铁基超导体的单晶生长以及物性研究和掺杂菲中的超导电性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超导是凝聚态物理一个很重要的问题,自从1911年超导被发现以来,它就吸引了众多研究者的关注。在本论文中,我们用自助溶剂方法生长了BaFe2As2母体单晶以及Co掺杂的样品,我们得到了样品的输运,磁性等物理性质随着掺杂的演化关系,得到了详细的电子相图,给出了SDW和超导共存的证据。我们发现了掺杂(?)phenanthrene中的超导,通过掺杂碱金属、碱土金属和稀土金属,可以获得大约5~6K的超导电性,通过压力效应,正常态磁化率等结果,我们得出该类超导体具有非传统超导电性的结论。
     本论文共分为以下六章:
     1.高温超导体研究综述
     本章大致介绍了铜氧化合物和铁基化合物这两类高温超导体的研究背景,重点对这两类高温超导体的晶体结构、物理性质和相图进行了详细地介绍。同时也对有机超导体的研究进展进行了总结和回顾,介绍了一些常见的碳氢稠环分子。
     2. BaFe2As2单晶的生长以及各向异性电阻和磁化率研究
     我们用自助熔剂法生长了相当大的BaFe2As2单晶。这里第一次给出高质量单晶的本征的各向异性的输运和磁学性质的测量。电阻的各向异性ρc/ρab有150之大,并且不依赖于温度。与多晶中的磁化率行为形成鲜明对比的是,该样品中没有观察到居里-外斯行为,与温度成线性关系的磁化率出现在SDW转变温度(Ts)到700K之间。这个结果表明在Ts之上样品呈现出很好的反铁磁关联。ab面内的二度对称的磁化率证明了中子散射中的条纹状自旋结构。电阻率的最小值强烈地依赖于磁场,表明低温电阻率的上扬行为应该与自旋涨落有关。
     3. BaFe2-xCoxAsx单晶的奇特物理性质和相图
     本文中,我们系统地研究了BaFe2-xCozAs2单晶的输运、磁化率和热容的性质。在欠掺杂区域,我们在电阻和磁化率方面观察到SDW转变。在SDW转变温度之上直到700K范围内,磁化率与温度T表现出不寻常的线性关系。随着Co的掺入,SDW有序逐渐被压制,超导性以圆顶状出现。电输运性质、比热和磁化率性质表明在x=0.17的BaFe2-xCoxAs2样品中SDW和超导性共存,与(Ba,K)Fe2As2'情形相类似。当x>0.34时,样品的超导性完全消失。随着Co掺入量的增加,从SDW态到费米液体态的转变被观察到。这里给出了详细的从SDW态到超导态演化的电子相图。
     4.新型层状钛基磷族氧化物BaTi2As2O的结构和物性的研究
     我们成功地合成了层状砷氧化合物BaTi2As2O。它由单层的Ba2+和TiAsO层构成。与NaTi2As20不同,[Ti4/2O4/4]2-层移动了(a/2,a/2)。电阻率、磁化率和热容均显示在200K有一个转变,可能缘于SDW/CDW转变。这些性质与从铁砷母体化合物中观测到的相似,而铜氧化合物和铁砷化合物中的超导性都是通过不同的掺杂压制反铁磁性得到的。由于BaTi2As20的晶体结构与铜氧化合物超导体相似,且物理性质与铁砷母体化合物相似,它可能是一种潜在的超导母体化合物。铜氧化合物和铁砷化合物超导性的研究是一个重要的方面。尽管随着Li+掺杂入空隙位,SDW/CDW被压制,仍然没有超导电性出现。探索超导电性的更多研究还在进行中。
     5.碱金属掺杂phenanthrene中5K的超导电性
     我们制备了一系列不同钾含量的Kxphenanthrene样品,发现仅仅当名义组分为x=3显示超导电性。其他的x偏离3的样品均不超导。在钾和铷掺杂的phenanthrene中只观测到了一个超导转变,这个和钾掺杂picene不同,后者有两个超导相,TC分别是7K和18K。具有phenanthrene构型边缘的多环芳香烃化合物有很多种类,一般表示成为[n]phenacene,其中n是苯环的数目。[n]phenacene分子可以视作石墨烯的部分,带状苯环是石墨烯片的部分。因此,在A3phenanthrene (A3C14Hi0, A=K and Rb)以及Kxpicene中间超导电性的发现开辟了发现一类广阔的稠环芳香烃超导体的领域。在[n]phenacene中找寻超导体并且研究其物理性质对于理解超导机制非常重要。相对于在Kx picene中7K和18K的转变温度,三个苯环的A3phenanthrene (A=K, Rb)的TC~5K相对比较低,表明这种有机超导体具有更长的苯环可能具有更高的TC。
     6.碱土金属和稀土金属掺杂的phenanthrene中的非传统超导电性
     我们发现了碱土金属(Sr和Ba)和稀土金属(La和Sm)掺杂phenanthrene的超导电性,超导转变温度分别为Ae1.5phenanthrene的~5.6K和Re1phenanthrene的-6K。所有碱土金属和稀土金属掺杂的超导样品的超导屏蔽分数均比碱金属掺杂的phenanthrene和picene要大,2K时Ba1.5phenanthrene的屏蔽分数最高达65.4%,这是目前碳氢稠环化合物超导体中超导屏蔽分数最高的体系。拉曼光谱由于电荷转移给出8和7cm-1每电子的红移,这与A3phenanthrene和A3C60(A=K、Rb)相似。超导转变温度TC和压力之间具有正的压力系数d[TC/TC(0)]/dP。对于碱土金属和稀土掺杂的样品,均是金属离子半径增大相应的Tc减小,综合压力效应,可以得出这些超导体可能是非传统超导的结论。
Superconductivity is an important issue in condensed-matter physics. Since it was discovered in1911, this field attracts great attention of researchers. In this disserta-tion, we have grown BaFe2As2single crystals and Co-doped BaFe2As2, we obtain the doping dependence of physical properties:transport, magnetism etc, we get the detail electronic phase diagram and give the evidence of coexistence of superconductivity and spin density wave(SDW). We find the superconductivity in doped phenanthrene. We can realize superconductivity at5~6K by doping alkali-, alkali-earth-and rare-earth-metal. Based on the results of pressure effect and magnetic susceptibility, we believe that type superconductor possible show unconventional superconductivity.
     1. Brief overview of high-TC superconductors and organic superconduc-tors
     In this chapter, we review the background of two types of high TC superconduc-tors:Cuprates and Iron-pnictides. We give detail description of the crystal structure, physical properties and phase diagram of these two types of high-TC superconductors. We also summarize and review the research progress of organic superconductors, some common hydrocarbon molecules are introduced.
     2. Anisotropy in transport properties and susceptibility of single crystals BaFe2As2
     In this chapter, we report that sizable single crystals of BaFe2As2have been grown with the self-flux method. Measurements and anisotropy of intrinsic transport and magnetic properties of high quality single crystal are first presented. The resistiv-ity anisotropy (pc/pab) is as large as150and independent of temperature, suggesting that transport in the ab-plane and along the c-axis direction share the same scatter-ing mechanism. In contrast to the susceptibility behavior observed in poly crystalline samples, no Curie-Weiss behavior is observed, and a linear temperature dependent sus-ceptibility occurs from the spin-density-wave (SDW) transition temperature,(Ts), to700K. This result suggests that strong antiferromagnetic correlations are present well above Ts. A twofold symmetry of susceptibility in the ab-plane indicates a stripe-like spin structure as observed by neutron scattering. The resistivity minimum is strongly dependent on the magnetic field. A log(1/T) resistivity associated with the Kondo effect, similar to that of the underdoped cuprates, is observed at low temperatures.
     3. Peculiar physical properties and Phase diagram of BaFe2-xCoxAs2single crystals
     We study systematically transport, susceptibility and heat capacity of single crys-tals BaFe2-xC0xAs2. In the underdoped region, SDW transition was observed in both resistivity and susceptibility. The magnetic susceptibility shows unusual T-linear de-pendence above SDW transition up to700K. With Co doping, SDW ordering is grad-ually suppressed and superconductivity emerges with a dome-like shape. Electrical transport, specific heat and magnetic susceptibility indicate that SDW and supercon-ductivity coexist in the sample BaFe2-xCoxAs2around x=0.17, being similar with that in (Ba,K)Fe2As2. The superconductivity completely disappears for the samples with x>0.34. A crossover from SDW state to Fermi-liquid state is observed with in-creasing Co doping. A detailed electronic phase diagram about evolution from SDW to superconducting state is given.
     4. Structure and Physical Properties for a new Layered Pnictide-Oxides: BaTi2As2O
     We have successfully synthesized a new layered pnictide-oxides:BaTi2As20. It shares similar characteristics with Na2Ti2Sb2O. The crystal has a layered structure with a tetragonal P4/nmm group (a=4.047(3) A, c=7.275(4) A). The resistivity shows an anomaly at200K, which should be ascribed to a SDW or structural transition. The SDW or structural transition is confirmed by magnetic susceptibility and heat capacity measurements. These behaviors are very similar to that observed in parent compounds of high-Tc iron-based pnictides superconductors, in which the supercon-ductivity shows up when the anomaly due to the SDW or structural transition is suppressed. Therefore, the new layered pnictide-oxides:BaTi2As2O could be a poten-tial parent compound for superconductivity. It is found that Li+doping significantly suppresses the anomaly, but no superconductivity emerges so far.
     5. Superconductivity at5K in alkali-metal doped phenanthrene
     In this chapter, we prepared the series of the samples Kxphenanthrene with differ-ent potassium content. It is found that only the sample with nominal composition of K3phenanthrene shows superconductivity, and all other samples with x deviation from3do not show superconductivity. Here, we observed only a superconducting transi-tion for the superconducting K3phenanthrene and Rb3phenanthrene, being different from the case of potassium doped picene in which there exist two superconducting phases with TC=7and18K, respectively. There exists a big family of ploycyclic aromatic compounds with an extended phenanthrene-like structural motif designated as [n]phenacens, where n is the number of fused benzene rings.[n]phenacene molecules are related to layers of graphene in the way that ribbons are related to sheets. There-fore, discovery of superconductivity in A3phenanthrene (A3C14H10, A=K and Rb), besides the superconductor Kxpicene, opens a new broad family of superconductors that consists of aromatic hydrocarbons. Searching for superconductors in such fam-ily of [n]phenacene molecules and studying their physical properties are very impor-tant to understand mechanism of superconductivity. Tc of5K is relatively low for A3Phenanthrene (A=K, Rb) with three benzene rings, compared with7K and18K for Kxpicene with five benzene rings. It suggests that such organic hydrocarbons with long benzene rings are potential superconductors with high TC.
     6. Unconventional superconductivity in alkali-earth and rare-earth metal doped phenanthrene
     In this chapter, we found superconductivity in alkali-earth (Sr&Ba) and rare-earth (La&Sm) doped phenanthrene, superconducting transition temperature(Tc) are about5.6K and6K for alkali-earth and rare-earth metal, respectively. The shielding fraction for all the alkali-earth and rare-earth metal doped phenanthrene is much big-ger than alkali-metal doped phenanthrene and picene, this is the highest record in hydrocarbon superconductors system. Raman spectrum show7and8cm-1per elec-tron downshift, which is quite similar with A3phenanthrene and A3C6o(A=K、Rb). The pressure dependent TC shows a positive parameter:d[TC/TC(0)]/dP. For the alkali-earth and rare-earth doped phenanthrene, the larger ion radii with the lower TC, combining the pressure effect, we can draw a conclusion that these superconduc-tors are possible unconventional ones.
引文
[1]J. Bardeen, L. N. Cooper, J. R. Schrieffer, Phys. Rev.108,1175(1957).
    [2]J. G. Bednorz, K. A. Muller, Phys,64,189 (1986).
    [3]赵忠贤等,科学通报32,66(1987).
    [4]M. K. Wu, J. R. Ashburn, C. J. Tirng, R. L. Meng, L. Gao, Z. L. Huang, Y. Q. Wang, C. W. Chu, Phys. Rev. Lett.,58,908 (1987).
    [5]C. Michel, M. Hervieu, M. M. Borel et al., Z. Phys.B 68,421(1987).
    [6]H. Maeda, Y. Tanaka, M. Fukutomi, and T. Asano. Jpn. J. Appl. Phys.,27, L209, (1988).
    [7]Z. Z. Sheng, A. M. Hermann, A. E. Ali, C. Almasan, J. Estrada, T. Datta and R. J. Matson, Phys. Pev. Lett.,60,937 (1988).
    [8]S.N. Putilin, E.Y.Antipov, O. Chmaissem and M.Marezio, Nature,362, 226(1993)
    [9]J. H. Eggert, J. Z. Hu, and H. K. Mao, L. Beauvais, R. L. Meng, and C. W. Chu, Phys. Pev. B 49,15299 (1994).
    [10]刘荣华,博士毕业论文.
    [11]Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, and H. Hosono, J. Am. Chem. Soc.128,10012 (2006).
    [12]Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc.,130, 3296 (2008).
    [13]X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, and D. F. Fang, Nature,453, 761 (2008).
    [14]G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo, and N. L. Wang, Phys. Rev. Lett.,100,247002 (2008).
    [15]R. H. Liu, G. Wu, T. Wu, D. F. Fang, H. Chen, S. Y. Li, K. Liu, Y. L. Xie, X. F. Wang, R. L. Yang, C. He, D. L. Feng and X. H. Chen, Phys. Rev. Lett.101, 087001 (2008).
    [16]Z. A. Ren, J. Yang, W. Lu, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou and Z. X. Zhao, Europhys. Lett.,82,57002 (2008).
    [17]Z. A. Ren, W. Lu, J. Yang, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou and Z. X. Zhao, Chinese Phys. Lett.,25,2215 (2008).
    [18]C. Wang, L. J. Li, S. Chi, Z. W. Zhu, Z. Ren, Y. K. Li, Y. T. Wang, X. Lin, Y. K. Luo, S. Jiang, X. F. Xu, G. H. Cao, and Z. A. Xu, Europhys. Lett.,83,67006 (2008).
    [19]H. Kito, H. Eisaki and A. Iyo J. Phys. Soc. Jpn.77,063707(2008).
    [20]S. Matsuishi, T. Hanna, Y. Muraba, S. W. Kim, J. E. Kim, M. Takata, S. Shamoto, R. I. Smith and H. Hosono, Phys. Rev. B 85,014514(2012).
    [21]J. Zhao, Q. Huang, C. de la Cruz, S. Li, J.W. Lynn, Y. Chen, M. A. Green, G. F. Chen, G. Li, Z. Li, J. L. Luo, N. L. Wang, and P. Dai, Nat. Mater.7,953 (2008).
    [22]M. Rotter, M. Tegel, and D. Johrendt Phys. Rev. Lett.101,107006 (2008).
    [23]K. Sasmal, B. Lv, B. Lorenz, A. M. Guloy, F. Chen, Y.-Y Xue, and C.-W Chu. Phys. Rev. Lett.101,107007 (2008).
    [24]G. Wu, H. Chen, T. Wu, Y. L. Xie, Y. J. Yan, R. H. Liu, X. F. Wang, J. J. Ying, and X. H. Chen, J. Phys.:Condens. Matter 20,422201 (2008).
    [25]P. M. Shirage, K. Miyazawa, H. Kito, H. Eisaki, and A. Iyo, Appl. Phys. Express 1,081702 (2008).
    [26]K. Zhao, Q. Q. Liu, X. C. Wang, Z. Deng, Y. X. Lv, J. L. Zhu, F. Y. Li and C. Q. Jin. J. Phys.:Condens. Matter 22 222203(2010).
    [27]X. F. Wang, T. Wu, G. Wu, R. H. Liu, H. Chen, Y. L. Xie and X. H. Chen, New Journal of Physics 11,045003(2009).
    [28]Z. Ren, Q. Tao, S. Jiang, C. Feng, C. Wang, J. Dai, G. Cao, and Z. Xu, Phys. Rev. Lett.102,137002 (2009);
    [29]C. W. Chu and B. Lorenz, Physica C 469,385 (2009).
    [30]T. P. Ying, X. L. Chen, G. Wang, S. F. Jin, T. T. Zhou, X. F. Lai, H. Zhang and W. Y. Wang. Scientific Reports 2,426(2012).
    [31]M. B.-Lucas, D. G. Free, S. J. Sedlmaier, J. D. Wright, S. J. Cassidy, Y. Hara, A. J. Corkett, T. Lancaster, P. J. Baker, S. J. Blundell, S. J. Clarke. arXiv:1203.5046.
    [32]S. He, J. He, W. Zhang, L. Zhao, D. Liu, X. Liu, D. Mou, Y.-B. Ou, Q.-Y. Wang, Z. Li, L. Wang, Y. Peng, Y. Liu, C. Chen, L. Yu, Gu. Liu, X. Dong, J. Zhang, C. Chen, Z. Xu, X. Chen, X. Ma, Q. Xue, and X. J. Zhou. arXiv:1207.6823.
    [33]Y. Zhang, L. X. Yang, M. Xu, Z. R. Ye, F. Chen, C. He, H. C. Xu, J. Jiang, B. P. Xie, J. J. Ying, X. F. Wang, X. H. Chen, J. P. Hu, M. Matsunami, S. Kimura and D. L. Feng. Nature Materials 10,273 (2011).
    [34]H. Eisaki, N. Kaneko, D. L. Feng, A. Damascelli, P. K. Mang, K. M. Shen, Z.-X. Shen and M. Greven. Physical Review B 69,064512(2004)
    [35]http://www.physik.uni-augsburg.de/grasersi/research3.html
    [36]G. Xiao, M. Z. Cieplak and C. L. Chien, Physical Review B 38,11824(1988)
    [37]M. Gurvitch, A. T. Fiory. Physical Review Letter 59,1337(1987)
    [38]Y. Nakamuma and S. Uchida. Physical Review B 47,8369(1993)
    [39]J. M. Harris, Y. F. Yan and N. P. Ong. Physical Review B 46,14293(1992).
    [40]P. W. Anderson, Physical Review Letter 67,2092(1991).
    [41]V. Johnson and W. Jeitschko, J. Solid State Chem.,11,161 (1974)
    [42]B. I. Zimmer, W. Jeitschko, J. H. Albering, R. Glaum, and M. Reehuis, J. Alloys and Comp.,229,238 (1995).
    [43]J. Paglione and R. L. Greene, Nature Physics 6,645(2010).
    [44]K. Terashima, Y. Sekiba, J. H. Bowen, K. Nakayama, T. Kawahara, T. Sato, P. Richard, Y.-M. Xu, L. J. Li, G. H. Cao, Z.-A. Xu, H. Ding, and T. Takahashi, Proc. Natl. Acad. Sci. U.S.A.106,7330 (2009).
    [45]Y.-L. Wang, L. Shan, L. Fang, P. Cheng, C. Ren, and H.-H. Wen, Supercond. Sci. Technol.22,015018 (2009).
    [46]K. Matano, Z. A. Ren, X. L. Dong, L. L. Sun, Z. X. Zhao, and G. Q. Zheng, Euro. Phys. Lett.83,57001 (2008).
    [47]H. Chen, Y. Ren, Y. Qiu, Wei Bao, R. H. Liu, G. Wu, T. Wu, Y. L. Xie, X. F. Wang, Q. Huang, and X. H. Chen, Europhys. Lett.,85,17006 (2009).
    [48]T. Y. Chen, Z. Tesanovic, R. H. Liu, X. H. Chen, and C. L. Chien, Nature,453, 1224 (2008).
    [49]K. Hashimoto, T. Shibauchi, T. Kato, K. Ikada, R. Okazaki, H. Shishido, M. Ishikado, H. Kito, A. Iyo, H. Eisaki, S. Shamoto and Y. Matsuda, Phys. Rev. Lett.102,017002 (2009).
    [50]H. Ding, P. Richard, K. Nakayama, K. Sugawara, T. Arakane, Y. Sekiba, A. Takayama, S. Souma, T. Sato, T. Takahashi, Z. Wang, X. Dai, Z. Fang, G. F. Chen, J. L. Luo, and N. L. Wang, Europhys. Lett.,83,47001 (2008).
    [51]Q. Huang, J. Zhao, J. W. Lynn, G. F. Chen, J. L. Luo, N. L. Wang, and P. C. Dai, Phys. Rev. Lett.,78,054529 (2008).
    [52]J. Zhao, Q. Huang, C. Cruz, S. L. Li, J. W. Lynn, Y. Chen, M. A. Green, G. F. Chen, G. Li, Z. Li, J. L. Luo, N. L. Wang, and P. C. Dai, Nature Materials,7, 953 (2008).
    [53]C.-H. Lee, A. Iyo, H. Eisaki, H. Kito, M. T. Fernandez-Diaz, T. Ito, K. Kihou, H. Matsuhata, M. Braden, and K. Yamada, J. Phys. Soc. Jpn.77,083704 (2008).
    [54]梁敬魁,车广灿,陈小龙著,新型超导体系相关系和晶体结构,北京,科学出版社(2006).
    [55]Y. Jia, P. Cheng, L. Fang, H. Q. Luo, H. Yang, C. Ren, L. Shan, C. Z. Gu, and H. H. Wen, Appl. Phys. Lett.,93,032503 (2008)
    [56]J.-Q. Yan, S. Nandi, J. L. Zarestky, W. Tian, A. Kreyssig, B. Jensen, A. Kracher, K. W. Dennis, R. J. McQueeney, A. I. Goldman, R. W. McCallum, and T. A. Lograsso, Appl. Phys. Lett.95,222504 (2009).
    [57]N. D. Zhigadlo, S. Katrych, Z. Bukowski, S. Weyeneth, R. Puzniak, and J Karpin-ski, J. Phys.:Condens. Matter,20,342202 (2008)
    [58]M. Ishikado, S. Shamoto, H. Kito, A. Iyo, H. Eisaki, T. Ito and Y. Tomioka, Physica C 469,901(2009).
    [59]M. Hansen, K. Anderko, Constitution of Binary Alloys,2nd ed., McGraw-Hill, New York,1958.
    [60]Binary Alloy Phase Diagrams (Ed.:T. B. Massalski), ASM, Metals Park,1986.
    [61]A. Lang, W. Jeitschko, Z. Metallkd.87,759(1996).
    [62]M. G. Kanatzidis, R. Pottgen, and W. Jeitschko, Angew. Chem.44,6996(2005).
    [63]Y. Kurosaki, Y. Shimizu, K. Miyagawa, K. Kanoda, and G. Saito, Phys. Rev. Lett.95,177001 (2005).
    [64]K. Fukui, Science 218,747 (1982).
    [65]T. Kato, K. Yoshizawa, and K. Hirao, J. Chem. Phys.116,3420 (2002).
    [66]W. A. Little, Phys. Rev.134,1416(1964).
    [67]E. B. Yagubskii, I. F. Shchegolev, V. N. Laukhin, P. A. Kononovich, M. V. Kartsovnik, A. V. Zvarykina, and L. I. Buravov. JETP Lett.39 12(1984).
    [68]R. Mitsuhashi, Y. Suzuki, Y. Yamanari, H. Mitamura, T. Kambe, N. Ikeda, H. Okamoto, A. Fujiwara, M. Yamaji, N. Kawasaki, Y. Maniwa and Y. Kubozono, Nature 464,76(2010).
    [69]D. Jerome, A. Mazaud, M. Ribault, and K. Bechgaard. J. Phys. Lett.41 L95(1980).
    [70]S. S. P. Parkin, E. M. Engler, R. R. Schumaker, R. Lagier, V. Y. Lee, J. C. Scott, and R. L. Greene, Molecular Crystals and Liquid Crystals.79,249(1982).
    [71]J. Ferraris, D. O. Cowan, V. Walatka, Jr., and J. H. Perlstein:J. Am. Chem. Soc.95 (1973) 948.
    [72]H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger: J. Chem. Soc., Chem. Commun. (1977) 578.
    [73]K. Bechgaard, K. Carneiro, M. Olsen, F. B. Rasmussen and C. S. Jacobsen:Phys. Rev. Lett.46,852(1981).
    [74]D. Jaccard, H. Wilhelm, D. Je'rome, J. Moser, C. Carcel and J. M. Fabre: J. Phys.:Condens. Matter 13, L89(2001).
    [75]T. Adachi, E. Ojima, K. Kato, H. Kobayashi, T. Miyazaki, M. Tokumoto and A. Kobayashi:J. Am. Chem. Soc.122,3238(2000).
    [76]K. Murata, M. Tokumoto, H. Anzai, H. Bando, G. Saito, K. Kajimura and T. Ishiguro:J. Phys. Soc. Jpn.54,2084(1985).
    [77]V. N. Laukhin, E. E. Kostyuchenko, Yu. V. Sushko, I. F. Shchegolev and E. B. Yagubskii:JETP Lett.41,81(1985).
    [78]P. C. W. Leung, T. J. Emge, M. A. Beno, H. H. Wang and J. M. Williams: J. Am. Chem. Soc.106,7644(1984).
    [79]H. Urayama, H. Yamochi, G. Saito, K. Nozawa, T. Sugano, M. Kinoshita, S. Sato, K. Oshima, A. Kawamoto and J. Tanaka: Chem. Lett.17,55(1988).
    [80]T. Ishiguro, K. Yamaji and G. Saito, Organic Superconductors (Springer, Berlin, Heidelberg,1998) Springer Series in Solid State Sciences.
    [81]H. Akamatsu, H. Inokuchi and Y. Mtsunaga, Nature 173,168 (1954).
    [1]X. F. Wang, T. Wu, G. Wu, H. Chen, Y. L. Xie, J. J. Ying, Y. J. Yan, R. H. Liu, and X. H. Chen, Phys. Rev. Lett.102,117005(2009).
    [2]Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc.130, 3296 (2008).
    [3]X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, and D. F. Fang, Nature 453, 761 (2008).
    [4]G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo, and N. L. Wang, Phys. Rev. Lett.100,247002 (2008).
    [5]Z. A. Ren, J. Yang, W. Lu, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou and Z. X. Zhao, Europhys. Lett.82,57002 (2008).
    [6]J. Dong, H. J. Zhang, G. Xu, Z. Li, G. Li, W. Z. Hu, D. Wu, G. F. Chen, X. Dai, J. L. Luo, Z. Fang and N. L. Wang, Europhys. Lett.83,27006 (2008).
    [7]D. J. Singh, M. H. Du, Phys. Rev. Lett.100,237003(2008).
    [8]S. Lebegue, Phys. Rev. B 75,035110(2007).
    [9]K. Haule, J. H. Shim, G. Kotliar, Phys. Rev. Lett.100,226402(2008).
    [10]C. Cao, P. J. Hirschfeld, H. P. Cheng, Phys. Rev. B 77,220506(R)(2008).
    [11]F. Ma, Z. Y. Lu, Phys. Rev. B 78,033111(2008).
    [12]I. A. Nekrasov et al., JETP Lett.87,620(2008).
    [13]N. D. Zhigadlo et al., J. Phys.:Condens. Matter 20,342202(2008).
    [14]Y. Jia et al., Appl. Phys. Lett.93,032503(2008).
    [15]M. Rotter, M. Tegel and D. Johrendt, Phys. Rev. Lett.101,107006(2008).
    [16]N. Ni et al., Phys. Rev. B 78,014507(2008).
    [17]T. Nakano et al., Phys. Rev. B 49,16000(1994).
    [18]M. Rotter et al., Phys. Rev. B 78,020503(R)(2008).
    [19]M. L. Foo et al., Phys. Rev. Lett.92,247001(2004).
    [20]E. Fawcett et al., Rev. Mod. Phys.61,25(1994).
    [21]G. M. Zhang et al., Europhys. Lett.86,37006 (2009)..
    [22]K. Takenaka et al., Phys. Rev. B 50,6534(1994).
    [23]L. Balicas et al., Phys. Rev. Lett.100,126405(2008).
    [24]C. Cruz et al., Nature 453,899(2008).
    [25]Q. Huang et al., arXiv:0806.2776(2008).
    [26]Y. Ando et al., Phys. Rev. Lett.75,4662(1995).
    [27]P. W. Anderson, Phys. Rev. Lett.77,4241(1996).
    [28]C. M. Varma, Phys. Rev. Lett.79,1535(1997).
    [29]R. C. Budhani et al., Phys. Rev. B 65,100517(2002).
    [30]T. Sekitani et al., J. Phys. Chem. Solids 63,1089(2002).
    [31]P. A. Marchetti et al., Phys. Rev. Lett.86,3831(2001).
    [32]Gang Mu, Huiqian Luo, Zhaosheng Wang, Lei Shan, Cong Ren, and Hai-Hu Wen, Phys. Rev. B 79,174501(2009)
    [1]X. F. Wang, T. Wu, G. Wu, R. H. Liu, H. Chen, Y. L. Xie and X. H. Chen, New Journal of Physics 11,045003(2009).
    [2]Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc.,130, 3296 (2008).
    [3]X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, and D. F. Fang, Nature,453, 761 (2008).
    [4]G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo, and N. L. Wang, Phys. Rev. Lett.,100,247002 (2008).
    [5]Z. A. Ren, G. C. Che, X. L. Dong, J. Yang, W. Lu, W. Yi, X. L. Shen, Z. C. Li, L. L. Sun, F. Zhou, and Z. X. Zhao, Europhys. Lett.83,17002 (2008).
    [6]M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett.,101,107006 (2008).
    [7]G. Wu, Y. L. Xie, H. Chen, M. Zhong, R. H. Liu, B. C. Shi, Q. J. Li, X. F. Wang, T. Wu, Y. J. Yan, J. J. Ying, and X. H. Chen, J. of Phys: Conden. Matter 21, 142203(2009)
    [8]J. Dong, H. J. Zhang, G. Xu, Z. Li, G. Li, W. Z. Hu, D. Wu, G. F. Chen, X. Dai, J. L. Luo, Z. Fang, and N. L. Wang, Europhys. Lett.,83,27006(2008).
    [9]R. H. Liu, G. Wu, T. Wu, D. F. Fang, H. Chen, S. Y. Li, K. Liu, Y. L. Xie, X. F. Wang, R. L. Yang, L. Ding, C. He, D. L. Feng and X. H. Chen, Phys. Rev. Lett. 101,087001(2008).
    [10]H. Luetkens, H.-H. Klauss, M. Kraken, F. J. Litterst, T. Dellmann, R. Klingeler, C. Hess, R. Khasanov, A. Amato, C. Baines, M. Kosmala, O. J. Schumann, M. Braden, J. Hamann-Borrero, N. Leps, A. Kondrat, G. Behr, J. Werner and B. Buchner, Nature Materials 8,305(2009).
    [11]Jun Zhao, Q. Huang, Clarina de la Cruz, Shiliang Li, J. W. Lynn, Y. Chen, M. A. Green, G. F. Chen, G. Li, Z. Li, J. L. Luo, N. L. Wang and Pengcheng Dai, Nature Materials 7,953(2008).
    [12]A. J. Drew, Ch. Niedermayer, P. J. Baker, F. L. Pratt, S. J. Blundell, T. Lan-caster, R. H. Liu, G. Wu, X. H. Chen, I. Watanabe, V. K. Malik, A. Dubroka, M. Rossle, K. W. Kim, C. Baines and C. Bernhard, Nature Materials 8,310(2009).
    [13]H. Chen, Y. Ren, Y. Qiu, Wei Bao, R. H. Liu, G. Wu, T. Wu, Y. L. Xiel, X. F. Wang, Q. Huang and X. H. Chen, Europhys. Lett.85,17006(2009).
    [14]Athena S. Sefat, Rongying Jin, Michael A. McGuire, Brian C. Sales, David J. Singh and David Mandrus, Phys. Rev. Lett 101,117004(2008).
    [15]C. Wang, Y. K. Li, Z. W. Zhu, S. Jiang, X. Lin, Y. K. Luo, S. Chi, L. J. Li, Z. Ren, M. He, H. Chen, Y. T. Wang, Q. Tao, G. H. Cao and Z. A. Xu, Phys. Rev. B 79,054521(2009).
    [16]A. Leithe-Jasper, W. Schnelle, C. Geibel and H. Rosner, Phys. Rev. Lett 101, 207004(2008).
    [17]Athena S. Sefat, Ashfia Huq, Michael A. McGuire, Rongying Jin, Brian C. Sales, David Mandrus, Lachlan M. D. Cranswick, Peter W. Stephens, and Kevin H. Stone, Phys. Rev. B 78,104505(2008).
    [18]A. S. Sefat, M. A. McGuire, R. Jin, B. C. Sales, and D. Mandrus, Phys. Rev. Lett.101,117004(2008).
    [19]Neeraj Kumar, R. Nagalakshmi, R. Kulkarni, P. L. Paulose, A. K. Nigam, S. K. Dhar and A. Thamizhavel, Phys. Rev. B 79,012504 (2009).
    [20]K Ahilan, J Balasubramaniam, F L Ning, T Imai, A S Sefat, R Jin, M A McGuire, B C Sales and D Mandrus, J. Phys.:Condens. Matter 20,472201(2008).
    [21]R. Prozorov, N. Ni, M. A. Tanatar, V. G. Kogan, R. T. Gordon, C. Martin, E. C. Blomberg, P. Prommapan, J. Q. Yan, S. L. Bud'ko and P. C. Canfield, Phys. Rev. B 78,224506(2008).
    [22]Yi Yin, M. Zech, T. L. Williams, X. F. Wang, G. Wu, X. H. Chen and J. E. Hoffman, Phys. Rev. Lett.102,097002 (2009).
    [23]M. A. Tanatar, N. Ni, C. Martin, R. T. Gordon, H. Kim, V. G. Kogan, G. D. Samolyuk, S. L. Bud'ko, P. C. Canfield and R. Prozorov, Phys. Rev. B 79,094507 (2009).
    [24]R. T. Gordon, N. Ni, C. Martin, M. A. Tanatar, M. D. Vannette, H. Kim, G. D. Samolyuk, J. Schmalian, S. Nandi, A. Kreyssig, A. I. Goldman, J. Q. Yan, S. L, Bud'ko, P. C. Canfield, and R. Prozorov, Phys. Rev. Lett.102,127004 (2009)
    [25]N. Ni, M. E. Tillman, J.-Q. Yan, A. Kracher, S. T. Hannahs, S. L. Bud'ko and P. C. Canfield, Phys. Rev. B 78,214515(2008).
    [26]Jiun-Haw Chu, James G. Analytis, Chris Kucharczyk and Ian R. Fisher, Phys. Rev. B 79,014506(2009).
    [27]X. F. Wang, T. Wu, G. Wu, H. Chen, Y. L. Xie, J. J. Ying, Y. J. Yan, R. H. Liu, and X. H. Chen, Phys. Rev. Lett.102,117005(2009).
    [28]Y. K. Li et al., cond-mat/0808.3254vl(2008).
    [29]Marianne Rotter, Marcus Tegel, Dirk Johrendt Inga Schellenberg, Wilfried Her-mes and Rainer Pottgen, Phys. Rev. B 78,020503(2008).
    [30]G. Wu, H. Chen, T. Wu, Y. L. Xie, Y. J. Yan, R. H. Liu, X. F. Wang, J. J. Ying and X. H. Chen, J. Phys.:Condens. Matter 20,422201(2008).
    [31]Marianne Rotter, Michael Pangerl, Marcus Tegel, Dirk Johrendt, Angew. Chem. Int. Ed.47,7949(2008).
    [32]Marianne Rotter, Marcus Tegel, Inga Schellenberg, Falko M Schappacher, Rainer Pottgen, Joachim Deisenhofer, Axel Gunther, Florian Schrettle, Alois Loidl and Dirk Johrendt, New J. Phys.11,025014(2009).
    [33]G. M. Zhang, Y. H. Su, Z. Y. Lu, Z. Y. Weng, D. H. Lee and T. Xiang, Europhys. Lett.86,37006 (2009).
    [I]X. F. Wang, Y. J. Yan, J. J. Ying, Q. J. Li, M. Zhang, N. Xu and X. H. Chen, J. Phys.:Condens. Matter.22 075702(2010).
    [2]J. G. Bednorz, K. A. Muller, Z. Phys. B 64,189 (1986).
    [3]R.M. Fleming, L.W. ter Haar, and F.J. DiSalvo, Phys. Rev. B 35,5388(1987).
    [4]L. W. ter Haar, F. J. Di Salvo, H. E. Bair, R. M. Fleming, J. V. Waszczak, and W. E. Hatfield, Phys. Rev. B 35,1932(1987).
    [5]E. Morosan, H. W. Zandbergen, B. S. Dennis, J. W. Bos, Y. Onose, T. Klimczuk, A. P. ramirez, N. P. Ong and R. J. Cava, Nature Physics 2,544(2006).
    [6]G. Wu, H. X. Yang, L. Zhao, X. G. Luo, T. Wu, G. Y. Wang and X. H. Chen, Phys. Rev. B 76,024513(2007).
    [7]Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc.130, 3296 (2008).
    [8]X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, D. F. Fang, Nature 354,761-762(2008).
    [9]G. F. Chen, Z. Li, D.Wu, G.Li, W. Z.Hu, J. Dong, P. Zheng, J. L. Luo, N. L. Wang, Phys. Rev. Lett.100,247002 (2008).
    [10]Z. A. Ren, W. Lu, J. Yang, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou, et al, Chinese Phys. Lett.25,2215 (2008).
    [11]G. Wu, Y. L. Xie, H. Chen, M. Zhong, R. H. Liu, B. C. Shi, Q. J. Li, X. F. Wang, T. Wu, Y. J. Yan, J. J. Ying and X. H. Chen, J. Phys.:Condens. Matter 21, 142203(2009)
    [12]M. Rotter, M. Tegel, D. Johrendt, I. Schellenberg, W. Hermes, and R. Pottgen, Phys. Rev. B 78,020503(2008).
    [13]M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett.101,107006 (2008).
    [14]X. C. Wang, Q. Q. Liu, Y. X. Lv, W. B. Gao, L. X. Yang, R. C. Yu, F. Y. Li, C. Q. Jin, Solid Sate Communications 148,538(2008)
    [15]G. Wu, H. Chen, T. Wu, Y. L. Xie, Y. J. Yan, R. H. Liu, X. F. Wang, J. J. Ying, X. H. Chen, Journal of Physics:Condensed Matter 20,422201 (2008).
    [16]J. Dong, H. J. Zhang, G. Xu, Z. Li, G. Li, W. Z. Hu, D. Wu, G. F. Chen, X. Dai, J. L. Luo, Z. Fang and N. L. Wang, Europhys. Lett.83,27006 (2008).
    [17]Fong-Chi Hsu, Jiu-Yong Luo, Kuo-Wei Yeh, Ta-Kun Chen, Tzu-Wen Huang, Phillip M. Wu, Yong-Chi Lee, Yi-Lin Huang, Yan-Yi Chu, Der-Chung Yan, and Maw-Kuen Wu, PNAS 105,14262-14264 (2008).
    [18]H. Ogino, Y. Matsumura, Y. Katsura, K. Ushiyama, S. Horii, K. Kishio, J. Shimoyama, Supercond. Sci. Technol.22,075008(2009)
    [19]Y. L. Xie, R. H. Liu, T. Wu, G. Wu, Y. A. Song, D. Tan, X. F. Wang, H. Chen, J. J. Ying, Y. J. Yan, Q. J. Li, X. H. Chen Europhysics Letters 86,57007 (2009).
    [20]X. Y. Zhu, F. Han, G. Mu, B. Zeng, P. Cheng, B. Shen, and H. H. Wen, Phys. Rev. B,79,024516 (2009)
    [21]A. Adam and H.-U.Z. Schuster, Anorg. Allg. Chem.584,150 (1990).
    [22]Tadashi C. Ozawa, Rigo Pantoja, Enos A. Axtell,III, Susan M. Kauzlarich, John E. Greedan, Mario Bieringer and James W. Richardson Jr, Journal of Solid State Chemistry 153,275-281 (2000).
    [23]Tadashi C. Ozawa, Susan M. Kauzlarich, Mario Bieringer and John E. Greedan, Chem. Mater.13,1804-1810 (2001).
    [24]Tadashi C. Ozawa and Susan M. Kauzlarich, Journal of Crystal Growth 265, 571-576 (2004).
    [25]R. H. Liu, D. Tan, Y. A. Song, Q. J. Li, Y. J. Yan, J. J. Ying, Y. L. Xie, X. F. Wang and X. H. Chen, Phys. Rev. B 80,144516(2009).
    [26]W. E. Pickett, Phys. Rev. B 58,4335 (1998).
    [27]H. Kabbour, E. Janod, B. Corraze, M. Danot, C. Lee, M. Whangbo and L. Cario, J. Am. Chem. Soc.130,8261(2008).
    [28]X. F. Wang, T. Wu, G. Wu, R. H. Liu, H. Chen, Y. L. Xie and X. H. Chen, New Journal of Physics 11,045003(2009).
    [29]Jiun-Haw Chu, James G. Analytis, Chris Kucharczyk and Ian R. Fisher, Phys. Rev. B 79,014506(2009).
    [30]W. Beyer, R. Fischer, H. Wagner, Journal of Electronic Materials 8,127(1979).
    [31]K. Winer and R. A. Street, Appl. Phys. Lett.53,505(1988).
    [32]M. Sasaki, R. Kiyoshima, S. Kohiki, S. Matsushima, M. Oku, T. Shishido, Journal of Alloys and Compounds,322,220(2001).
    [1]X. F. Wang, R. H. Liu, Z. Gui, Y. L. Xie, Y. J. Yan, J. J. Ying, X. G. Luo and X. H. Chen, Nature Communications 2,507(2011).
    [2]T. Ishiguro, K. Yamaji and G. Saito, in Organic Superconductors. (Springer-Verlag, Berlin 1997) 2nded.
    [3]Singleton, J. Studies of quasi-two-dimensional organic conductors based on BEDT-TTF using high magnetic fields. Rep. Prog. Phys.63,1111(2000).
    [4]A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum, T. T. M. Palstra, A. P. Ramirez and A. R. Kortan, Nature (London) 350,600 (1991).
    [5]N. Emery, C. Heroldl, M. d'Astuto, V. Garcia, Ch. Bellin, J. F. Marech, P. Lagrange and G. Loupias, Phys. Rev. Lett.95,087003 (2005).
    [6]H. Kobayashi, H. Tomita, T. Naito, A. Kobayashi, F. Sakai, T. Watanabe, and P. Cassoux, J. Am. Chem. Soc.118,368 (1996).
    [7]L. Brossard, R. Clerac, C. Coulon, M. Tokumoto, T. Ziman, D.K. Petrov, V.N. Laukhin, M.J. Naughton, A. Audouard and F. Goze, Eur. Phys. J. B 1,439(1998).
    [8]N. D. Mathur, F. M. Grosche, S. R. Julian, I. R. Walker, D. M. Freye, R. K. W. Haselwimmer and G. G. Lonzarich, Nature 394,39(1998).
    [9]P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys.78,17(2006).
    [10]A. J. Drew, Ch. Niedermayer, P. J. Baker, F. L. Pratt, S. J. Blundell, T. Lan-caster, R. H. Liu, G. Wu, X. H. Chen, I. Watanabe, V. K. Malik, A. Dubroka, M. Rossle, K. W. Kim, C. Baines and C. Bernhard, Nature Materials 8,310(2009).
    [II]H. Chen, Y. Ren, Y. Qiu, Wei Bao, R. H. Liu, G. Wu, T. Wu, Y. L. Xiel, X. F. Wang, Q. Huang and X. H. Chen, Europhys. Lett.85,17006(2009).
    [12]Y. Takabayashi, A. Y. Ganin, P. Jeglic, D. Arcon, T. Takano, Y. Iwasa, Y. Ohishi, M. Takata, N. Takeshita, K. Prassides and M. J. Rosseinsky, Science 323,1585(2009).
    [13]P. Durand, G. R. Darling, Y. Dubitsky, A. Zaopo and M. J. Rosseinsky, Nature Mater.2,605(2003).
    [14]A. Y. Ganin, Y. Takabayashi, Y. Z. Khimyak, S. Margadonna, A. Tamai, M. J. Rosseinsky and K. Prassides, Nature Mater.7,367(2008).
    [15]T. E. Weller, M. Ellerby, S. S. Saxena, R. P. Smith, and N. T. Skipper, Nature Physics 1,39(2005).
    [16]M. Sutherland, N. Doiron-Leyraud, L. Taillefer, T. Weller, M. Ellerby and S. S. Saxena, Phys. Rev. Lett.98,067003(2007).
    [17]I. I. Mazin, Phys. Rev. Lett.95,227001(2005).
    [18]R. Mitsuhashi, Y. Suzuki, Y. Yamanari, H. Mitamura, T. Kambe, N. Ikeda, H. Okamoto, A. Fujiwara, M. Yamaji, N. Kawasaki, Y. Maniwa, and Y. Kubozono, Nature (London) 464,76(2010).
    [19]J. Trotter, Acta. Cryst.16,605(1963).
    [20]R. Matsumotoa, Y. Oishib and T. Ariib, Thermochimica Acta 507-508,142-145 (2010).
    [21]C. Bindra, V.A. Nalimova, D.E. Sklovsky, Z. Benes and J.E. Fischer, J. Elec-trochem. Soc.145,2377(1998).
    [22]Baumann John Andrew, Brock David Geoffrey, Kuck Mark Allen and Miller Gary Kauilani, European patent application, Number:84304410.8.
    [23]T. Minakata, M. Ozaki and H. Imai, J. Appl. Phys.74,1079(1993).
    [24]D. Madsen, M. Burghammer, S. Fiedler and H. Muller, Acta Cryst. B55, 601(1999).
    [25]Y.-K. Han, K.-I. Son, W. Kang, C. S. Hong and D.-Y. Noh, Synth. Met.157, 492(2007).
    [26]J. S. Kim, L. Boeri, R. K. Kremer, and F. S. Razavi, Phys. Rev. B 74, 214513(2006).
    [27]J. M. L. Martin, J. El-Yazal, J. Francois, J. Phys. Chem.100,15358(1996).
    [28]J. Godec and L. Colombo, J. Chem. Phys.65,4693(1976).
    [29]P. Zhou, K. A. Wang, Y. Wang, P. C. Eklund, M. S. Dresselhaus, G. Dresselhaus and R. A. Jishi, Phys. Rev. B 46,2595(1992)
    [30]T. Kato, K. Yoshizawa, and K. Hirao, J. Chem. Phys.116,3420(2002)
    [31]L. Gao, Y. Y. Xue, F. Chen, Q. Xiong, R. L. Meng, D. Ramirez, C. W. Chu, J. H. Eggert and H. K. Mao, Phys. Rev. B 50,4260(1994).
    [32]H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano and H. Hosono, Nature (London) 453,376(2008)
    [33]R. M. Fleming, A. P. Ramirez, M. J. Rosseinsky, D. W. Murphy, R. C. Haddon, S. M. Zahurak and A. V. Makhija, Nature (London) 352,787(1991).
    [1]X. F. Wang, Y. J. Yan, Z. Gui, R. H. Liu, J. J. Ying, X. G. Luo and X. H. Chen, Phys. Rev. B 84,214523(2011).
    [2]Charles P. Poole, Jr. Handbook of superconductivity. ACADEMIC PRESS.
    [3]H. K. Onnes, Commun. Phys. Lab. Univ. Leiden 12,120(1911).
    [4]Gin-ichiro Oya, E. J. Saur. Journal of Low Temperature Physics 34, 569-583(1979).
    [5]B. T. Matthias, T. H. Geballe, S. Geller, and E. Corenzwit. Phys. Rev.95, 1435-1435(1954).
    [6]J. G. Bednorz and K. A. Mueller. Zeitschrift fur Physik B 64(2),189-193(1986).
    [7]Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Sco.130, 3296(2008).
    [8]F. B. Mallory, K. E. Butler, A. C. Evans, E. J. Brondyke, C. W. Mallory, C. Q Yang and A. Ellenstein, J. Am. Chem. Sco.119,2119(1997).
    [27]R. Mitsuhashi, Y. Suzuki, Y. Yamanari, H. Mitamura, T. Kambe, N. Ikeda, H. Okamoto, A. Fujiwara, M. Yamaji, N. Kawasaki, Y. Maniwa and Y. Kubozono, Nature 464,76-79 (2010).
    [29]X. F. Wang, R. H. Liu, Z. Gui, Y. L. Xie, Y. J. Yan, J. J. Ying, X. G. Luo and X. H. Chen. Nat. Comm.2,507 (2011).
    [11]M. Tariq Bhatti, M. Ali, G. N. Shahid, M. Saleh and A. M. Rana. Turk. J. Phy 24,673-679(2000).
    [12]D. Jerome, A. Mazaud, M. Ribault and K. Bechgaard, J. Phys. Lett. (Paris) 41, L95(1980).
    [13]S. S. P. Parkin, E. M. Engler, R. R. Schumaker, R. Lagier, V. Y. Lee, J. C. Scott, and R. L. Greene, Mol. Crys. and Liq. Crys.79,249(1982).
    [14]A. M. Kini, U. Geiser, H. H. Wang, K. D. Carlson, J. M. Williams, W. K. Kwok, K. G. Vandervoort, J. E. Thompson and D. L. Stupka, Inorg. Chem.29,2555 (1990).
    [31]J. Trotter. Acta. Cryst.16,605-608 (1963).
    [32]J. Y. Kim, M. Yun, D. W. Jeong, J. J. Kim and I. J. Lee, Journal of the Korean Physical Society,55,212(2009).
    [33]R. M. Fleming et al, Nature 352,787(1991).
    [39]Martin, J. M. L. et al., J. Phys. Chem.100,15358-15367(1996).
    [40]Godec, J. and Colombo, L. J. Chem. Phys.65,4693 (1976).
    [20]Zhou, P. et al., Phys. Rev. B 46,2595-2605 (1992).
    [21]X. F. Wang, X. G. Luo, J. J. Ying, Z. J. Xiang, S. L. Zhang, R. R. Zhang, Y. H. Zhang, Y. J. Yan, A. F. Wang, P. Cheng, G. J. Ye, X. H. Chen. Journal of Physics:Condensed Matter (Accepted).
    [22]N. B. Hannay, T. H. Geballe, B. T. Matthias*, K. Andres, P. Schmidt, and D. MacNair, Phys. Rev. Lett.14,225 (1965).
    [23]M. S. Dresselhaus and G. Dresselhaus, Adv. in Phys.51,1-186 (2002).
    [24]T. T. M. Palstra, O. Zhou, Y. Iwasa, P. E. Sulewski, R. M. Fleming, B. R. Zegarski, Solid State Commun.,93,327 (1995).
    [25]Y. Takabayashi, A. Y. Ganin, P. Jeglic, D. Arcon, T. Takano, Y. Iwasa, Y. Ohishi, M. Takata, N. Takeshita, K. Prassides, and M. J. Rosseinsky, Science 323,1585 (2009).
    [26]J. M. Williams, A.J. Schultz, U. Geiser, K. D. Carlson, A. M. Kini, H. H. Wang, W. K. Kwok, M. H. Whangbo and J. E. Schirber, Science 252,1501 (1991).
    [27]R. Mitsuhashi, Y. Suzuki, Y. Yamanari, H. Mitamura, T. Kambe, N. Ikeda, H. Okamoto, A. Fujiwara, M. Yamaji, N. Kawasaki, Y. Maniwa and Y. Kubozono, Nature 464,76-79 (2010).
    [28]M. Q. Xue, T. B. Cao, D. M. Wang, Y. Wu, H. X. Yang, X. L. Dong, J. B. He, F. W. Li, G. F. Chen, arXiv-.1111.0820 (unpublished).
    [29]X. F. Wang, R. H. Liu, Z. Gui, Y. L. Xie, Y. J. Yan, J. J. Ying, X. G. Luo, X. H. Chen, Nat. Commun.2,507 (2011).
    [30]X. F. Wang, Y. J. Yan, Z. Gui, R. H. Liu, J. J. Ying, X. G. Luo, and X. H. Chen, Phys. Rev. B 84,214523 (2011).
    [31]J. Trotter, Acta. Cryst.16,605-608 (1963).
    [32]Kim, J. Y.et al., J. Kor. Phys. Soc.55,212 (2009).
    [33]R. M. Fleming, A. P. Ramirez, M. J. Rosseinsky, D. W. Murphy, R. C. Haddon, S. M. Zahurak and A. V. Makhija, Nature 352,787 (1991).
    [34]P. Huray, S. Nave, and R. Haire, Journal of the Less Common Metals 93,293 (1983)
    [35]S. Nandi, Y. Su, Y. Xiao, S. Price, X. F. Wang, X. H. Chen, J. Herrero-Martin, C. Mazzoli, H. C. Walker, L. Paolasini, S. Francoual, D. K. Shukla, J. Strempfer, T. Chatterji, C. M. N. Kumar, R. Mittal, H. M. Rφnnow, Ch. Riiegg, D. F. McMorrow, Th. Briickel, Phys. Rev. B 84,054419 (2011).
    [36]K. Prassides, A. Lappas, M. Buchgeisteri and P. Verge, Europhys. Lett.,29,641 (1995).
    [37]I. Felner, I. Mayer, A. Grill, M. Schieber, Solid State Commun.11,1231 (1972).
    [38]S. Margadonna, Y. Iwasa, T. Takenobu, and K. Prassides, Structure and Bond-ing,109,127 (2004).
    [39]J. M. L. Martin, J. El-Yazal, J. Francois, J. Phys. Chem.100,15358 (1996).
    [40]J. Godec, and L. Colombo, J. Chem. Phys.65,4693 (1976).
    [41]Science of Fullerenes and Coarbon Nanotubes, Chap.11, Edited by M. S. Dres-selhaus, G. Dresselhaus and P. C. Eklund (Academic Press, San Diego), and references therein.
    [42]T. Kato, K. Yoshizawa, and K. Hirao, J. Chem. Phys.116,3420 (2002).
    [43]A. A. Maradudin, P. A. Flinn, and R. A. Coldwellhorsfall, Ann. Phys.15,333 (1961); A. A. Maradudin, P. A. Flinn, and R. A. Coldwellhorsfall, Ann. Phys.15, 360 (1961);. Balkanski, R. F. Wallis, and E. Haro, Phys. Rev. B 28,1928 (1983).
    [44]Hayao Kobayashi and HengBo Cui, Chem. Rev.104,5265(2004)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700