多芳环化合物降解菌的筛选、特性及降解途径研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多芳环类化合物是化学合成工业中的一大类重要原料,种类繁多,广泛应用于制药、化工和印染等行业,易造成水体、土壤等环境污染。丙酯草醚,[4-(2-(4,6-二甲氧基-2-嘧啶氧基)苄胺基)苯甲酸正丙酯],是我国具自主知识产权的新型高效除草剂,丙酯草醚原药、油力(10%乳油制剂)和油力Ⅱ(10%悬浮剂)已获农药临时登记证和农药生产批准证书。然而,关于丙酯草醚的微生物降解特性和生物降解途径及其降解蛋白质组学的相关研究迄今未见报道,关于同时降解萘和丙酯草醚的基因工程菌也未见报道。本研究综合运用传统微生物学实验方法、核素示踪技术、现代生物技术和现代仪器分析技术,分别从化工园区污水处理厂活性污泥和常州市南郊施用过丙酯草醚的农田土壤中筛选、纯化获得丙酯草醚高效降解菌株Amycolatopsis sp.M3-1和萘高效降解菌株Pseudomonadaceae sp. Nai8,系统研究丙酯草醚和萘的微生物降解特性,以[B环-4,6-14C]标记丙酯草醚和[C环-U-14C]标记丙酯草醚为示踪剂,研究丙酯草醚在水体和土壤中的生物降解途径,利用双向电泳技术初步鉴定了菌株M3-1降解丙酯草醚的降解功能酶,并利用原生质体融合技术,构建可同时降解丙酯草醚和萘的高效工程菌MN6。微生物降解丙酯草醚的特性及降解途径、代谢机制等进行系统的研究,有助于深入了解丙酯草醚在环境的行为,为合理、安全使用丙酯草醚和环境生物修复提供技术支持和理论指导,保证环境和农产品的安全性。
     本研究的主要研究结果如下:
     1.从自然界中富集、筛选出5株以萘为唯一碳源和15株以丙酯草醚作为唯一碳源生长的降解菌。对降解效果较好的菌株Nai8、M3-1和CY进行进一步研究,经生理生化和16S rDNA鉴定,菌株Nai8为Pseudomonadaceae sp.Nai8, M3-1为较罕见的地中海拟无枝酸菌Amycolatopsis sp.M3-1, CY为Bacillus sp. CY。菌株M3-1降解丙酯草醚的最适条件为35℃、pH6.0、接种量8%,底物浓度为100mg/L,培养25天,丙酯草醚降解率达63.30%。当丙酯草醚浓度高于300mg/L时,对菌株M3-1的降解效果有较强的抑制作用,并随着底物丙酯草醚浓度的增加而增强,而浓度较低时(<150ppm)降解效果较好,较高浓度的丙酯草醚可以抑制菌株M3-1的生长繁殖速度,大大降低细胞内降解酶的生物合成速度,甚至抑制酶的合成。菌株Nai8降解萘的最适条件为30℃,pH7.0,接种量8%,培养100h,降解率达96.24%。
     2.以B-14C-ZJ0273和C-14C-ZJ0273为示踪剂,研究水体中丙酯草醚在Amycolatopsis sp.M3-1的催化下的代谢规律,在培养体系中有6种中间代谢产物被检测出有放射性活度,用LC-MS鉴定其结构,并推导出ZJ0273在水溶液中的代谢途径。首先其丙基酯键被水解形成M1—(4-(2-(4,6-二甲基-2-嘧啶氧基)苄胺基)苯甲酸;随后,M1上的侧链CH-NH键发生酰化反应生成M2-(4-(2-(4,6-二甲基-2-嘧啶氧基)苯甲酰氨基)苯甲酸;同时,M1通过水解CH-NH键生成M3—--4,6-二甲基-2-嘧啶氧基苯甲酸,M2的CO-NH键也在Amycolatopsis sp. M3-1的催化下,发生水解反应形成M3,M3也是丙酯草醚在杂草中最主要的代谢产物;M3结构的醚键发生断裂反应生成M4—2-羟-4,6-二甲基-嘧啶和苯甲酸;M3嘧啶环上的甲氧基通过水解形成M5,即6-甲基-4-羟-2-嘧啶氧基苯甲酸,然后再通过进一步的水解生成M6—尿嘧啶(2,4-二羟基嘧啶)和苯甲酸。在自然环境中(如土壤和淤泥中)M4、M6和苯甲酸均可以被其他微生物作为碳源和能源,促进微生物的生长与繁殖,并最终被降解成C02和H20。
     3.菌株M3-1对5种灭菌土壤红砂田(S1)、黄松田(S2)、黄泥田(S3)、淡涂泥田(S4)和黄石土(s5)中的丙酯草醚均具有去除作用。培养90天后,S1、S4和S3中丙酯草醚的残留量分别为48.60%、23.32%和5.31%。空白土样中丙酯草醚残留量均在缓慢的下降过程中,表明丙酯草醚在土壤中的光解、水解及矿化等自然消解作用对丙酯草醚有一定的去除作用,但是去除效果不明显。M3-1在5种未灭菌土壤中对丙酯草醚也具有很好的去除作用,培养90d,丙酯草醚在五种土壤中的残留量分别为33.50%,31.14%,31.52%,22.03%和4.22%。
     4.运用蛋白质双向电泳技术,丙酯草醚诱导菌株M3-1前后的蛋白变化进行了初步研究,结果表明,菌株M3-1经过丙酯草醚诱导之后,胞内蛋白图谱发生较大的变化,双向电泳检测出6个新蛋白点,5个表达量增加2倍以上的蛋白点(超过1倍上的蛋白质点多达16个以上),通过MALDI-TOF-MS鉴定出8个蛋白质,分别是Phosphoglycerate kinase、 Citrate sysnthase、Lipase、Biotin carboxylase、aldehydrogenase、Small subunit aromatic oxygenase等与细胞生长与代谢相关的酶系。
     5.采用紫外诱变法,获得M3-1和Nai8的脯氨酸(Pro-)缺陷型菌株和天冬酰胺(Asn-)缺陷型菌株。通过原生质体融合,构建8株可以同时降解丙酯草醚和萘的工程菌,其中工程菌株MN2和MN6对萘和丙酯草醚的降解率较高,比原始菌株M3-1对丙酯草醚降解率(20d)分别提高了2.83%、6.87%,比菌株Nai5的降解率(48h)分别提高了10.82%和18.01%。
Polyaromatic compound has been produced and widely used in pharmaceutical, chemical and dyeing industries. Industrial wastewater containing polyaromatic compound such as naphthalene could lead to gross pollution of the environment. ZJ0273, propyl4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino)benzoate, is a novel herbicide developed for oilseed crop in China.10%ZJ0273emulsifiable concentration and10%suspension concentration (the trade name is Youli) have been obtained registration of Ministry of Agriculture, China, and permitted to be used extensively for eliminating oil rape weed. However, Microbial degradation of ZJ0273, degradation pathway in aquatic system and microbial degradation proteome has not been reported until now. I n order to understand microbial behavior, biodegradation pathway and mechanism of ZJ0273in environment, biodegradation and bioremediation of ZJ0273contaminated water and soil need to be further studied. In this study, ZJ0273-degrading bacterium Amycolatopsis sp. M3-1and Naphthalene-degrading bacterium Pseudomonadaceae sp. Nai8were isolated from soil. Using traditional microbiological method, isotope tracer, modern biotechnology and modern instrument analysis, biodegrading characteristics, pathway and mechanism of ZJ0273in soils and water were studied. The degradation enzymes were identified by2-DE and MALDI-TOF-MS, gene engineering bacterium was constructed and it can degrade ZJ0273and naphthalene simultaneously. The results of this study will be will provide technical support and thoretical guidance for reasonable and safe use of ZJ0273, and it is very important for improving the quality of agricultural products, ecological environment and human health.
     The main results are as follows
     1. Five strains of naphthalene degrading bacteria and fifteen strains of ZJ0273degrading bacteria were screened, isolated and separated from soils by applying modern molecular biological technique with traditional microbiological method. The strain M3-1, Nai8and CY were identified as Amycolatopsis sp., Pseudomonadaceae sp. and Bacillus sp. by physiological, biochemical tests and16s rDNA sequence. The optimum ZJ0273degrading conditions of Amycolatopsis sp. M3-1were studied. The results showed that with condition of35°C, pH6.0,8%of inoculation and100mg/L of ZJ0273, the degrading ratio in25d was63.30%. The degradation ratio of ZJ0273by Amycolatopsis sp. M3-1was decreased with the increasing ZJ0273concentration,300mg/L of ZJ0273can strongly inhibit bio-activity of strain M3-1, which means that higher concentration of ZJ0273has higher toxicity to M3-1. And the optimum naphthalene degrading conditions of Pseudomonadaceae sp. Nai8was30℃, pH7.0,8%of inoculation and1000mg/L of naphthalene, the degrading ratio in100h was96.24%.
     2.Six metabolites (M1-M6) during the degradation of ZJ0273by Amycolatopsis sp. M3-1were identified by combination with multi-poa'tion14C-labeled compounds (B-ZJ0273and C-ZJ0273), chromatography, liquid scintillation spectrometer and LC-MS, a novel pathway of ZJ0273degradation by Amycolatopsis sp. M3-1was proposed based on the identified metabolites and their biodegradation courses.ZJ0273was initially hydrolyzed into M1(4-(2-(4,6-dimethoxypyrimidin-2-yloxy) benzylamino) benzaoicacid), then further oxidized into M3(2-(4,6-dimethoxypyimidin-2-yloxy) benzoic acid); M1also could undergo a carbonylation into M2(4-(2-(4,6-dimethoxypyimidin-2-yloxy) benzamido) benzoicacid), and then its C-N and C-0bonds were deaved to yield M3(2-(4,6-dimethoxypyimidin-2-yloxy) benzoicadd) and M4(4,6-dimethoxypyrimidin-2-ol), respectively. Moreover, another two new metabolites, M5(2-(4-hydroxy,6-methoxypyimidin-2-yloxy) benzoicadd) and M6(2,4-dihydroxy-pyrimidine) were found. M5was formed through de-methyl of M3, and then hydrolyzed into M6.In the natural environment, M4and M6could be used as carbon and energy source and bread down to CO2and H2O.
     3. ZJ0273could be degraded in the five sterile soil samples after inoculation of Amycolatopsis sp. M3-1. The residue of ZJ0273in S1, S4and S3was48.60%.23.32%and5.31%, respectively. Degradation rate of ZJ0273in S3and S4were higher than that of in add soil like S1, S2and S5. In the blank soil samples, the concentration of ZJ0273also decreased slowly, which showed that photodegradation, hydrolysis and mineralization in soil have certain effect to degrade ZJ0273. The residue of ZJ0273in unsterile S1, S2, S3, S4and S5after inoculation of Amycolatopsis sp.M3-1was33.50%,31.11%,31.52%,22.03%and4.22%.
     4. To illuminate the mechanism of Z J0273-degrading pathway in bacteria, two-demensional protein SDS-PAGE electrophresis was used to identify variations in protein expression in ZJ0273degrading bacterium. The results showed that strain M3-1exposed to ZJ0273could lead to the6new proteins and the up-regulation of5proteins, and8proteins were indentified by MALDI-TOF-MS.
     5. Two auxotrophic mutant strains (Pro-and Asn-) were gain through ultraviolet mutagenesis method and chose to mark protoplast fusion.8fusants were obtained with genetic stability on the degradation of ZJ0273and naphthalene by protoplast fusion, the fusant named M N6could degrade ZJ0273and naphthalene simultaneously and has higher degradation rate of degrading ZJ0273and naphthalene. The degradation ratio could improve6.87%(20d) and18.01%(48h).
引文
1. Organization W H. MDG Drinking Water and Sanitaiotn Target: The Urban and Rural Challenge of the Decade, M DG Assessment Report 2006[R].2006.
    2.刘昌明,曹英杰.我国水污染状况及其对人类健康的影响与主要对策[J].科学对社会的影响,2009 2:16-22.
    3.王艳,辛嘉英,宋昊等.生物降解萘的研究进展[J].中国生物工程杂志,2009,29(9):119~124.
    4. Edwards N T. Reviews and analysis polycyclic aromatic hydrocarbons (PAHs) in the terrestrial environment-areview[J]. Environment and Quality,1983,13:427-441.
    5.唐庆红,陈杰,吕龙.新型高效油菜田除草剂丙酯草醚创制研究.农药,2005,44(11):496-502.
    6.陈杰,袁军,刘继东,等.新型除草剂丙醋草醚的作用机理.植物保护学报,2005,32(1)48-52.
    7.唐庆红,陈杰,沈国辉,等.油菜田新型除草剂丙酯草醚的应用技术.植物保护学报,2006,33(3):328-332.
    8.吕龙,吴军,陈杰,等.2-嘧啶氧基苄基取代苯基胺类衍生物.中国专利,1348690A,2002-05-15.
    9.吴军,吕龙,陈杰,等.2-嘧啶氧基苄基取代萘基胺类衍生物合成方法和用途.中国专利,1347876A,2002-05-08
    10. Lu Long, Chen Je, Wu Jun, et al.2-Pyrimidinyloxy-n-aryl -benzylamine derivatives, their processes and uses, US Patent 6,800,590,2004-10-5
    11. Fu Tingding, Yang Guangsheng, Tu Jnxing, et al. The present and future of rapeseed production in China[J]. China Oilsand Fata 2003,11(1):11-13.
    12.袁增雯,张一宾.农药与环境[J].化学世界,2000:22-24.
    13.刘长令.第11届IUPAC国际农药化学会议概况[R].农药,2006,45(10):712-715.
    14.陈经涛,李克斌,魏红,等.土壤中农药降解吸附/解析对生物利用率影响的研究[C].第二届全国农业环境科学学术研讨会论文集,2007,432-435.
    15. Allan W. Sarah J W. et al. Induction and transfer of enhanced biodegradation of the herbicidenapropamideinsoil[J]. PesticideScience.1996,47:131-135.
    16. Cord DJ, Khali I A. Detection isolation and stability of megaplasmid-encoded chloroaromatic herbicide-degrading genes within Pseudomonas species[J]. Advancesin Applied Microbiology.1995,40:289-321.
    17.李岩,蒋继志,马平,等.细菌降解农药研究新进展[J],2005,23:250-252.
    18. Wu Hui-ming,Zhu Guo-nian.Study on the degradation of chlorpyrifos in sterilized and nonsterilized soil[J]. Chinese Journal of PesticideScience,2003,5(4):65-69.
    19.劳伦斯P瓦克特C.道格拉斯·赫什伯格著沈德中主译生物催化和生物降解-有机化合物的微生物转化[M].化学工业出版社,2005.
    20.林玉锁,龚瑞忠,朱忠林.农药与生态环境保护[M].北京:化学工业出版社,1999,174-176.
    21.周叶锋,廖晓兰.环境中农药的微生物降解研究进展[C].第二届全国农业环境科学学术研讨会论文集.2007,7:419-425.
    22.赵睿新主编.环境污染化学[M].北京:化学工业出版社.2004.
    23.刘海珠.好氧生物处理法降解萘的研究(D).北京:中国地质大学,2006.
    24.李铁民,马溪平,刘宏生,等.环境微生物资源原理与应用[M].北京:化学工业出版社,2005,53.
    25.刘玉焕,钟英长.甲胺磷降解真菌的研究[J].中国环境科学,1999,19(2):172-175.
    26.艾涛,王华,温小芳,等.有机磷农药乐果降解菌株L3的分离鉴定及其性质的初步研究[J].农业环境科学学报,2006,25(5):1250-1254.
    27.张瑞福,戴青华,何健,等.七株有机磷农药降解菌的降解特性比较[J].中国环境科学,2004,24(5):584--587.
    28.刘新,尤民生,魏英智,等.降解毒死蜱曲霉Y的分离和降解效能测定[J].应用与环境生物学报,2003,9(1):78-80.
    29.姜红霞,王圣惠.薛庆节,等.甲基对硫磷降解菌Alcaligenes. sp.Y cX-20的分离鉴定及降解性能研究[J].农业环境科学学报,2005,24(5):962-965.
    30.郑永良,刘德立,高强,等.甲胺磷农药降解菌HS-A32的分离鉴定及降解特性[J]. 应用与环境生物学报,2006,12(3):399-403.
    31. Mallick K., Bharati K., Banerji A. et al.. Bacterial degradation of chlorpyifos in pure culture and insoil[J]. Bulletin of Environmental Contamination and Toxicology.1999,62:48-54.
    32.李红权,李红梅,蒋继志,等.一株DDT降解菌的筛选、鉴定及降解特性的初步研究[J].微生物学通报,2008,35(5):696-699.
    33.许敬亮,王志春,王堃,等.多菌灵降解菌株djI-6-2的分离鉴定及降解特性[J].中国环境科学,2006,26(3):307-310.
    34.张桂山,贾小明,马晓航,等.一株多菌灵降解细菌的分离、鉴定及系统发育分析[J].微生物学报,2004,44(4):417-421.
    35. Tejomyee S., Bhalerao, Pravin R. Puranik. Biodegradation of organochlorine pesticide, endosulfan, by a fungal soil isolate, Aspergillus niger[J]. International Biodeterioration & Biodegradation 2007,59:315-321.
    36. Mohit K.C., Vidya L., Sunil K.. Biodegradation and bioremediation of endosulfan contaminated soil[J]. BioresourceTechnology 2008,99:3116-3122.
    37. Koel K., Svanesan S. D., Kannan K.. Enrichment and isolation of endosulfan degrading and detoxifying bacteria[J]. Chemosphere,2007,68:317-322.
    38. Supriya G., Komal V., Dileep K. S.. Biodegradation of a and b endosulfan by Aspergillus sydoni[J]. Chemosphere,2009,75:883-888.
    39.张丽珍,乔雄梧,马利平,等.多菌灵降解菌NY97-1的鉴定及降解条件[J].环境科学学报,2006,26(9):1440-1444.
    40.温雪松,李颖,李婧,等.降解除草剂阿特拉津的藤黄微球菌AD3菌株的分离、鉴定和降解特性研究[J].环境科学学报,2005,25(8):1066-1070.
    41. Jean P, Cambon J B. Mechanism of thifensulfuron-methyl transformation in soil [J]. Journal of Agricultural and Food Chemistry.1998,46(3):1210-1216.
    42. Hugh M, Brown M.. Degradation of thifensulfuron-methyl in soil:role of microbial carboxyesteraseactivity[J]. Journal of Agricultural and Food Chemistry.1997,45(5):995-961.
    43. Geraldine P, Danielle V, Jean B. Microbial hydrolysis of methyl aromatic esters by Burkholderia cepacia isolated from soil[J]. FEMS Microbiology Ecology,2001,37:251-258.
    44.黄星,何健,潘继杰,等.噻吩磺隆降解菌FLX的分离鉴定及降解特性[J].中国环境科学,2006,26(2):214-218.
    45.楚小强,庞国辉,方华,等.丁草胺降解菌的分离鉴定及降解特性的研究[J].农业环境科学学报,2009,28(1):145-150.
    46.刘辉,陶波.土壤微生物对氯磺隆降解的研究[J].农业与技术,2003,23(1):36-39.
    47.沈东升,方程冉,周旭辉.一株甲磺隆降解真菌(Penicillium sp.)降解特性研究[J].浙江大学学报,2002,28(5):542-546.
    48.王学东,欧晓明,王慧利等.除草剂咪唑烟酸在土壤中的微生物降解研究[J].土壤学报,2004,41(1):156-159.
    49.蔡宝立,黄今勇,石建党等.阿特拉津降解菌的分离和鉴定[J].微生物学通报,2001,28(2):22-26.
    50.汪海珍,徐建民,谢正苗等.甲磺隆污染土壤生物修复的初步探索[J].农药学学报,2003,5(4):53-58.
    51.林爱军,朱鲁生,王军等.除草剂二甲戊灵的真菌降解及其特性研究[J].应用生态学,2003,14(11):1929-1933.
    52. Michel F C, Reddy C A, Forney L J. Microbial degradation and humiflcation of the lawn care pesticide 2,4-dichlorphenoxy-acetic acid during the composting of yard trimmings[J].Applied Environmental and Micirobiology,1995,61(7):2566-2571.
    53. Fischer K, Norman S, Freitag D. Studies of the behavior and fate of the polymer-additives octadecyl-3-[3,5-di (r-butyl)4-hydrox-yphenyl] propionate and tri-[2,4di(r-butylpheny)]phosphate in the environment[J].Chernosphere,1999,39(4):611-625.
    54. Sebastian R, Sorensen, Gray D. et al. Micorbial degradation of isoproturon and related phenylurea herbicides in and below agricultural fields[J].Microbiology Ecology,2003,(45):1-11.
    55. Claudio Airoldi, Alexandre Prado G S. The inhibitory biodegradation effects of the pesticide 2,4-D when chemically anchored on alicagd[J]. Thermochimica Acta. 2002,(394):163-169.
    56. Maria De Lourdes Bellinaso, Charles William Greer, Maria do carom Peralba Biodegradation of the herbicidetrifluralin by bacteria isolated from soil[J]. FEMS Microbiology Ecology43(2003):191-194.
    57.苏少泉.除草剂在土壤中的降解与使用[J].农药,2004,3(1):5-8.
    58.张一宾,张怿.世界农药新进展[M].化学工业出版社.2007.
    59. Koo SJ, Ahn S C, Lim JS, Chae SH, Kim JS, Lee JH, Cho JH. Biological activity of the new herbicide LCG-40863{benzophenone O-[(2,6-bis(4,6-dimethoxy-2-pyrimidinyl) oxy)] benzoyl oxime}[J]. Pesticide Science,1997,51:109-114.
    60. K oo S J, K i m J S and L ee J H. Fol i ar retenti on of the herbicide pyri benzoxim (1%EC) and its effects on herbicidal activity and rice phytotoxicity[J]. Korea Weed Science,1998, 18:304-313.
    61.吴声敢,稗草对8种除草剂的生物测定方法和敏感性研究.浙江农业科学[J],2006,4:437-440.
    62.贾明宏,李本昌.农药学研究的重要手段-放射性同位素示踪技术.农药科学与管理,1996,4:14-19.
    63.陈子元主编,核农学[M],中国农业出版社,1997.
    64. Barraclough D, Kearney T, Croxford A. Bound residues: environmental solution or futureproblem? [J]. Environmental Pollution,2005,133:85-90.
    65. Gevao B, Semple K T, Jones K C. Bound pesticide residues in soils a review[J]. Environmental pollution,2000,108:3-14.
    66.欧晓明,樊德方.农药结合残留的研究现状及问题.农药,2006,45(10):660-663.
    67.陆贻通,朱江,周培.影响土壤中农药结合残留的因素及其环境效应.科技通报,2005,21(3):287-291.
    68.陈祖义,程薇,成冰.14C-绿磺隆的土壤结合残留及其有效性.南京农业大学学报,1996,19(2):78-83.
    69. Ye Q F, Sun J H, Wu J M. Causes of phytotoxicity of metsulfuron-methy bound residuesinsoil[J]. Environmental pollution,2003,126:417-423.
    70. Chang, H R, Koo S J, Kim K, Ro H M, Moon J K, Kim Y H, Kim J H. Soil metabolism of a new herbicide, [14C]-Pyribenzoxim, under flooded conditionsfJ]. Journal of Agricutural Food and Chemistry.2007,55(15):6206-6212.
    71. Wang HY, Ye QF, Yue L, Han AL,Yu ZY, Wang W, Yang ZM, Lu L. Fate characterization of a novel herbicide ZJ0273 in aerobic soils using multi-position 14C labeling [J]. Science of Total Environment.2009,407:4134-4139.
    72 Wang HY, Ye QF, Yue L, Yu, ZY, Han, AL, Yang ZM, Lu, L. Kinetics of extractable residue, bound residue and mineralization of a novel herbicide, ZJ0273, in aerobic soils[J]. Chemosphere.2009,76:1036-1040.
    73. Wang HY, Yu ZY, Yue L, Han AL, Zhang YF, Li JY, Ye QF, Yang ZM, Lu L. Transformation of 14C-pyrimidynyloxybenzoic herbicide ZJ0273 in aerobic soils[J]. Science of Total Environment.2010,408:2239-2244.
    74. Han AL, Ye QF, Wang HY, Wang W, Lu L. Absorption transiocation, and residue of 14C-ZJ0273 in oilseed rape[J]. Journal of Agricultural Food and Chemistry.2009,57:4395-4402.
    75. Han AL, Yue L, Li Z, Wang HY, Ye QF, Lu L, Gan J. Plant availability and phytotoxicity of soil bound residues of herbicideZJ0273, a novel acetolactatesynthase potential inhibitor[J]. Chemosphere.2009,77:955-961
    76.张丹,李兆格,包新光,李江波等,细菌降解萘、菲的代谢途径及相关基因的研究进展[J].生物工程学报.2010,26(6):726-734.
    77. Singleton DR, Ramirez LGN, Aitken MD.Characterization of a polycyclic aromatic hydrocarbon degradation gene cluster in a phenanthrene-degrading Acidovorax strain[J]. Applied Environmental and Microbiology,2009,75(9):2613-2620.
    78. Laurie AD, Lloyd-Jones G. Thephn genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism[J]. Journal of Bacteriology,1999,181(2):531-540.
    79.赵渝.芳香烃生物降解途径蛋白质组学研究[D].华东师范大学博士学位论文.2007.
    80. Richard J. Smpson, Proteins and Proteomics:A L aboratory Manual [M]. Cold Spring Harbor Laboratry Press. New York.2003
    81. Tamarit FA., Cannas SA., TsallisC. Sensitivity to initial conditions and nonextensivity in biological evolution[J]. Europhysics Journal B1,1998:545-548.
    82. Loffhagen N. Hartig C. Babel W. The toxicity of substituted phenolic compounds to a detoxifying and an acetic acid bacterium[J]. Ecotoxicology and Environmental Safety.1997,36: 269-274.
    83. Loffhagen N. Hartig C. Babel W. Fatty acid paffern of Acinetobacte calcoaceticus 69-V indicate sensitivity against xenobiotics [J]. Applied Microbiology and Biotechnology.1995, 44:526-531.
    84. Visick JE. Clarke S. Repair, refold, recycle: how bacteria can deal with spontaneous and environmental damage to proteins[J]. Molecular Microbiology.1995,16:835-845.
    85. Isken S. de Bont JA. Bacteria tolerant to organic solvents[J]. Extremophiles.1998.2: 229-238.
    86. Ramos JL., Marques S., Timmis KN. Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid encoded regulators[J]. A nnunal Review of Microbiology.1997,51:341-373.
    87.应南娇,大肠杆菌辐射损伤适应性机制及耐辐射球菌γ-射线诱导蛋白质组研究[D].浙江大学,2008.
    88. Lawrence P W, Neil C B. Environmental biotechnology towards sustainability[J]. Current Opinion in Biotechnology,2000,11:229-231.
    89. Pieper D H, Reineke W. Engineering bacteria for bioremediation[J]. Current Opinion in Biotechnology,2000,11:262-270.
    90. Lederberg.J. Cell genetics and hereditary symbiosis[J]. Physical Review.1952,32:403-430.
    91. Saito A, Iwabuchi T, Harayama S. A novel phenanthrene dioxygenase from Nocardioides sp, strain KP7:expression in Escherichia coli[J], Journal of Bacteriology.2000, 182(8):2134-2141.
    92. Kiyohara H, Torigoe S, Kaida N. Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonasputida OUS82[J]. Journal of Bacteriology,1994,176(8):2439-2443.
    93. Cho JC, Kim SJ.Detection of mega plasmid from polycyclic aromatic hydrocarbon-degrading Sphingomonas sp.strain 14[J].Journal of Microbiology and Biotechnology,2001,3(4):503-506.
    94. Menn FM, Applegate BM, Sayler GS.NAH plasmid-mediated catabolism of anthracene and phenanthreneto naphthoic acids[J]. Applied Environmental and Microbiology,1993,59(6): 1938-1942.
    95. Serdar CM, Gibson DT, Munnecke DM, et al. Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta[J]. Applied Environmental and Microbiology,1982,44: 246-249.
    96. Mulbry WW, Karns JS, Kearney PC, Nelson JO, McDaniel CS, Wild JR. Identification of a plasmid-borne parathion hydrolase gene from flavobacterium sp. By southern hybridization with opd from Pseudomonas diminuta[J]. Applied Environmental and Microbiology,1986, 51(5):926-930.
    97.刘欣.有机磷酸酯类农药降解菌的分离及其降解基因的克隆[D].华中农业大学,2006.
    98.徐刚明.有机磷农药残留高效降解微生物的筛选、鉴定及降解机理研究[D].山东农业大学,2007.
    99. Yang H.Carr P D., McLoughlin S Y., Liu J W, et al. Evolution of an organophosphate-degrading enzyme:A comparison of natural and directed evolution[J]. Protein Engineering. 2003,16(2):135-145.
    100.薛庆节,闫艳春,张杰.R-工程菌表达产物酯酶B1的固定化及其降解特性.农业环境科学学报,2005,24(2):299-303.
    101.虞云龙,史锋,樊德方.一种固定化酶对氰戊菊酯的降解特性[J].农药学学报,1999,1(1):74-77.
    102. Ferencezy L,Kevei F,Zsolt J.Fusion of fungal Protoplast[J]. Nature,1974,248: 793-794.
    103.罗立新.细胞融合技术与应用[M].北京:化学工业出版社,2004:1-12.
    104.崔涛.细菌遗传学[M].北京:中国科学技术大学出版社,1991.
    105. Chen W, Ohmiya K, Shimizu S. Intergeneric protoplast fusion between Fusobacterium variun and Enterococus faccium for enhancing Oehydrodivanillin degradation[J]. Applied Environmental and Microbiology,1989,53(3):542-548.
    106. Shigeom IU. N. Tadanobu and U. Kinji. Further evidence on the interspecific protoplast fusion between Aspergillus oryzae and Aspergillus sojae and subsequent haploidization, with special reference to their production of some hydorolyzing enzyme[J]. Agricultural Biology and Chemistry.1990,54(9):2393-2399.
    107.周德明.原生质体融合构建高效降解工程菌的研究[J].中南林学院学报,2001,21(2):42-46.
    108. Cai ZQ, Yang GH, Li EY, Zhao XY (2008) Isolation, identification and degradation character of dioxanedegradativestrain D4[J]. China Environmental Science.28:49-52
    109. Dong XZ, Cai MY (2001) General Bacteria System Identification Manual. Science Press, Beijing.
    110. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergeys Manual of Determinative Bacteriology,9th ed., Li ppincott Williams and Wilkins, Beltimore.
    111.丁炜,14C-丙酯草醚在土壤中的行为与归趋(D).浙江大学硕士论文,2006.
    112.余志扬,不同芳环14C标记示踪法研究丙酯草醚在土壤中的降解途径与产物组成(D).浙江大学硕士论文,2008.
    113.岳玲,土壤中不同芳环14C标记丙酯草醚的结合残留及其生物有效性(D).浙江大学硕士论文,2008.
    114.蔡志强,杨百科,赵希岳等,丙酯草醚降解菌CY的分离、鉴定及其降解特性[J].环境化学,2011,30(8):1433-1438.
    115.韩爱良,新型油菜田除草剂丙酯草醚的作用机制研究(D).浙江大学博士论文,2010.
    116. Mordaunt CJ, Gevao B, Jones KC, Semple KT. Formation of non-extractable pesticide residues,observations on compound defferences, measurement and regulatory issues[J]. Environmental Pollution.2005,133(1):25-34.
    117. Albarracin VH, Amoroso MJ, Abate CM. Bioaugmentation of copper polluted soil microcosms with Amycolatopsis tucumanensis to diminimish phytoavailable copper for Zea mays plants [J]. Chemosphere,2010,79:131-137.
    118. Dheeman DS, Henehan GTM, Frias JM.Purification and properties of Amycolatopsis mediterrami DSM 43304 lipase and its potential in flavour ester systhesis[J]. Bioresource Technology,2011,102:3373-3379.
    119. Hulya AK. Pentose phosphate pathway flux analysis for glycopeptide antibiotic vancomycin production during glucose limited cultivation of Amycolatopsis orientalis [J]. Preparative Biochemistry and Biotechnology.2010,42(1):94-105.
    120. Mahalaxmi Y, Sathish T, Subba RC, Prakasham RS. Corn husk as a novel substrate for the production of rifamycin B by isolated Amycolatopsis sp. RSP 3 under SSF[J]. Process Biochemistry.2010,45:47-53.
    121. Pelzer S, Reichert W, Huppert M, Heckmann D, Wohlleben W. Cloning and analysis of a peptide synthetase gene of the balhimycin producer amycolatopsis mediterrami DSM5908 and development of a gene disruption/replacement system[J]. Journal of Biotechnology.1997, 56:115-128.
    122. Stegmann E, Pelzer S, Wilken K, Wohlleben W. Development of three different gene cloning systems for genetic investigation of the new species Amysolatopsis japonicum MG417-CF17, the ethylenediaminedisuednic acid producer[J]. Journal of Biotechnology.2001, 92:195-204.
    123. Baker, K. L., Marshall, S., Nicol, G. W., Campbell, C. D., Nicollier, G, Ricketts, D., Killham K., Prosser, J. I. Degradation of metalaxyl-M in contrasting soils is influenced more by differences in physicochemical characteristics than in microbial community composition after re-inoculation of sterised soils[J]. Soil Biology and Biochemistry.2010,42,1123-1131.
    124. Singh, B. k., Walker, A., Morgan, J. A. W., Wright, D. J. Effects of soil pH on the biodegradation of chlorpyrifos and isolaton of a chlorpyrifos-degrading bacterium[J]. Applied Environmental and Microbiology.2003,69,5198-5206.
    125. Singh, B. k., Walker, A., Morgan, J. A. W., Wright, D. J. Role of soil pH in the development of enhaned biodegradation of fenamiphos[J].Applied Environmental and Microbiology.2003.69,7035-7043.
    126. Walker, A., Jurado-Exposito, M., Bending, G. D., Smith V. J. R. Spatial variability in the degradation rate of isoproturon in soil [J]. Environmental Pollution.2001,111,407-415.
    127. Fierer, N., Jackson, RB. The diversity and biogeography of soil bacterial communities [J]. Proceedings of the National Acaddemy of Science. USA.2006,103,626-631.
    128. Rousk, J., Brookes, P. C., Baath, E. Contrasting soil pH effects on fungal and bacterial growth suggests functional redundancy in carbon mineralization [J]. Applied Environmental and Microbiology.2009,75,1589-1596.
    129. Muralidhar RV, Panda T. Fungal protolast fusion a revision [J]. Bioprocess Engineering,2000,22(5):429-431.
    130.李尔炀.多基因转化技术[M].北京:化学工业出版社,2006.
    131.曲音波,林建强,肖敏.微生物技术开发原理[M].化学工业出版社,2005.
    132.钱存柔,黄仪秀.微生物学教程[M].北京:北京大学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700