隔热油管真空测试系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
注蒸汽采油是开采稠油的重要手段。隔热油管的真空度影响其隔热性能,从而影响注蒸汽采油的开采效果,因此,如何测试油管真空度是注蒸汽采油的重要研究方向。本项目以电容式微型真空传感器为测试单元,借助PZT压电晶体模块在其共振频率下的逆压电效应,结合PIC16F876A单片机及相关外围信号处理电路,从而测试隔热油管的真空度。就此,本文主要开展了以下研究工作:
     1.对影响油管隔热性能的导热、对流、辐射等因素进行分析,确定对流是影响散热的主要因素、真空度是油管隔热性能高低的主要指标。根据油管结构的封闭特性,设计整体测试方案。
     2.针对电容式微型真空传感器测得的电容值比寄生旁路电容小几个数量级的情况,采用由前置电容放大器、相关双采样技术和增量调制器等组成的电容/电压转换器作为电容测试电路,增加补偿电容以消除寄生电容的影响,采用相关双采样电路和增量调制器抑制低频噪声与高频噪声,实现从电容到电压的转换。
     3.在隔热油管内部,利用PIC16F876A对由电容测试电路测试的信号进行采集分析,通过PZT压电薄膜晶体在其共振频率下的逆压电效应,实现与外界的USART通信。
     4.PZT压电薄膜晶体本身的原理及结构具有缺陷,经由其产生的脉冲信号会产生失真及干扰,设计出对PZT压电薄膜晶体输出信号进行处理的信号处理电路,解决了信号的失真与干扰问题。
     5.测试系统要求体积小,功耗低。在软件上对系统MCU工作模式、I/O端口进行分析设置,在硬件上对系统工作电源、时钟频率进行分析设置,结合Dickson电荷泵,设计测试系统的单电池电源供电系统,实现了小体积与低功耗。
     6.根据滑动平均及最小二乘法理论,用MATLAB对由后期信号处理模块得到的信号进行采集与分析,解决了在高速率测试下保持信号完整性与去除信号干扰的矛盾。
     根据现有的文献检索,国外在隔热油管真空测试领域的研究有了一定的进展,但这些方法有的成本高,有的难实现,有的只能定性测量,不能定量测量。在国内,相关研究报道较少。因此,本课题的研究具有一定的现实及理论意义。
Steam process oil extraction was the vital method of thick oil exploitation. The vacuum level of insulated tubing affected heat insulation capability, and then affected the exploit effect of steam process oil extraction. Therefore, how to test the vacuum level of oil pipeline is the important research direction of steam process oil extraction. In the project, we used capacity vacuum micro sensor as test cell, adopted PZT piezoelectric crystal converse piezoelectric effect on its resonant frequency, and combined PIC16F876A with some related signal processing circuit. Thus measured the vacuum level of insulated tubing successfully. This dissertation launches the following research:
     1、Analyzed factors that affect the oil pipeline's heat insulation capability, such as heat conduction、convection current and radiation. Confirmed that convection current was the main cause of heat elimination, and that vacuum level was the main performance index of oil pipeline's heat insulation capability. According to enclosed property of the oil pipeline, the test project. was designed.
     2、The capacitance that tested by capacitive vacuum micro sensor was smaller than the parasitic capacitance, so a capacitance voltage converter that was composed of preamplifier、correlated double sampling technology and delta modulator was adopted as capacitance test circuit. Another compensatory capacitance was added in this circuit to eliminate the influence of the parasitic capacitance. Correlated double sampling technology and delta modulator were applied to attenuate low-frequency and high-frequency noise, and realized the capacitance-voltage conversion
     3、Within the insulated tubing, signal that generated from CVC capacitance test circuit was collected and analyzed by PIC16F876A. Through PZT piezoelectric crystal converse piezoelectric effect on its resonant frequency, the system can communicate with outside by USART.
     4、The principle and structure of PZT piezoelectric crystal had some defects. The impulse signal that pass through it were distorted and interfered. So a signal process circuit that can process the output signal generated by PZT piezoelectric crystal was designed, and it solved the signal distortion and interference.
     5、The test system required small bulk and low power consumption. In software, MCU system work mode and I/O port were analyzed and set. In hardware, system power and clock frequency were analyzed and set. A power system based on monocell and Dickson charge pump was designed, and it reduced system bulk and system power consumption.
     6、The signal from the after-signal processing circuit by MATLAB was collected and analyzed according to moving average and least squares theory, the contradiction between the maintenance of signal integrity and the removal of signal interference under high-speed test was solved.
     According to the existing literature, there were some progresses about the study of insulated tubing vacuum test on abroad. some of those methods cost, and some difficult to achieve, some only qualitative measurement, not quantitative measurement. There were few related research reports at home. Therefore, there is certain practical and theoretical significance about the issue.
引文
[1]俞稼镛.石油强化开采中的重大科学技术问题[J].中国科学院院刊,2000.2
    [2]于连东.世界稠油资源的分布及其开采技术的现状与展望[J].特种油气藏,
    2001,8(2):98-103.
    [3]王世杏,王世洁.稠油开采技术在塔河六号油田的应用及评价[J].内蒙古石油化
    工.27
    [4]王弥康.热力采油与提高原油采收率[J].油气采收率技术,1994,1(1):6-11.
    [5]刘喜林,赵忠彦,蒋生健.稠油井分层配汽工艺技术[J].特种油气藏,1997,4(2):
    37-41.
    [6]宋育贤.稠油热采技术的进展[J].国外油田工程,1997,12(10):12-32.
    [7]陈月明.注蒸汽热力采油[M].东营:石油大学出版社,1996.
    [8]吕立华,李明华,苏岳丽.稠油开采方法综述[J].内蒙古石油化工,
    2005.03:110-113.
    [9]Shah DO.Proc.of Symp.on Surface Phenomena in Enhanced Oile Recovery,
    Organized as Part of the Third International Conference on Surface and
    Colloid Science.Sweden:Stockholm,1979,10.
    [10]俞稼镛.油藏化学工程研究的发展趋势[J].化学进展,1999,7(3):193-200.
    [11]俞稼镛.复合驱强化采油技术中重大基础研究[J].中国科学院院
    刊,1999,7(3):3-5.
    [12]雷昊.稠油油藏注蒸汽开采储层伤害研究[D].西南石油大学硕士学位论文,
    2006.4.
    [13]张锐.稠油热采技术[M].北京:石油工业出版社,1999.
    [14]刘文章.热采稠油油藏开发模式[M].北京:石油工业出版社,1998.
    [15]赵川喜,党俊芳,余功铭,张玉英,张玉霞.巴西Jubarte稠油油田的评价与开发方
    案[J].国外油田工程.2005.3.
    [16]胡士清,白国斌,赵春梅.火烧油层技术在庙5块低渗透稠油油藏中的应用[J].
    特种油气藏,1998,5(4),33-37.
    [17]黄丽,黄忠廉.油田稠油热采技术综述[M].国外油藏工程,1997,1,9-10.
    [18]张宏民,程林松,梁玲.稠油油藏热活性水驱数值模拟[J].新疆石油地 质,2002,2,23(1),52-55.
    [19]崔波,石文平,戴树高等.高粘度稠油开采方法的现状和研究进展[J].石油化工
    和技术经济,2000,16(6),5-11.
    [20]廖泽文,耿安松.油藏开发中沥青质的研究进展[J].科学通报,
    1999,44(19),2018-2024.
    [21]LaurierL Schramm.稠油热采技术的进展[J].国外油田工程,1997,12;12-32.
    [22]陈月明.注蒸汽热力采油[M].东营:石油大学出版社,1996.
    [23]徐丕东,袁向春,邱国清等.提高胜利油区稠油热采采收率技术研究[J].油气采收
    率技术,2000,7(1):13-16.
    [24]于祥群.提高浅层稠油油藏开发效果[J].油气采收率技术,2000,7(4):20-22.
    [25]王铭宝.胜利油区稠油油藏注蒸汽热采后储层物性变化特征[J].油气地质与采收
    率,2004,11(6):69-71.
    [26]杨学文,郭建国,徐瑞秀,等.稠油油藏试井技术理论研究及应用[J].新疆石油学
    院学报,2002,14(4):36-39.
    [27]刘能强.实用现代试井解释方法[M].北京:石油工业出版社,1992.
    [28]刘玉岱.第六讲:真空测量[J].真空,1996,(6):46-48.
    [29]杨鸿鸣,王荣.真空测量技术发展溯源[J].河南师范大学学报,200.1,29(1):
    106-107.
    [30]李得天,陈旭,于红燕,张涤新,费渭南,查良镇.中国真空计量发展概述[J].真
    空与低温,2004,10(1):6-7.
    [31]孟扬,李旺奎.真空计的发展新趋势[J].真空科学与技术,1999,19(2):116-119.
    [32]张树林.真空技术物理基础[M]沈阳.东北工学院出版社,1988
    [33]唐政清.真空测量[M].北京:宇航出版社,1992.
    [34]金大志,唐平瀛,刘铁,等.潘宁放电在密封电真空器件真空度测量中的应用[J].
    强激光与粒子束,2002,14(3):453-455.
    [35]李知悦 刘建 常小军 刘军ST隔热管热性能检测系统的电源设计青岛化工学
    院学报第15卷第三期1994.
    [36]王理学,刘清良.高真空隔热油管隔热机理及隔热结构的研究山东理工大学学
    报(自然科学版)第17卷第四期2003.7.
    [37]霍广荣.胜利油田稠油油藏热力开采技术[M].北京:石油工业出版社1999.
    [38]陈崇枢.企业热平衡[M].北京:机械工业出版社.1988.
    [39]万人簿.采油技术手册[M]北京:石油工业出版社1996.
    [40]金钰,胡佑德,李向春.伺服系统设计指导.北京:北京工大学出版社.2000.
    [41]陆德民.石油化工自动控制设计手册.北京:化学化工出版社.2000.
    [42]孙洪和,翁唯勤.过程控制工程设计.北京:化学化工出版社.2001.
    [43]黄正慧,刘朝英,齐树兴.过程控制工程设计.北京:科学出版社.1995.
    [44]李学海.PIC单片机实用教程—提高篇[M]北京:北京航空航天大学出版社
    2002.09.
    [45]Microchip Technology.Inc.刘和平PICl6F87X数据手册—28/40脚8位FLASH单
    片机[M].北京:北京航空航天大学出版社.2001.6.
    [46]张明峰.PIC单片机入门与实战[M].北京:北京航空航天大学出版社.2004.09.
    [47]罗翼,张宏伟.PIC单片机应用系统开发典型实例[M].北京:中国电力出版社。
    2005.6
    [48]李国治,徐春华,余岳辉,彭昭廉.Matlab与数字示波器的通信[J].《电子技术应
    用》,2002.06.
    [49]张丹.基于MEMS技术的电容式微型真空传感器[D].厦门大学硕士学位论文,
    2005.5.
    [50]刘智敏.误差与数据处理[M].北京:原子能出版社,1981.
    [51]Hanselman D,Littefield B,李人厚,张平安.精通MATLAB 5综合辅导与指南[M].
    西安:交通大学出版社,2001.
    [52]Astrom,K.J..Lund Institute of Technology,Division of Automatic Control[R].
    Lectures on the Identification Problem-the Least Squares Method,Report 6086.
    1968.
    [53]Deutsch,R.,Estimation Theory,Prentice Hall,Englewood Cliffs,N.J.,1965.
    [54]Eykhoff,P..System Identification[M].New York:Wiley,1974.
    [55]Mendel,J.M..Discrete Techniques of Parameter Estimation[M].New
    York:Marcel Dekker,1973.
    [56]Sage,A.P.,Melsa,J.L..Estimation Theory with Application to communications
    and Control[M].New York:McGraw-Hill,1971.
    [57]Holt,Rinehart and Winston.ChangC.T.,Introduction to Linear System Theory [M].New York: 1970.
    [58]DeRusso. P.M. ;Roy,R.J.;and Close, C.M.. State Variables for Engineers[M]. New York: Wiley, 1965.
    [59]Freeman. Discrete Time Systems[M]. New York:Wiley, 1965.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700