biological activity of spirotryprostatin alkaloids.
     The concept of combining transition metal catalysis and organocatalysis has emerged as a promising strategy for developing new and valuable reactions, and has attracted considerable attention as it hold great potential in the creation of new transformations, which each type of catalysts failed to afford alone. The strategy also provides a powerful tool for saving both energy and resources. In this manuscript, we have presented a highly enantioselective synthesis of spiro[4H-pyrilindin-3,3'-oxindole] derivatives via Mannich reaction of 3-substituted oxindoles and N-Boc-imines followed by intramolecular hydroamination catalyzed by a gold(I) complex with the assistance of a Br?nsted acid additive in one pot. Through systemic study, we found that the combined catalysts with a chiral 1,2- diphenylethylene-diamine skeleton 5.5e and PPh3AuNTf2 were the best catalysts of the reaction. Under the optimized reaction conditions, middle yield and excellent levels of enantioselectivity could be obtained.
引文
[1]杨秀伟.2005.生物碱:化学工业出版社.
    [2]王锋鹏.2008.生物碱化学:化学工业出版社.
    [3] Bindra, J. S. in: The Alkaloids (Ed.: R. H. F. Manske), Academic Press, New York, 1973, vol. 14, p. 84-121.
    [4] Marti, C.; Carreira, E. M. Construction of Spiro[pyrrolidine-3,3--oxindoles] - Recent Applications to the Synthesis of Oxindole Alkaloids. Eur. J. Org. Chem. 2003, 2209-2219.
    [5] Galliford, C. V.; Scheidt, K. A. Pyrrolidinyl-Spirooxindole Natural Products as Inspirations for the Development of Potential Therapeutic Agents. Angew. Chem., Int. Ed. 2007, 46, 8748-8758.
    [6]尤启东,林国强.2003.手性药物-研究与应用:化学工业出版社.
    [7] Brown, R. T. in: Heterocyclic Compounds (Ed.: J. E. Saxon), Wiley Interscience, New York, 1983, vol. 25, part 4, p. 85-97.
    [8] Wenkert, E.; Udelhofen, J. H.; Bhattacharyya, N. K. 3-Hydroxymethyleneoxindole and its Derivatives. J. Am.Chem. Soc. 1959, 81, 3763-3768.
    [9] von Nussbaum, F.; Danishefsky, S. J. A Rapid Total Synthesis of Spirotryprostatin B: Proof ofIts Relative and Absolute Stereochemistry. Angew. Chem. Int. Ed.2000, 39, 2175-2178.
    [10] Pellegrini, C.; Str?ssler, C.; Weber, M.; Borschberg, H. J. Synthesis of the Oxindole Alkaloid (-)-Horsfiline. Tetrahedron: Asymmetry 1994, 5, 1979-1992.
    [11] Edmondson, S. D.; Danishefsky, S. J. The Total Synthesis of Spirotryprostatin A. Angew. Chem. Int. Ed. 1998, 37, 1138-1140.
    [12] Edmondson, S. D.; Danishefsky, S. J.; Sepp-Lorenzino, L.; Rosen, N. Total Synthesis of Spirotryprostatin A, Leading to the Discovery of Some Biologically Promising Analogues. J. Am. Chem. Soc. 1999, 121, 2147-2155.
    [13] Wang, H. S.; Ganesan, A. A Biomimetic Total Synthesis of (?)-Spirotryprostatin B and Related Studies. J. Org. Chem. 2000, 65, 4685-4693.
    [14] Takayama, H.; Masubuchi, K.; Kitajima, M.; Aimi, N.; Sakai, S. A biomimetic construction of humantenine skeleton. Tetrahedron 1989, 45, 1327-1336.
    [15] Wearing,X. Z.; Cook,J. M. Enantiospecific, Stereospecific Total Synthesis of the Oxindole Alkaloid Alstonisine.Org. Lett. 2002, 4, 4237-4240.
    [16] a) Miyake, F.; Yakushijin, Y. K.; Horne. D. A. Preparation and Synthetic Applications of 2-Halotryptamines: Synthesis of Elacomine and Isoelacomine. Org. Lett. 2004, 6, 711-713. b) Miyake, F. Y.; Yakushijin, K.; Horne, D. A. Preparation and Synthetic Applications of 2- Halotryptophan Methyl Esters: Synthesis of Spirotryprostatin B. Angew. Chem., Int. Ed. 2004, 43, 5357-5360. c) Miyake, F.; Yakushijin,Y.; K. Horne. D. A.. A Concise Synthesis of Spirotryprostatin A.Org. Lett. 2004, 6, 4249-4251.
    [17] Grigg, R.; Aly, M. F.; Sridharan, V.; Thianpatanagul, S. Decarboxylative Transamination. A New Route to Spirocyclic and Bridgeheadnitrogen Compounds. Relevance to a-Amino Acid Decarboxylases J. Chem. Soc. Chem. Commun. 1984, 182-183.
    [18] a) Palmisano, G.; Annunziata, R.; Papeo, G.; Sisti, M. Oxindole Alkaloids. A Novel Non-biomimetic Entry to (-)-Horsfiline. Tetrahedron: Asymmetry 1996, 7, 1-4. b) Cravotto, G.; Giovenzani, G. B.; Pilati, T.; Sisti, M.; Palmisano, G. Azomethine Ylide Cycloaddition/Reductive Heterocyclization Approach to Oxindole Alkaloids: Asymmetric Synthesis of (-)-Horsfiline. J. Org. Chem. 2001, 66, 8447-8453.
    [19] a) Sebahar, P. R.; Williams. R. M. The Asymmetric Total Synthesis of (+)- and (?)-Spirotryprostatin B. J. Am. Chem. Soc. 2000, 122,5666-5667; b) Sebahar, P. R.; Osada, H.; Williams, R. M. Asymmetric, stereocontrolled total synthesis of (+) and(-)-spirotryprostatin B via a diastereoselective azomethine ylide [1,3]-dipolar cycloaddition reaction. Tetrahedron 2002, 58, 6311-6322;
    [20] Lo, M. M.-C.; Neumann,C. S.; Nagayama, S.; Perlstein, E. L.Schreiber, O. S. A Library of Spirooxindoles Based on a Stereoselective Three-Component Coupling Reaction. J. Am. Chem. Soc. 2004, 126, 16077– 16086.
    [21] Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Qiu, S.; Ding, Y.; Gao, W.; Stuckey, J.; Krajewski, K.; Roller, P. P.; Tomita, Y.; Parrish, D. A.; Deschamps, J. R.; Wang. S. Structure-Based Design of Potent Non-Peptide MDM2 Inhibitors. J. Am. Chem. Soc. 2005, 127, 10130 -10131
    [22] a) Overman, L. E.; Rosen, M. D. total synthesis (-)-spirotryprostatin B and three stereoisomers. Angew. Chem., Int. Ed. 2000, 39, 4596-4599. b) Overman, L. E.; Rosen, M. D. Terminating catalytic asymmetric Heck cyclizations by stereoselective intramolecular capture of h3-allylpalladium intermediates: total synthesis (-)-spirotryprostatin B and three stereoisomers. Tetrahedron 2010, 66, 6514 - 6525;
    [23] a) Lakshmaiah, G.; Kawabata, T.; Shang, M. H.; Fuji, K. Total Synthesis of (?)-Horsfiline via Asymmetric Nitroolefination. J. Org.Chem. 1999, 64, 1699-1704. b) T. D. Bagul, G. Lakshmaiah, T. Kawabata, K. Fuji, Total Synthesis of Spirotryprostatin B via Asymmetric Nitroolefination Org. Lett.2002, 4, 249-251.
    [24] a) Alper, P. B.; Meyers, C.; Lerchner, A.; Siegel, D. R.; Carreira, E. M. Facile, Novel Methodology for the Synthesis of Spiro[pyrrolidin-3,3'-oxindoles]: Catalyzed Ring Expansion Reactions of Cyclopropanes by AldiminesAngew. Chem., Int. Ed. 1999, 38, 3186-3189. b) Meyers, C.; Carreira, E. M. Total Synthesis of (-)-Spirotryprostatin B. Angew. Chem. Int. Ed. 2003, 42, 694-696. c) Marti C and Carreira E M. Total Synthesis of (-)-Spirotryprostatin B: Synthesis and Related Studies. J. Am. Chem. Soc. 2005, 127, 11506– 11515.
    [25] a) Trost, B. M.; Brennan, M. K. Palladium Asymmetric Allylic Alkylation of Prochiral Nucleophiles: Horsfiline. Org. Lett. 2006, 8, 2027-2030. b) Trost, B. M. and Stiles, D. T. Total Synthesis of Spirotryprostatin B via Diastereoselective Prenylation. Org. Lett., 2007, 9, 2763-2766.
    [26] Chen, X.-H.; Wei, Q.; Luo,S.-W.; Xiao, H. Gong, L.-Z. Organocatalytic Synthesis of Spiro[pyrrolidin-3,3′-oxindoles] with High Enantiopurity and Structural Diversity. J. Am. Chem. Soc. 2009, 131, 13819-13825.
    [27] Antonchick. A.P.; Gerding-Reimers. C.; Catarinella. M.; Schürmann. M.; Preut. H.; Ziegler. S.; Rauh. D.; Waldmann. H. Highly enantioselective synthesis and cellular evaluation of spirooxindoles inspired by natural products. Nature Chem. 2010, 2, 735-740.
    [28] Liu,T-L.; Xue, Z-Y.; Tao, H-Y. and Wang C-J. Catalytic asymmetric 1,3-dipolar cycloaddition of N-unprotected 2-oxoindolin-3-ylidene derivatives and azomethine ylides for the construction of spirooxindole-pyrrolidines. Org. Biomol. Chem., 2011, 9, 1980–1986
    [29] Jiang, K.; Jia, Z.-J.; Wu, L.; Chen, Y.-C. Organocatalytic Tandem Reaction to Construct Six-Membered Spirocyclic Oxindoles with Multiple Chiral Centres through a Formal [2+2+2] Annulation. Chem. Eur. J. 2010, 16, 2852.
    [30] Reddy, V. J. and Douglas, C. J.Highly Enantioselective Intramolecular Cyanoamidation: (+)-Horsfiline, (-)-Coerulescine, and (-)-Esermethole. Org. Lett., 2010, 12, 952–955.
    [1] For reviews about pyrrolidine derivatives, see: (a) Sardina, F. J.; Rapoport, H. Enantiospecific Synthesis of Heterocycles fromα-Amino Acids[J]. Chem. Rev. 1996, 96, 1825-1872. (b) Gothelf, K. V.; Jorgensen, K. A. Asymmetric 1,3-Dipolar Cycloaddition Reactions[J]. Chem. Rev. 1998, 98, 863-909. (c) Felpin, F. X.; Lebreton, J. Recent Advances in the Total Synthesis of Piperidine and Pyrrolidine Natural Alkaloids with Ring-Closing Metathesis as a Key Step[J]. Eur. J. Org. Chem. 2003, 19, 3693-3712. (d) Pearson, W. H.; Stoy, P. Cycloadditions of Nonstabilized 2-Azaallyllithiums (2-Azaallyl Anions) and Azomethine Ylides with Alkenes: [3+2] Approaches to Pyrrolidines and Application to Alkaloid Total Synthesis[J]. Synlett. 2003, 903-921. (e) Coldham, I.; Hufton, R. Intramolecular Dipolar Cycloaddition Reactions of Azomethine Ylides[J]. Chem. Rev. 2005, 105, 2765-2809. (f) Pandey, G.; Banerjee, P.; Gadre, S. R. Construction of Enantiopure Pyrrolidine Ring System via Asymmetric [3+2]-Cycloaddition of Azomethine Ylides[J]. Chem. Rev. 2006, 106, 4484-4517.
    [2] For highlights, see: Nájera, C.; Sansano, J. M. Catalytic Enantioselective 1,3-Dipolar Cyclo- addition Reaction of Azomethine Ylides and Alkenes: The Direct Strategy To Prepare Enantioenriched Highly Substituted Proline Derivatives.Angew. Chem. Int. Ed. 2005, 44, 6272-6276.
    [3] (a) Denhart, D. J.; Griffith, D. A.; Heathcock, C. H. Synthesis of the Tricyclic Core of Sarain A. Use of Formaldehyde in an Intramolecular Grigg Azomethine Ylide Cyclization[J]. J. Org. Chem. 1998, 63, 9616-9617. (b) Garner, P.; Cox, P. B.; Anderson, J. T.; Protasiewicz, J.; Zaniewski, R. Use of Silicon-Based Tethers to Control Diastereofacial Selectivity in Azomethine Ylide Cycloadditions[J]. J. Org. Chem. 1997, 62, 493-498. (c) Garner, P.; Kaniskan, H. U.; Hu, J.; Youngs, W. J.; Panzner, M. Asymmetric Multicomponent [C+NC+CC] Synthesis of Highly Functionalized Pyrrolidines Catalyzed by Silver(I) [J]. Org. Lett. 2006, 8, 3647-3650. (d) Kaniskan, H. U.; Garner, P. An Efficient Synthetic Approach to Cyanocycline A and Bioxalomycinβ2 via [C+NC+CC] Coupling[J]. J. Am. Chem. Soc. 2007, 129, 15460-15461.
    [4] Padwa, A.; Chen, Y.-Y.; Chlacchio, U.; Dent, W. Diastereofacial Selectivity in Azomethine Ylide Cycloaddition Reactions Derived From Chiralα-Cyanoaminosilanes[J]. Tetrahedron 1985, 41, 3529-3535.
    [5] (a) Allway, P.;Grigg, R. Chiral Co(I1) and Mn(I1) Catalysts for the 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides Derived from Arylidene Imines of Glycine[J]. Tetrahedron Lett. 1991, 32, 5817-5820. (b) Grigg, R. Asymmetric Cascade 1,3-Dipolar CycloadditionReactions of Imines[J]. Tetrahedron: Asymmetry 1995, 6, 2475-2486.
    [6] Longmire, J. M.; Wang, B.; Zhang, X. Highly Enantioselective Ag(I)-Catalyzed [3 + 2] Cyclo- addition of Azomethine Ylides[J]. J. Am. Chem. Soc. 2002, 124, 13400- 13401.
    [7] Chen, C.; Li, X.; Schreiber, S. L. Catalytic Asymmetric [3+2] Cycloaddition of Azomethine Ylides. Development of a Versatile Stepwise, Three-Component Reaction for Diversity- Oriented Synthesis[J]. J. Am. Chem. Soc. 2003, 125, 10174 -10175.
    [8] Kn?pfel, T. F.; Aschwanden, P.; Ichikawa, T.; Watanabe, T.; Carreira, E. M. Readily Available Biaryl P, N Ligands for Asymmetric Catalysis[J]. Angew. Chem., Int. Ed. 2004, 43, 5971-5973.
    [9] Alemparte, C.; Blay, G.; J?rgensen, K. A. A Convenient Procedure for the Catalytic Asymm- etric 1,3-Dipolar Cycloaddition of Azomethine Ylides and Alkenes[J]. Org Lett. 2005, 7, 4569-4572.
    [10] Stohler, R.;Wahl, F.; Pfaltz, A. Enantio- and Diastereoselective [3+2] Cycloadditions of Azomethine Ylides with Ag(I)-Phosphinooxazoline Catalysts[J]. Synthesis. 2005, 1431.
    [11] Zeng, W.; Zhou, Y. G. Bifunctional AgOAc-Catalyzed Asymmetric [3 + 2] Cycloaddition of Azomethine Ylides[J]. Org. Lett. 2005, 7, 5055-5058.
    [12] Zeng, W.; Chen, G. Y.; Zhou, Y. G.; Li, Y. X. Hydrogen-Bonding Directed Reversal of Enantioselectivity[J]. J. Am. Chem. Soc. 2007, 129, 750-751.
    [13] Zeng, W.; Zhou, Y. G. AgOAc catalyzed asymmetric [3+2] cycloaddition of azomethine ylides with chiral ferrocene derived P,S ligands[J]. Tetrahedron Lett. 2007, 48, 4619-4622.
    [14] (a) Nájera, C.; Gracia Retamosa, M. D.; Sansano, J. M. Catalytic Enantioselective 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides and Alkenes by Using Phos- phoramidite–Silver(I) Complexes[J]. Angew. Chem., Int. Ed. 2008, 47, 6055- 6058. (b) Nájera, C.; Gracia Retamosa, M. D.; Martín-Rodríguez, M.; Sansano, J. M. Cózar, A. D.; Cossio, F. P. Synthesis of Prolines by Enantioselective 1,3-Dipolar Cycloaddition of Azomethine Ylides and Alkenes Catalyzed by Chiral Phosphoramidite-Silver(I) Complexes[J]. Eur. J. Org. Chem. 2009, 5622-5634.
    [15] Yu, S, B.; Hu, X. P.; Deng, J.; Wang, D. Y.; Duan, Z. C.; Zheng, Z. Enantioselective Ag(I)- catalyzed [3+2] cycloaddition of azomethine ylides using a chiral ferrocene-based phosphine–phosphoramidite ligand having a stereogenic P-center[J]. Tetrahedron: Asymmetry 2009, 20, 621-625.
    [16] (a) Wang, C. J.; Xue, Z. Y.; Liang, G.; Lu, Z. Highly enantioselective 1,3-dipolar cycloaddition of azomethine ylides catalyzed by AgOAc/TF- BiphamPhos[J]. Chem Commu. 2009, 2905-2907. (b) Xue, Z. Y.; Liu, T. L.; Lu, Z.; Huang, H.; Tao, H. Y.; Wang, C. J.exo-Selective asymmetric 1,3-dipolar cycloaddition of azomethine ylides with alkylidene malonates catalyzed by AgOAc/TF-BiphamPhos[J]. Chem Commu. 2010, 46, 1727-1729. (c) Liang, G.; Tong, M. C.; Wang, C. J. Silver Acetate/TF-BiphamPhos- Catalyzed endo-Selective Enantioselective 1,3-Dipolar Cycloaddition of Azomethine Ylides with Vinyl Phenyl Sulfone[J]. Adv Syn & Catal. 2009, 351, 3101-3106.
    [17] Kim, H. Y.; Shih, H. J.; Knabe, W. E.; Oh, K. Reversal of Enantioselectivity between the Copper(I)- and Silver(I)-Catalyzed 1,3-Dipolar Cycloaddition Reactions Using a Brucine- Derived Amino Alcohol Ligand[J]. Angew.Chem., Int. Ed. 2009, 48, 7420-7423.
    [18] Oderaotoshi, Y.; Cheng, W.; Fujitomi, S.; Kasano, Y.; Minakata, S.; Komatsu, M. exo- and Enantioselective Cycloaddition of Azomethine Ylides Generated from N-Alkylidene Glycine Esters Using Chiral Phosphine-Copper Complexes[J]. Org. Lett. 2003, 5, 5043-5046.
    [19] Gao, W.; Zhang, X.; Raghunath, M. Cu(I)-Catalyzed Highly Exo-selective and Enantioselec- tive [3 + 2] Cycloaddition of Azomethine Ylides with Acrylates[J]. Org.Lett. 2005, 7, 4241- 4244.
    [20] (a) Cabrera, S.; Arrayás, R. G.; Carretero, J. C. Highly Enantioselective Copper(I)- Fesulphos-Catalyzed 1,3-Dipolar Cycloaddition of Azomethine Ylides[J]. J. Am. Chem. Soc. 2005, 127, 16394-16395. (b) Llamas, T.; Arrayás, R. G.; Carretero, J. C. Catalytic Enantioselective 1,3-Dipolar Cyclo- addition of Azomethine Ylides with Vinyl Sulfones[J]. Org Lett. 2006, 8, 1795-1798. (c) López-Pérez, A.; Adrio, J.; Carretero, J. C. Bis-Sulfonyl Ethylene as Masked Acetylene Equivalent in Catalytic Asymmetric [3 + 2] Cycloaddition of Azomethine Ylides[J]. J. Am. Chem. Soc. 2008, 130, 10084-10085. (d) Hernández-Toribio, J.; Arrayás, R. G.; Martín-Matute, B.; Carretero, J. C. Catalytic Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides withα,β-Unsaturated Ketones[J]. Org. Lett. 2009, 11, 393-396.
    [21] Yan, X. X.; Peng, Q.; Zhang, Y.; Zhang, K.; Hong, W.; Hou, X. L.; Wu, Y. D. A Highly Enantio- and Diastereoselective Cu-Catalyzed 1,3-Dipolar Cycloaddition ofAzomethine Ylides with Nitroalkenes[J]. Angew. Chem., Int. Ed. 2006, 45, 1979- 1983.
    [22] (a) Wang, C. J.; Liang, G.; Xue, Z. Y.; Gao, F. Highly Enantioselective 1,3-Dipolar Cyclo- addition of Azomethine Ylides Catalyzed by Copper(I)/TF- BiphamPhos Complexes[J]. J. Am. Chem. Soc. 2008, 130, 17250-17251.
    [23] Fukuzawa, S, I.; Oki, H. Highly Enantioselective Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylide Catalyzed by a Copper(I)/ClickFerrophos Complex[J]. Org. Lett. 2008, 10, 1747-1750.
    [24] (a) Pérez, A. L.; Adrio, J. Carretero, J. C. The Phenylsulfonyl Group as a TemporalRegiochemical Controller in the Catalytic Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides[J]. Angew. Chem., Int. Ed. 2009, 48, 340. (b) Machīn, R. R.; Esguevillas, M. G.; Adrio, J.; Carretero, J. C. Cu-Catalyzed Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides withβ-Phenylsulfonyl Enones.Ligand Controlled Diastereoselectivity Reversal[J]. J. Org. Chem. 2010, 75, 233-236.
    [25] Gothelf, A. S.; Gothelf, K. V.; Hazell, R. G.; J?rgensen, K. Catalytic Asymmetric 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides–A Simple Approach to Optically Active Highly Functionalized Proline Derivatives[J]. Angew.Chem., Int. Ed. 2002, 41, 4236-4238.
    [26] Dogan, O.; Koyuncu, H.; Garner, P.; Bulut, A.; Youngs, W. J.; Panzner, M. New Zinc(II)- Based Catalyst for Asymmetric Azomethine Ylide Cycloaddition Reactions[J]. Org Lett. 2006, 8, 4687-4690.
    [27] Saito, S.; Tsubogo, T.; Kobayashi, S. Chiral Calcium Complexes as Br?nsted Base Catalysts for Asymmetric Addition ofα-Amino Acid Derivatives toα,β-Unsaturated Carbonyl Compounds[J]. J. Am. Chem. Soc. 2007, 129, 5364-5365. (b) Tsubogo, T.; Saito, S.; Seki, K.; Yamashita, Y., Kobayashi, S. Development of Catalytic Asymmetric 1,4-Addition and [3 + 2] Cycloaddition Reactions Using Chiral Calcium Complexes[J]. J. Am. Chem. Soc. 2008, 130, 13321-13332.
    [28] Shi, J. W.; Zhao, M. X.; Lei, Z. Y.; Shi, M. Axially Chiral BINIM and Ni(II)-Catalyzed Highly Enantioselective 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides and N-Arylmal- eimides[J]. J. Org Chem. 2008, 73, 305-308.
    [29] Vicario, J. L.; Reboredo, S.; Bad?a, D.; Carrillo, L. Organocatalytic Enantioselective [3+2] Cycloaddition of Azomethine Ylides andα,β-Unsaturated Aldehydes[J]. Angew.Chem. Int. Ed. 2007, 46, 5168.
    [30] Ibrahem, I.; Rios, R.; Vesely, J.; Córdova, A. Organocatalytic asymmetric multi-component [C+NC+CC] synthesis of highly functionalized pyrrolidine derivatives[J]. Tetrahedron Lett. 2007, 48, 6252-6257.
    [31] Xu, M. X.; Zhang, X. M.; Gong, L. Z. The first organocatalytic enantio- and diastereoselective 1, 3-diplor cycloaddition of azomethine ylides with nitroalkens[J]. Synlett 2008, 691.
    [32] Liu, Y. K.; Liu, H.; Du, W.; Yue, L.; Chen, Y. C. Reaction Control in the Organocatalytic Asymmetric One-Pot, Three-Component Reaction of Aldehydes, Diethylα-Aminomalonate and Nitroalkenes: Toward Diversity-Oriented Synthesis[J]. Chem. Eur. J. 2008, 14, 9873-9877.
    [33] Chen, X. H.; Zhang, W. Q.; Gong, L. Z. Asymmetric Organocatalytic Three-Component 1,3-Dipolar Cycloaddition: Control of Stereochemistry via a Chiral Br?nsted Acid Activated Dipole[J]. J. Am. Chem. Soc. 2008, 130, 5652-5653.
    [34] (a) Liu, W. J.; Chen, X. H.; Gong, L. Z. Direct Assembly of Aldehydes, Amino Esters, and Anilines into Chiral Imidazolidines via Br?nsted Acid Catalyzed Asymmetric 1,3-Dipolar Cycloadditions[J]. Org Lett. 2008, 10, 5357-5360.(b) Yu, J.; He, L.; Chen, X. H.; Song, J.; Chen, W. J.; Gong, L. Z. Highly Enantioselective Catalytic 1,3-Dipolar Cycloaddition Involving 2,3-Allenoate Dipolarophiles[J]. Org Lett. 2009, 11, 4946-4949. (c) Chen, X. H.; Wei, Q.; Luo, S. W.; Xiao, H.; Gong, L. Z. Organocatalytic Synthesis of Spiro [pyrrolidin-3,3′-oxindoles] with High Enantiopurity and Structural Diversity[J]. J. Am. Chem. Soc. 2009, 131, 13819-13825. (d) Wang, C.; Chen, X. H.; Zhou, S. M.; Gong, L. Z. Asymmetric organocatalytic formal double-arylation of azomethines for the synthesis of highly enantio- merically enriched isoindolines[J]. Chem Commu. 2010, 46, 1275-1277.
    [35] (a) Selvakumar, N.; Azhagan A. M.; Srinivas. D.; Krishna, G.. Gopi. A Direct Synthesis of 2-Arylpropenoic Acid Esters Having Nitro Groups in the Aromatic Ring: A Short Synthesis of (±)-Coerulescine and (±)-Horsfiline[J]. Tetrahedron Lett. 2002, 43, 9175.
    [36] a) Cui, C. B.; Kakeya, H.; Osada, H. Tetrahedron 1996, 52, 12651. b) Cui, C. B.; Kakeya, H.; Osada, H. J. Antibiot. 1996, 49, 832.
    [37] Edmondson, S. D.; Danishefsky, S. J.; Sepp-Lorenzino, L.; Rosen, N. Total Synthesis of Spirotryprostatin A, Leading to the Discovery of Some Biologically Promising Analogues. J. Am. Chem. Soc. 1999, 121, 2147-2155.
    [38] a) Akiyama T, Itoh J, Yokota K, Fuchibe K. Enantioselective Mannich-Type Reaction Catalyzed by a Chiral Br?nsted Acid[J]. Angew. Chem. Int. Ed., 2004, 43: 1566-1568. b) Yamanaka M, Itoh J, Fuchibe K, Akiyama T. Chiral Br?nsted Acid Catalyzed Enantioselective Mannich-Type Reaction[J]. J. Am. Chem. Soc. 2007, 129: 6756-6764. c) Uraguchi D, Terada M. Chiral Br?nsted Acid-Catalyzed Direct Mannich Reactions via Electrophilic Activation[J]. J. Am. Chem. Soc. 2004, 126, 5356-5357.
    [39] a) Akiyama, T. Stronger Br?nsted Acids. Chem. Rev. 2007, 107, 5744-5748. b) Terada, M. Binaphthol-derived phosphoric acid as a versatile catalyst for enantioselective carbon–carbon bond forming reactions. Chem. Commun. 2008, 4097-4112. c) Doyle, A. G.; Jacobsen, E. N. Small-Molecule H-Bond Donors in Asymmetric Catalysis. Chem. Rev. 2007, 107, 5713-5743.
    [40] Matsunaga S, Das J, Roels J, Vogl EM, Yamamoto N, Iida T, Yamaguchi K, Shibasaki M.Catalytic Enantioselective meso-Epoxide Ring Opening Reaction with Phenolic Oxygen Nucleophile Promoted by Gallium Heterobimetallic Multifunctional Complexes[J]. J. Am. Chem. Soc. 2000, 122, 2252-2260.
    [41] (a) Selvakumar, N.; Azhagan A. M.; Srinivas. D.; Krishna, G.. Gopi. A direct synthesis of 2-arylpropenoic acid esters having nitro groups in the aromatic ring: a short synthesis of (±)-coerulescine and (±)-horsfiline[J]. Tetrahedron Lett. 2002, 43, 9175-9178. (b) Pedras M. S. C; Jha. M. Concise Syntheses of the Cruciferous Phytoalexins Brassilexin, Sinalexin, Wasalexins, and Analogues: Expanding the Scope of the Vilsmeier Formylation[J]. J. Org. Chem. 2005, 70, 1828-1834.
    [1] List B, Lerner R A, Barbas III CF. Proline-Catalyzed Direct Asymmetric Aldol Reactions[J]. J. Am. Chem. Soc. 2000, 122, 2395-2396.
    [2] Ahrendt K A, Borths C J, MacMillan DWC. New Strategies for Organic Catalysis: The First Highly Enantioselective Organocatalytic Diels?Alder Reaction[J]. J. Am. Chem. Soc. 2000, 122,4243-4244.
    [3] a) Berkessel, A.; Groger, H., Asymmetric Organocatalysis; Wiley-VCH: Weinheim, (2005). b) J. Seayad, B. List, Asymmetric Organocatalysis. Org. Biomol. Chem. 2005, 3, 719–724; c) D. W. C. MacMillan, The Advent and Development of Organocatalysis. Nature. 2008, 455, 304–308.
    [4] Comprehensive Asymmetric Catalysis; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Eds.; Springer-Verlag: Heidelberg, (1999).
    [5] a) Z. Shao, H. Zhang, Combining transition metal catalysis and organocatalysis: a broad new concept for catalysis. Chem. Soc. Rev. 2009, 38, 2745-2755. b) J. Zhou, Recent Advances in Multicatalyst Promoted Asymmetric Tandem Reactions. Chem. Asian J. 2010, 5, 422-434. c) A. S. K. Hashmi, C. Hubbert, Gold and Organocatalysis Combined. Angew. Chem. Int. Ed. 2010, 49, 1010-1012; d) C. Zhong,; X. Shi, When Organocatalysis Meets Transition-Metal Catalysis. Eur. J. Org. Chem. 2010, 2999-3025.
    [6] Chen, G. S.; Deng, Y. J.; Gong, L. Z.; Mi, A. Q.; Cui, X.; Jiang, Y. Z.; Choi, M. C. K.; Chan, A. S. K., Palladium-catalyzed Allylic Alkylation of tert-butyl(diphylmethylene)-glycinate with Simple Allyl Esters under Chiral Phase Transfer Conditions. Tetrahedron: Asymmetry. 2001, 12, 1567-1571.
    [7] Hashimoto, T.; Maruoka, K., Recent Development and Application of Chiral Phase-Transfer Catalysts.Chem. Rev. 2007, 107, 5656-5682.
    [8] (a) Nakoji, M.; Kanayama, T.; Okino, T.; Takemoto, Y., Chiral Phosphine-Free Pd-Mediated Asymmetric Allylation of Prochiral Enolate with a Chiral Phase-Transfer Catalyst. Org. Lett., (2001) 3, 3329-3331. (b) Nakoji, M.; Kanayama, T.; Okino, T.; Takemoto, Y., Pd-Catalyzed Asymmetric Allylic Alkylation of Glycine Imino Ester Using a Chiral Phase-Transfer Catalyst J. Org. Chem. 2002, 67, 7418-7423.
    [9] (a) List, B., Enamine Catalysis Is a Powerful Strategy for the Catalytic Generation and Use of Carbanion Equivalents. Acc. Chem. Res., (2004) 37, 548-557. (b) Mukherjee, S.; Yang, J. W.; Hoffmann S.; List, B., Asymmetric Enamine Catalysis. Chem. Rev. 2007, 107, 5471-5569.
    [10] ErkkilV, A.; Majander, I.; Pihko, P. M., Iminium Catalysis.Chem. Rev. 2007, 107, 5416-5470.
    [11] Lelais, G.; MacMillan, D. W. C., Modern Strategies in Organic Catalysis: The Advent and Development of Iminium Activation. Aldrichimica Acta. 2006, 39, 79-87.
    [12] Ibrahem, I.; Córdova, A., Direct Catalytic Intermolecular -Allylic Alkylation of Aldehydes by Combination of Transition-Metal and Organocatalysis. Angew. Chem. Int. Ed.. 2006, 45, 1952– 1956.
    [13] a) Bihelovic, F.; Matovic, R.; Vulovic, B.; Saicic, R. N., Organocatalyzed Cyclizations ofπ-Allylpalladium Complexes: A New Method for the Construction of Five- and Six-Membered Rings. Org. Lett. 2007, 9, 5063-5066. (b) Vulovic, B.; Bihelovic, F.; Matovic, R.; Saicic, R. N., Organocatalyzed Tsuji–Trost Reaction: A New Method for the Closure of Five- and Six-membered Rings. Tetrahedron. 2009, 65, 10485-10494.
    [14] Fürstner, A.; Davies, P. W., Catalytic Carbophilic Activation: Catalysis by Platinum and GoldπAcids. Angew. Chem. Int . Ed.. 2007, 46, 3410-3449.
    [15] Olah, G. A.; Clifford, P. R., Organometallic chemistry. II. Direct mercuration of olefins to stable mercurinium ions. J. Am. Chem. Soc. 1971, 93, 2320-2321.
    [16] Ding, Q.; Wu, J., Lewis Acid- and Organocatalyst-Cocatalyzed Multicomponent Reactions of 2-Alkynylbenzaldehydes, Amines, and Ketones. Org. Lett. 2007, 9 , 4959-4962.
    [17] Belot, S.; Vogt, K. A.; Besnard, C.; Krause, N.; Alexakis, A., Enantioselective One-Pot Organocatalytic Michael Addition/Gold-Catalyzed Tandem Acetalization/Cyclization. Angew. Chem. Int. Ed.. 2009, 48, 8923-8926.
    [18] Yang, T.; Ferrali, A.; Campbell, L.; Dixon, D. J., Combination iminium, enamine and copper(I) cascade catalysis: a carboannulation for the synthesis of cyclopentenes. Chem. Commun. 2008, 2923-2925.
    [19] a) Zhao, G. L.; Ullah, F.; Deiana, L.; Lin, S.; Zhang, Q.; Sun, J.; Ibrahem, I.; Dziedzic, P.; Córdova, A. Dynamic Kinetic Asymmetric Transformation (DYKAT) by Combined Amine- and Transition-Metal-Catalyzed Enantioselective Cycloisomerization. Chem. Eur. J. 2010, 16, 1585-1591. b) Lin, S.; Zhao, G. L.; Deiana, L.; Sun, J.; Zhang, Q.; Leijonmarck, H. and Córdova, A.Dynamic Kinetic Asymmetric Domino Oxa-Michael/Carbocyclization by Combination of Transition-Metal and Amine Catalysis: Catalytic Enantioselective Synthesisof Dihydrofurans. Chem. Eur. J. 2010, 16, 13930-13934.
    [20] a) Jensen, K. L.; Franke, P. T.; Arróniz, C.; Kobbelgaard, S. and J?gensen, K. A. Enantioselective Synthesis of Cyclopentene Carbaldehydes by a Direct Multicatalytic Cascade Sequence: Carbocyclization of Aldehydes with Alkynes. Chem. Eur. J. 2010, 16, 1750-1753.
    [21] Yu, C.; Zhang, Y.; Zhang, S.; He, J.; Wang, W. Highly Enantioselective Michael-cyclization Cascade Promoted by Synergistic Asymmetric Aminocatalysis and Lewis Acid Catalysis. Tetrahedron Letters. 2010, 51, 1742-1744.
    [22] Beeson, T. D.; Mastracchio, A.; Hong, J. B.; Ashton, K.; MacMillan, D. W. C., Enantioselective Organocatalysis Using SOMO Activation. Science. 2007, 316, 582-585.
    [23] Sibi, M.; Hasegawa, M.; Organocatalysis in Radical Chemistry. Enantioselectiveα-Oxyamination of Aldehydes. J. Am. Chem. Soc. 2007, 129, 4124-4125.
    [24] Nicewicz, D. A.; MacMillan, D. W. C., Merging Photoredox Catalysis with Organocatalysis: The Direct Asymmetric Alkylation of Aldehydes. Science. 2008, 322, 77-80.
    [25] Nagib, D. A.; Scott, M. E.; MacMillan, D. W. C., Enantioselectiveα-Trifluoromethylation of Aldehydes via Photoredox Organocatalysis. J. Am. Chem. Soc. 2009, 131, 10875-10876.
    [26] Eilbracht, P.; Barfacker, L.; Buss, C.; Hollmann, C.; Kitsos-Rzychon, B. E.; Kranemann, C. L.; Rische, T.; Roggenbuck, R.; Schmidt, A., Tandem Reaction Sequences under Hydroformylation Conditions: New Synthetic Applications of Transition Metal Catalysis. Chem. Rev. 1999, 99, 3329-3366.
    [27] Abillard, O.; Breit, B., Domino Hydroformylation/Enantioselective Cross-Aldol Addition. Adv. Synth. Catal. 2007, 349, 1891-1895.
    [28] Chercheja, S.; Eilbracht, P., Tandem Metal- and Organocatalysis in Sequential Hydroformylation and Enantioselective Aldol Reactions. Adv. Synth. Catal. 2007, 349, 1897-1905.
    [29] Chercheja, S.; Rothenbücher, T.; Eilbracht, P., Tandem Metal and Organocatalysis in Sequential Hydroformylation and Enantioselective Mannich Reactions. Adv. Synth. Catal. 2009, 351, 339-344.
    [30] Akiyama, T. Stronger Br?nsted Acids. Chem. Rev. 2007, 107, 5744-5748.
    [31] Terada, M. Binaphthol-derived phosphoric acid as a versatile catalyst for enantioselective carbon–carbon bond forming reactions. Chem. Commun. 2008, 4097-4112.
    [32] Doyle, A. G.; Jacobsen, E. N. Small-Molecule H-Bond Donors in Asymmetric Catalysis. Chem. Rev. 2007, 107, 5713-5743.
    [33] Rueping, M.; Koenigs, R. M.; Atodiresei, I. Unifying Metal and Br?sted Acid Catalysis—Concepts, Mechanisms, and Classifications. Chem. Eur. J. 2010, 16, 9350-9365.
    [34] Komanduri, V.; Krische, M. J. Enantioselective Reductive Coupling of 1,3-Enynes to Heterocyclic Aromatic Aldehydes and Ketones via Rhodium-Catalyzed Asymmetric Hydrogenation: Mechanistic Insight into the Role of Br?nsted Acid Additives. J. Am. Chem. Soc. 2006, 128, 16448-16489.
    [35] Rueping, M.; Antonchick, A. P.; Brinkmann, C. Dual Catalysis: A Combined Enantioselective Br?nsted Acid and Metal-Catalyzed Reaction—Metal Catalysis with Chiral Counterions. Angew. Chem. Int. Ed. 2007, 46, 6903-6907.
    [36] de Armas, P.; Tejedor, D.; García-Tellado, F. Asymmetric Alkynylation of Imines by Cooperative Hydrogen Bonding and Metal Catalysis. Angew. Chem. Int. Ed. 2010, 49, 1013-1016.
    [37] Lu,Y.; Johnstone, T. C.; Arndtsen, B. A. Hydrogen-Bonding Asymmetric Metal Catalysis withα-Amino Acids: A Simple and Tunable Approach to High Enantioinduction. J. Am. Chem. Soc. 2009, 131, 11284-11285.
    [38] Mukherjee, S.; List, B. Chiral Counteranions in Asymmetric Transition-Metal Catalysis: Highly Enantioselective Pd/Br?nsted Acid-Catalyzed Directα-Allylation of AldehydesJ. Am. Chem. Soc. 2007, 129, 11336-11337.
    [39] Hu,W.; Xu, X.; Zhou, J.; Liu, W.-J.; Huang, H.; Hu, J.; Yang, L.; Gong, L.-Z. Cooperative Catalysis with Chiral Br?nsted Acid-Rh2(OAc)4: Highly Enantioselective Three-Component Reactions of Diazo Compounds with Alcohols and Imines. J. Am. Chem. Soc. 2008, 130, 7782-7783.
    [40] Xu, X.; Zhou, J.; Yang, L.; Hu, W. Selectivity Control in Enantioselective Four-component Reactions of Aryl Diazoacetates with Alcohols, Aldehydes and Amines: An Efficient Approach to Synthesizing Chiral ?-amino-?-hydroxyesters. Chem. Commun. 2008, 6564-6566.
    [41] Li, C.; Wang, C.; Villa-Marcos, B.; Xiao, J. Chiral Counteranion-Aided Asymmetric Hydrogenation of Acyclic Imines. J. Am. Chem. Soc. 2008, 130, 14450-14451.
    [42] Klussmann, M. Asymmetric Reductive Amination by Combined Br?sted Acid and Transition-Metal Catalysis Angew. Chem. Int. Ed. 2009, 48, 7124-7125.
    [43] Li, C.; Villa-Marcos, B.; Xiao, J. Metal?Br?nsted Acid Cooperative Catalysis for Asymmetric Reductive Amination J. Am. Chem. Soc. 2009, 131, 6967-6968.
    [44] a) Sorimachi, K.; Terada, M. Relay Catalysis by a Metal-Complex/Br?nsted Acid Binary System in a Tandem Isomerization/Carbon?Carbon Bond Forming Sequence J. Am. Chem. Soc. 2008, 130, 14452-14453. b) Terada, M.; Toda, Y. Double Bond Isomerization/Enantioselective Aza-Petasis?Ferrier Rearrangement Sequence as an Efficient Entry to Anti- and Enantioenrichedβ-Amino Aldehydes J. Am. Chem. Soc. 2009, 131, 6354-6355.
    [45] Cai, Q.; Zhao, Z.-A.; You, S.-L. Asymmetric Construction of Polycyclic Indoles through Olefin Cross-Metathesis/Intramolecular Friedel–Crafts Alkylation under Sequential Catalysis. Angew. Chem. Int. Ed.. 2009, 48, 7428-7431.
    [46] Hashimi, A. S. K. Gold-Catalyzed Organic Reactions.Chem. Rev. 2007, 107, 3180-3211.
    [47] Han, Z.-Y.; Xiao, H.; Chen, X.-H.; Gong, L.-Z. Consecutive Intramolecular Hydroamination/Asymmetric Transfer Hydrogenation under Relay Catalysis of an Achiral Gold Complex/Chiral Br?nsted Acid Binary System[J].J. Am. Chem. Soc. 2009, 131, 9182-9183.
    [48] Liu, X.-Y. Che, C.-M. Highly Enantioselective Synthesis of Chiral Secondary Amines by Gold(I)/Chiral Br?nsted Acid Catalyzed Tandem Intermolecular Hydroamination and Transfer Hydrogenation Reactions.Org. Lett. 2009, 11, 4204-4207.
    [49] Wang, C.; Han, Z.-Y.; Luo, H.-W.; Gong, L.-Z. Highly Enantioselective Relay Catalysis in the Three-Component Reaction for Direct Construction of Structurally Complex Heterocycles.Org. Lett. 2010, 12, 2266-2269.
    [50] Muratore, M. E.; Holloway, C. A.; Pilling, A. W.; Storer, R. I.; Trevitt, G.; Dixon, D. J. Enantioselective Br?nsted Acid-Catalyzed N-Acyliminium Cyclization Cascades. J. Am. Chem. Soc. 2009, 131, 10796-10797.
    [51] Yang, T.; Ferrali, A.; Sladojevich, F.; Campbell, L.; Dixon, D. J., Br?nsted Base/Lewis AcidCooperative Catalysis in the Enantioselective Conia-Ene Reaction J. Am. Chem. Soc. 2009, 131, 9140-9141.
    [52] Monge, D.; Jensen, K. L.; Franke, P. T.; Lykke, L.; J?rgensen, K. A., Asymmetric One-Pot Sequential Organo- and Gold Catalysis for the Enantioselective Synthesis of Dihydropyrrole Derivatives. Chem. Eur. J. 2010, 16, 9478-9484.
    [53] Paull, D. H.; Abraham, C. J.; Scerba, M. T.; Alden-Danforth, E.; Lectka, T., Bifunctional Asymmetric Catalysis: Cooperative Lewis Acid/Base Systems. Acc. Chem. Res. 2008, 41, 655-663.
    [54] a) Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Drury, W. J., III; Lctka, T., Catalytic, Asymmetric Synthesis ofβ-Lactams. J. Am. Chem. Soc. 2000, 122, 7831-7382. b) Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Ferraris, D.; Lectka, T., The Development of the First Catalyzed Reaction of Ketenes and Imines: Catalytic, Asymmetric Synthesis ofβ-Lactams. J. Am. Chem. Soc. 2002, 124, 6626-6635.
    [55] a) France, S.; Wack, H.; Hafez, A. M.; Taggi, A. E.; Witsil, D. R.; Lectka, T., Bifunctional Asymmetric Catalysis: A Tandem Nucleophile/Lewis Acid Promoted Synthesis ofβ-Lactams. Org. Lett. 2002, 4, 1603-1605. b) France, S.; Shah, M. H.; Weatherwas, A.; Wack, H.; Roth, J. P.; Lectka, T., Bifunctional Lewis Acid-Nucleophile-Based Asymmetric Catalysis: Mechanistic Evidence for Imine Activation Working in Tandem with Chiral Enolate Formation in the Synthesis ofβ-Lactams. J. Am. Chem. Soc. 2005, 127, 1206-1215.
    [56] a)Abraham, C. J.; Paull, D. H.; Scerba, M. T.; Grebinski, J. W.; Lectka, T., Catalytic, Enantioselective Bifunctional Inverse Electron Demand Hetero-Diels?Alder Reactions of Ketene Enolates and o-Benzoquinone Diimides. J. Am. Chem. Soc. 2006, 128, 13370-13371. b) Wolfer, J.; Bekele, T.; Abraham, C. J.; Dogo-Isonagie, C.; Lectka, T., Catalytic, Asymmetric Synthesis of 1,4-Benzoxazinones: A Remarkably Enantioselective Route to a-Amino AcidDerivativ es from o-Benzoquinone Imides. Angew. Chem., Int. Ed.. 2006, 45, 7398-7400.
    [57] a) Zhu, C.; Shen, X.; Nelson, S. G., Cinchona Alkaloid-Lewis Acid Catalyst Systems for Enantioselective Ketene?Aldehyde Cycloadditions.J. Am. Chem. Soc. 2004, 126, 5352-5353. b) Xu, X.; Wang, K.; Nelson, S. G., Catalytic Asymmetric [4 + 2] Cycloadditions of Ketenes and N-Thioacyl Imines: Alternatives for Direct Mannich Reactions of Enolizable Imines J. Am. Chem. Soc. 2007, 129, 11690-11691.
    [58] Knudsen, K. R.; J?rgensen, K. A., A chiral molecular recognition approach to the formation of optically active quaternary centres in aza-Henry reactions. Org. Biomol. Chem. 2005, 3, 1362-1364.
    [59] Denmark, S. E.; Beutner, G. L. Lewis Base Catalysis in Organic Synthesis. Angew. Chem., Int. Ed. 2008, 47, 1560-1638.
    [60] David, B. C.; Raup, D. E. A.; Scheidt, K. A.; Cooperative N-Heterocyclic Carbene/Lewis Acid Catalysis for Highly Stereoselective Annulation Reactions with Homoenolates. J. Am. Chem. Soc. 2010, 132, 5345-5357.
    [61] Raup, D. E. A.; David, B. C.; Holte, D.; Scheidt, K. A., Cooperative catalysis by carbenes and Lewis acids in a highly stereoselective route toγ-lactams. Nature Chem. 2010, 2, 766-771.
    [62] a) C. Li, X.-C. Han, Y. Song, Z.-M. Zhang, (Hoffmann-LaRoche AG), PCT Int. Appl. WO2010/121995, 2010. b) Q.-J. Ding, J.-J. Liu, Z.-M. Zhang, (Hoffmann-LaRoche AG), PCT Int. Appl. WO2007/104714, 2007.
    [63] M. Rottmann, C. McNamara, B. K. S. Yeung, M. C. S. Lee, B. Zou, B. Russell, P. Seitz, D. M. Plouffe, N. V. Dharia, J. Tan, S. B. Cohen, K. R. Spencer, G. González-Páez, S. B. Lakshminarayana, A. Goh, R. Suwanarusk, T. Jegla, E. K. Schmitt, H.-P. Beck, R. Brun, F. Nosten, L. Renia, V. Dartois, T. H. Keller, D. A. Fidock, E. A. Winzeler, T. T. Diagana. Spiroindolones, a Potent Compound Class for the Treatment of Malaria. Science. 2010, 329, 1175-1180.
    [64] H.-F. Wang, T. Yang, P.-F. Xu, D. J. Dixon, Base and copper(I) catalyzed Mannich, alkyne hydroamination cascades for the direct synthesis of 2-methylenepyrrolidines. Chem. Commun. 2009, 3916-3918.
    [65] Q. Wei, L.-Z. Gong, Organocatalytic Asymmetric Formal [4 + 2] Cycloaddition for the Synthesis of Spiro[4-cyclohexanone-1,3′-oxindoline] Derivatives in High Optical Purity. Org. Lett. 2010, 12, 1008-1011.
    [66] (a) Okino, T.; Hoashi, Y.; Takemoto, Y. Enantioselective Michael Reaction of Malonates to Nitroolefins Catalyzed by Bifunctional Organocatalysts. J. Am. Chem. Soc. 2003, 125, 12672-12674. (b) Hoashi, Y.; Okino, T.; Takemoto, Y. Enantioselective Michael Addition to ,β-Unsaturated Imides Catalyzed by a Bifunctional Organocatalyst. Angew. Chem., Int. Ed. 2005, 44, 4032-4035. (c) Inokuma, T.; Hoashi, Y.; Takemoto, Y. Thiourea-Catalyzed Asymmetric Michael Addition of Activated Methylene Compounds toα,β-UnsaturatedImides: Dual Activation of Imide by Intra- and Intermolecular Hydrogen Bonding. J. Am. Chem. Soc. 2006, 128, 9413-9315. (d)Abigail G. Doyle and Eric N. Jacobsen. Small-Molecule H-Bond Donors in Asymmetric Catalysis. Chem. Rev. 2007, 107, 5713-5743
    [67]Tian, X.; Jiang, K.; Peng, J.; Du, W.; Chen, Y.-C. Organocatalytic Stereoselective Mannich Reaction of 3-Substituted Oxindoles.Org. Lett. 2008, 10, 3583-3586.
    [68] Bui, T.; Syed, S.; Barbas, C. F., III. Thiourea-Catalyzed Highly Enantio- and Diastereoselective Additions of Oxindoles to Nitroolefins: Application to the Formal Synthesis of (+)-Physostigmine J. Am. Chem. Soc. 2009, 131, 8758-8760.
    [69] (a) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. Enantio- and Diastereoselective Michael Reaction of 1,3-Dicarbonyl Compounds to Nitroolefins Catalyzed by a Bifunctional Thiourea. J. Am. Chem. Soc. 2005, 127, 119-125. (b) Li, B-J.; Jinag, L.; Liu, M,; Chen, Y-C.; Ding L-S.; Wu, Y. Asymmetric Michael Addition of Arylthiols toα,β-Unsaturated Carbonyl Compounds Catalyzed by Bifunctional Organocatalysts. Synlett. 2005, 603-606.
    [70] (a) Jacobsen, E. N.; Wenzel, A. G.. Asymmetric Catalytic Mannich Reactions Catalyzed by Urea Derivatives: Enantioselective Synthesis ofβ-Aryl-β-Amino Acids. J. Am. Chem. Soc. 2002, 124, 12964-12965. (b)Trost, B. M.; Zhang, Y.; Zhang, T. Direct N-Carbamoylation of 3-Monosubstituted Oxindoles with Alkyl Imidazole Carboxylates. J. Org. Chem. 2009, 74, 5115-5117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700