新型窄带隙聚合物太阳能电池材料的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机光伏技术为太阳能的有效利用提供了一条重要途径。凭借着其制造成本低廉、材料质量轻、加工性能好,易于携带等优势而备受关注。提高有机太阳能电池的光电转换效率是目前乃至未来的研究重点。设计和合成适合的窄带隙(LBG)的共轭聚合物是提高有机太阳能电池光电转化效率的核心。本论文主要围绕给体(D)-受体(A)型共轭聚合物材料的设计、合成以及光电性能研究,以期望获得高效的LBG共轭聚合物。主要内容如下:
     1.设计合成了一系列基于环戊并二噻吩(CPDT)单元的D-A型LBG共轭聚合物,研究了氟原子及侧链对聚合物光电性质的影响。聚合物在可见及近红外区域内都表现出很强的吸光能力,能带间隙均小于1.5eV。由于氟原子的缺电子性质以及侧链的不同构型,导致聚合物在固体状态下表现出不同的排列方式,其中聚[2,6-(4,4-双(2-乙基己基)-4氢-环戊[2,1-b;3,4-b']二噻吩)-交-4,7(单氟-2,1,3-苯并噻二唑)]EH-FBT的π-π堆砌距离仅为是3.8A,空穴迁移率为0.014cm2V-1s"1。基于PCPDTFBT的异质结(BHJ)太阳能电池器件经过性能优化后光电转化率(PCE)达到6.6%,短路电流为14.3mA/cm2。将其进一步应用到双结(异质结)电池中,PCE高达8.2%。
     2.设计合成了一个十一元共轭稠环化合物(IDTCPDT),该化合物表现出强的给电子能力,高的摩尔消光系数,好的刚性平面结构以及低的重组能。基于该给体单元,合成了窄带隙聚合物PIDTCPDT-DFBT,该聚合物拥有很强的吸光能力,很好的平面性,荧光寿命为1.52ns。理论计算得到的重组能只有3.2kcal/mol。基于该聚合物的场效应晶体管空穴传输能力可达2.4×10-2cm2V-1s-1。将该聚合物作为给体材料制作成为太阳能电池器件时,PCE为6.5%,短路电流为14.6mA/cm2,是目前已报道的基于阶梯型聚合物太阳能电池的最高值。
     3.采用微波辅助Stille偶联设计并合成了三个基于吡咯并吡咯二酮(DPP)的二维共轭聚合物。由于DPP的较强缺电子特性,得到的三个聚合物都表现出极窄的能带间隙,分别为1.50,1.48和1.43eV,可以与太阳光谱很好的匹配。再者,DPP骨架出色的平面性以及其形成氢键的能力使得三个共聚物都具有较强的π-π堆砌能力。电化学测试表明,增加侧链的共轭长度可以有效的降低HOMO能级,提高聚合物电池的开路电压。值得注意的是活性层的形貌对激子的解离和扩散是非常重要的。当使用纯邻二氯苯作溶剂制备活性层时,聚合物与PC71BM之间形成尺寸较大的团聚体。当使用共混溶剂时(如氯仿和邻二氯苯)团聚现象消失,聚合物和(6,6)-苯基C71丁酸甲基酯(PC71BM)之间形成网状纳米纤维,极大的改善了聚合物与PC71BM之间的相互聚集,提高了激子的有效分离几率,器件的光电转化效率从原来的0.24%提高到4.47%。优化后的器件PCE最高达到了5.34%。
     4.设计合成了苯并硒二唑衍生物单氟-2,1,3-苯并硒二唑(FBSe),增加了苯并硒二唑的吸电子能力并且降低了HOMO能级。并以FBSe为受体单元共聚得到聚合物PBDT-FBSe和PIDT-FBSe。两个聚合物都拥有较小的能带间隙分别只有1.60和1.58eV。其次,这两个聚合物具有良好的堆积作用,其薄膜紫外吸收较溶液吸收,发生了明显的红移。此外,PBDT-FBSe和PIDT-FBSe表现出较低的HOMO能级,这有利于在光伏器件中获得较高的开路电压。这两个聚合物的场效应晶体管空穴传输能力分别为1.1×10-4和3.0×10-3cm2V-1s-1。作为给体材料,BHJ太阳能电池的PCE分别达到5.00%和4.65%。
     5.设计并合成了以氟代喹喔啉为受体单元的窄带隙聚合物PCPDT-DFPhQ, PCPDT-DFPhQ-M和PCPDT-DFPhQ-O,这些聚合物都具有很好的溶解性,能溶于大多数有机溶剂中。当引入烷氧基侧链时,聚合物PCPDT-DFPQ-O的HOMO能级显著升高。原子力显微镜结果表明较长的烷氧基侧链会引起聚合物空间位阻的增加,与PC71BM之间会形成尺寸较大的团聚体,影响激子的分离和扩散。因此,基于PCPDT-DFPhQ-O的太阳能电池器件,仅取得0.94%的PCE。其中短路电流只有2.52mA/cm2。相反,基于PCPDT-DFPhQ的电池获得最大PCE为5.30%,开路电压达到了0.83V,短路电流提升到12.05mA/cm2。
     6.设计并合成了两个D-A1-D-A2型共轭聚合物PCPDT-DFBT-TPD和PCPDT-DFBT-DPP。这两个聚合物都拥有较小的能带间隙,较低的HOMO能级。此外PCPDT-DFBT-TPD和PCPDT-DFBT-DPP都能溶于绝大多数有机溶剂。而基于PCPDT-DFBT-TPD和PCPDT-DFBT-DPP的BHJ太阳能电池器件的PCE分别达到了3.15%以及3.11%。
     7.系统总结了第二章至第七章的主要研究结果。
Organic photovoltaic technology provides an essential way for the effective utilization of solar energy. The advantages of polymer solar cells (PSCs) include low cost, light weight, easy fabrication, flexible and tunable properties. There is increasing interest in PSCs during the last few years, however, the power conversion efficiency (PCE) of PSCs far beyond practical requirements. Up on this, Design and synthesis of appropriately low band gap polymers and probing into the mechanisms become the extremely interesting topics in the field of high efficiency PSCs. Based on these, several novel low band gap polymeric materials were successfully prepared. Besides, the PCE of the materials were also studied and some positive and original results were obtained.
     This thesis was divided into eight parts, as follows:
     Chapter1:A serials of cyclopentadithiophene-based conjugated polymers with varied alkyl side-chain patterns and fluor-substitutions were successful designed and synthesized. All of the polymers exhibit strong absorptions and extremely narrow band gaps (Eg<1.5eV). The poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b']dithiophene)-alt-4,7-(monofluoro-2,1,3-benzo-thiadiazole)](PCPDTFBT) with short side chain and mono-fluro substitution had the shortest π-π stacking distances (3.8A) and the highest mobility (0.014cm2V-1s-1). The bulk heterojunction solar cell devices based on this polymer showed the highest PCE of6.6%in single junction solar cells and8.2%in double junction solar cells.
     Chapter2:Two fused-rings ladder-type conjugated polymers were designed and synthesized. The fully fused PIDTCPDT-DFBT possesses lower band-gap, better planarity and lower reorganizational energy, and one-order higher hole-mobility. The charge separated configuration of PIDTCPDT-DFBT was found to be lived up to1.52ns in the chlorobenzene. The solar cells made from PIDTCPDT-DFBT also showed higher power conversion efficiency of6.46%. The short circuit current (Jsc) also increased~40%from10.40mA/cm2for a partially fused reference polymer, PIDTT-T-DFBT to14.59mA/cm2. This is among one of the highest Jsc reported for the ladder-type polymers. These results showed the strategy of extending conjugation length in fused-ring ladder-type polymers was an effective way to reduce band-gap and improve charge transport for polymers to obtain higher photovoltaic efficiencies.
     Chapter3:Three two-dimension polymers PBDT-DPP, PBDTTT-DPP and PBDT-TTDPP were successfully designed and synthesized. The change from thiophene to thieno[3,2-b]thiophene (TT) in the side chain and bridge caused variety of absorption, electrochemical and hole transport property. The results from UV-Vis measurements showed that enhanced absorption coefficient could be obtained when TT unit introduced as a bridge, which in turn could absorb light efficiently. The photovoltaic properties of these polymers were investigated using the device configuration of ITO/PEDOT:PSS/polymer:PC71BM/Bis-C6o/Ag. The highest achievable PCE for PBDT-DPP, PBDTTT-DPP, and PBDT-TTDPP were4.06%,4.47%, and5.34%, respectively. It was worth noting that the quality of the blending films played an important role in exciton separation and diffusion. The morphology of these films improved significantly due to the co-solvent processing, which leading to the remarkably increased PCE of these devices.
     Chapter4:A new Se-containing electron deficient building block monofluro-2,1,3-benzoselenadiazol (FBSe) was developed. By using a microwave-assisted palladium-catalyzed Stille polymerization, two novel FBSe-based low band gap polymers, PBDT-T-FBSe and PIDT-T-FBSe were successfully synthesized. Both of these two polymers showed narrow band gap of1.60and1.58eV for PBDT-T-FBSe and PIDT-T-FBSe, respectively. The hole mobility of PBDT-FBSe and PIDT-FBSe were1.1×10-4and3.0×10-3cm2V-1s-1, the PCE of PBDT-T-FBSe and PIDT-T-FBSe were4.65%and5.00%.
     Chapter5:Three quinoxaline-based conjugated polymers were successfully synthesized. All of these polymers showed good solubility in common organic solvent. An increased HOMO levels were observed in the alkoxy functionalized polymers and believed to be the result of the strong donating nature of alkoxyphenyl side-chains. In addition, the longer alkoxyphenyl side-chains resulted in large steric hindrance, which prohibited the exiton separation and dissociation. Up on this, the PSCs devices based on poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta-[2,1-b;3,4-b']dithiophene)-alt-6,7-difluoro-2,3-bis-(3"-octyloxyphenyl) quinoxaline](PCPDT-DFPhQ-O) only exhibited low Jsc of2.52mA/cm2and PCE of0.94%. On the contrary, the polymer of poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-6,7-diflu oro-2,3-bis-(3"-phenyl) quinoxaline](PCPDT-DFPhQ) with short side chains showed high Jsc of12.05mA/cm2and PCE of5.30%.
     Chapter6:Two novel region-regular alternating conjugated polymers with a D-A1-D-A2structure in which CPDT acts electron donor and DFBT/DPP or DFBT/TPD as electron acceptor were prepared. The incorporation of two electron-deficient units in the structure of terpolymer could enhance solubility, adjust band gap, optimize stack property, and change the electron distribution in the system. Both of these polymers had good solubility and abroad absorption. The PSCs devices based on these two polymers showed the PCE of3.15%and3.11%for PCPDT-DFBT-TPD and PCPDT-DFBT-DPP. These results provided new insight into designing new generation CPs for light-emitting diodes, field-effect transistors, solar cells and other optoelectronic devices.
     Chapter7:The results from chapter2to chapter7were summarized.
引文
[1]Thompson B. C.,Frechet J. M. J. Polymer-Fullerene Composite Solar Cells[J]. Angew. Chem. Int. Ed.,2008,47 (1):58-77.
    [2]Tang C. W. Two-layer organic photovoltaic cell[J]. Appl. Phys. Lett.,1986,48: 183.
    [3]Hummelen J. C., Knight B. W., LePeq F., Wudl F., Yao J.,Wilkins C. L. Preparation and Characterization of Fulleroid and Methanofullerene Derivatives[J]. J. Org. Chem.,1995,60 (3):532-538.
    [4]Sariciftci N., Smilowitz L., Heeger A.,Wudl F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene[J]. Science,1992,258 (5087):1474-1476.
    [5]Morita S., Zakhidov A. A.,Yoshino K. Doping effect of buckminsterfullerene in conducting polymer:Change of absorption spectrum and quenching of luminescene[J]. Solid State Commun.,1992,82 (4):249-252.
    [6]Sariciftci N., Smilowitz L., Heeger A.,Wudl F. Semiconducting polymers (as donors) and buckminsterfullerene (as acceptor):photoinduced electron transfer and heterojunction devices [J]. Synth. Met.,1993,59 (3):333-352.
    [7]Hiramoto M., Fujiwara H.,Yokoyama M. p-i-n like behavior in three layered organic solar cells having a co-deposited interlayer of pigments[J]. J. Appl. Phys.,1992,72 (8):3781-3787.
    [8]Yu G., Gao J., Hummelen J., Wudl F.,Heeger A. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science,1995,270 (5243):1789-1790.
    [9]Halls C. A Walsh, NC Greenham, E. A. Marseglia, R. H. Friend, SC Moratti, A B. Holmes[J]. Nature,1995,376:498-500.
    [10]Li G., Zhu R.,Yang Y. Polymer solar cells[J]. Nat. Photonics,2012,6 (3): 153-161.
    [11]Hadipour A., de Boer B., Wildeman J., Kooistra F. B., Hummelen J. C., Turbiez M. G. R., Wienk M. M., Janssen R. A. J.,Blom P. W. M. Solution-Processed Organic Tandem Solar Cells[J]. Adv. Funct. Mater.,2006,16 (14):1897-1903.
    [12]Gadisa A., Mammo W., Andersson L. M., Admassie S., Zhang F., Andersson M. R.,Inganas O. A New Donor-Acceptor-Donor Polyfluorene Copolymer with Balanced Electron and Hole Mobility[J]. Adv. Funct. Mater.,2007,17 (18): 3836-3842.
    [13]Hou J., Tan Z. a., Yan Y, He Y, Yang C.,Li Y. Synthesis and Photovoltaic Properties of Two-Dimensional Conjugated Polythiophenes with Bi(thienylenevinylene) Side Chains[J]. J. Am. Chem. Soc.,2006,128 (14): 4911-4916.
    [14]Cheng Y.-J., Yang S.-H.,Hsu C.-S. Synthesis of Conjugated Polymers for Organic Solar Cell Applications[J]. Chem. Rev.,2009,109 (11):5868-5923.
    [15]Small C. E., Chen S., Subbiah J., Amb C. M., Tsang S.-W., Lai T.-H., Reynolds J. R.,So F. High-efficiency inverted dithienogermole-thienopyrrolodione-based polymer solar cells[J]. Nat Photon,2012,6 (2):115-120.
    [16]You J., Dou L., Yoshimura K., Kato T., Ohya K., Moriarty T., Emery K., Chen C.-C., Gao J., Li G.,Yang Y A polymer tandem solar cell with 10.6% power conversion efficiency[J]. Nat Commun,2013,4:1446.
    [17]J(?)rgensen M., Norrman K.,Krebs F. C. Stability/degradation of polymer solar cells[J]. Sol. Energy Mater. Sol. Cells,2008,92 (7):686-714.
    [18]Yip H.-L. Jen A. K.-Y. Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells[J]. Energy Environ. Sci., 2012,5 (3):5994-6011.
    [19]Paul W. ,AntoniettaaLoi M. Exciton diffusion length in narrow bandgap polymers[J]. Energy Environ. Sci.,2012,5 (5):6960-6965.
    [20]Scharber M.,Sariciftci N. Efficiency of Bulk-Heterojunction Organic Solar Cells[J]. Prog. Polym. Sci.,2013,38(12):1929-1940.
    [21]Schilinsky P., Waldauf C.,Brabec C. J. Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors[J]. Appl. Phys. Lett., 2002,81:3885.
    [22]Hallermann M., Haneder S.,Da Como E. Charge-transfer states in conjugated polymer/fullerene blends:Below-gap weakly bound excitons for polymer photovoltaics[J]. Appl. Phys. Lett.,2008,93:053307.
    [23]Brabec C. J., Gowrisanker S., Halls J. J., Laird D., Jia S.,Williams S. P. Polymer-fullerene bulk-heterojunction solar cells[J]. Adv. Mater.,2010,22 (34):3839-3856.
    [24]Wudl F.,Srdanov G., Conducting polymer formed of poly (2-methoxy, 5-(2'-ethyl-hexyloxy)-p-phenylenevinylene). Google Patents:1993.
    [25]Brabec C. J., Shaheen S. E., Winder C., Sariciftci N. S.,Denk P. Effect of LiF/metal electrodes on the performance of plastic solar cells[J]. Appl. Phys. Lett.,2002,80 (7):1288-1290.
    [26]Wienk M. M., Kroon J. M., Verhees W. J., Knol J., Hummelen J. C., van Hal P. A.,Janssen R. A. Efficient methano [70] fullerene/MDMO-PPV bulk heterojunction photovoltaic cells[J]. Angew. Chem. Int. Ed.,2003,115 (29): 3493.3497.
    [27]Padinger F., Rittberger R. S.,Sariciftci N. S. Effects of postproduction treatment on plastic solar cells[J]. Adv. Funct. Mater.,2003,13 (1):85-88.
    [28]Bao Z., Dodabalapur A.,Lovinger A. J. Soluble and processable regioregular poly (3-hexylthiophene) for thin film field-effect transistor applications with high mobility[J]. Appl. Phys. Lett.,1996,69:4108.
    [29]Li G., Shrotriya V., Huang J., Yao Y, Moriarty T., Emery K.,Yang Y High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends [J]. Nat. Mater.,2005,4 (11):864-868.
    [30]Ma W., Yang C., Gong X., Lee K.,Heeger A. J. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology[J]. Adv. Funct. Mater.,2005,15 (10):1617-1622.
    [31]Miihlbacher D., Scharber M., Morana M., Zhu Z., Waller D., Gaudiana R.,Brabec C. High photovoltaic performance of a low-bandgap polymer[J]. Adv. Mater.,2006,18 (21):2884-2889.
    [32]Peet J., Kim J., Coates N. E., Ma W. L., Moses D., Heeger A. J.,Bazan G. C. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols[J]. Nat. Mater.,2007,6 (7):497-500.
    [33]Li Y., Zou J., Yip H.-L., Li C.-Z., Zhang Y., Chueh C.-C., Intemann J., Xu Y., Liang P.-W., Chen Y.,Jen A. K. Y Side-Chain Effect on Cyclopentadithiophene/Fluorobenzothiadiazole-Based Low Band Gap Polymers and Their Applications for Polymer Solar Cells[J]. Macromolecules,2013,46 (14):5497-5503.
    [34]Chang C.-Y., Zuo L., Yip H.-L., Li Y, Li C.-Z., Hsu C.-S., Cheng Y.-J., Chen H.,Jen A. K. Y. A Versatile Fluoro-Containing Low-Bandgap Polymer for Efficient Semitransparent and Tandem Polymer Solar Cells[J]. Adv. Funct. Mater.,2013,23(40):5084-5090.
    [35]Liang Y, Xu Z., Xia J., Tsai S. T., Wu Y, Li G., Ray C.,Yu L. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%[J]. Adv. Mater.,2010,22 (20):E135-E138.
    [36]Zhou H., Yang L.,You W. Rational Design of High Performance Conjugated Polymers for Organic Solar Cells[J]. Macromolecules,2012,45 (2):607-632.
    [37]Zhou H., Yang L., Stuart A. C., Price S. C., Liu S.,You W. Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency[J]. Angew. Chem. Int. Ed.,2011,123 (13):3051-3054.
    [38]Scharber M. C., Muhlbacher D., Koppe M., Denk P., Waldauf C., Heeger A. J.,Brabec C. J. Design rules for donors in bulk-heterojunction solar cells-Towards 10% energy-conversion efficiency[J]. Adv. Mater.,2006,18 (6): 789-794.
    [39]Liang Y, Feng D., Wu Y, Tsai S.-T., Li G., Ray C.,Yu L. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties [J]. J. Am. Chem. Soc.,2009,131 (22):7792-7799.
    [40]Chen H.-Y., Hou J., Zhang S., Liang Y, Yang G., Yang Y, Yu L., Wu Y.,Li G. Polymer solar cells with enhanced open-circuit voltage and efficiency[J]. Nat. Photonics,2009,3 (11):649-653.
    [41]Price S. C., Stuart A. C., Yang L., Zhou H.,You W. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells[J]. J. Am. Chem. Soc.,2011,133 (12):4625-4631.
    [42]Perez M. D., Borek C., Forrest S. R.,Thompson M. E. Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices[J]. J. Am. Chem. Soc.,2009,131 (26):9281-9286.
    [43]Vandewal K., Tvingstedt K., Gadisa A., Inganas O.,Manca J. V. On the origin of the open-circuit voltage of polymer-fullerene solar cells[J]. Nat. Mater.,2009,8 (11):904-909.
    [44]Yang L., Zhou H.,You W. Quantitatively Analyzing the Influence of Side Chains on Photovoltaic Properties of Polymer-Fullerene Solar Cells[J]. J. Phys. Chem. C,2010,114(39):16793-16800.
    [45]Chen T. A.,Rieke R. D. The first regioregular head-to-tail poly (3-hexylthiophene-2,5-diyl) and a regiorandom isopolymer:nickel versus palladium catalysis of 2 (5)-bromo-5 (2)-(bromozincio)-3-hexylthiophene polymerization[J]. J. Am. Chem. Soc.,1992,114 (25):10087-10088
    [46]McCullough R. D., Lowe R. D., Jayaraman M.,Anderson D. L. Design, synthesis, and control of conducting polymer architectures:structurally homogeneous poly (3-alkylthiophenes)[J]. J. Org. Chem.,1993,58 (4):904-912
    [47]Sirringhaus H., Brown P., Friend R., Nielsen M., Bechgaard K., Langeveld-Voss B., Spiering A., Janssen R. A., Meijer E.,Herwig P. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers[J]. Nature,1999, 401 (6754):685-688.
    [48]Irwin M. D., Buchholz D. B., Hains A. W., Chang R. P.,Marks T. J. p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells[J]. Proc. Natl. Acad. Sci. USA,2008, 105 (8):2783-2787.
    [49]He Y., Chen H.-Y., Hou J.,Li Y. Indene-C60 Bisadduct:A New Acceptor for High-Performance Polymer Solar Cells[J]. J. Am. Chem. Soc.,2010,132 (4): 1377-1382.
    [50]Zhao G., He Y.,Li Y.6.5% Efficiency of Polymer Solar Cells Based on poly (3-hexylthiophene) and Indene-C60 Bisadduct by Device Optimization[J]. Adv. Mater.,2010,22 (39):4355-4358.
    [51]Chang C. Y, Wu C. E., Chen S. Y, Cui C., Cheng Y. J., Hsu C. S., Wang Y L.,Li Y Enhanced Performance and Stability of a Polymer Solar Cell by Incorporation of Vertically Aligned, Cross-Linked Fullerene Nanorods[J]. Angew. Chem. Int. Ed.,2011,50 (40):9386-9390.
    [52]Scherf U.,List E. J. Semiconducting polyfluorenes-towards reliable structure-property relationships [J]. Adv. Mater.,2002,14 (7):477-487.
    [53]Tang W., Ke L., Tan L., Lin T., Kietzke T.,Chen Z.-K. Conjugated copolymers based on fluorene-thieno [3,2-b] thiophene for light-emitting diodes and photovoltaic cells[J]. Macromolecules,2007,40 (17):6164-6171.
    [54]Svensson M., Zhang F., Veenstra S. C., Verhees W. J., Hummelen J. C., Kroon J. M., Inganas O.,Andersson M. R. High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative[J]. Adv. Mater., 2003,15 (12):988-991.
    [55]Zhou Q., Hou Q., Zheng L., Deng X., Yu G.,Cao Y. Fluorene-based low band-gap copolymers for high performance photovoltaic devices[J]. Appl. Phys. Lett.,2004,84 (10):1653-1655.
    [56]Slooff L., Veenstra S., Kroon J., Moet D., Sweelssen J.,Koetse M. Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling[J]. Appl. Phys. Lett.,2007,90 (14):143506-143506-3.
    [57]Zhou E., Cong J., Yamakawa S., Wei Q., Nakamura M., Tajima K., Yang C.,Hashimoto K. Synthesis of Thieno [3,4-b] pyrazine-Based and 2,1, 3-Benzothiadiazole-Based Donor-Acceptor Copolymers and their Application in Photovoltaic Devices[J]. Macromolecules,2010,43 (6):2873-2879.
    [58]Kitazawa D., Watanabe N., Yamamoto S.,Tsukamoto J. Quinoxaline-based π-conjugated donor polymer for highly efficient organic thin-film solar cells[J]. Appl. Phys. Lett.,2009,95 (8):083303-083303-1.
    [59]Park S. H., Roy A., Beaupre S., Cho S., Coates N., Moon J. S., Moses D., Leclerc M., Lee K.,Heeger A. J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100&percnt[J]. Nat. Photonics,2009,3 (5): 297-302.
    [60]Liang Y.,Yu L. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance[J]. Acc. Chem. Res.,2010,43 (9):1227-1236.
    [61]Son H. J., He F., Carsten B.,Yu L. Are we there yet? Design of better conjugated polymers for polymer solar cells[J]. J. Mater. Chem.,2011,21 (47): 18934-18945.
    [62]Hou J., Chen H.-Y., Zhang S., Chen R. I., Yang Y, Wu Y.,Li G. Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells[J]. J. Am. Chem. Soc.,2009,131 (43):15586-15587.
    [63]He Z., Zhong C., Su S., Xu M., Wu H.,Cao Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure[J]. Nat Photon,2012,6 (9):591-595.
    [64]Zhang Y, Zou J., Yip H.-L., Chen K.-S., Zeigler D. F., Sun Y.,Jen A. K. Y Indacenodithiophene and Quinoxaline-Based Conjugated Polymers for Highly Efficient Polymer Solar Cells[J]. Chem. Mater.,2011,23 (9):2289-2291.
    [65]Zhang Y, Chien S.-C., Chen K.-S., Yip H.-L., Sun Y, Davies J. A., Chen F.-C. Jen A. K. Y. Increased open circuit voltage in fluorinated benzothiadiazole-based alternating conjugated polymers[J]. Chem. Commun., 2011,47(39):11026-11028.
    [66]Xu Y.-X., Chueh C.-C., Yip H.-L., Ding F.-Z., Li Y.-X., Li C.-Z., Li X., Chen W.-C.,Jen A. K. Y. Improved Charge Transport and Absorption Coefficient in Indacenodithieno[3,2-b]thiophene-based Ladder-Type Polymer Leading to Highly Efficient Polymer Solar Cells[J]. Adv. Mater.,2012,24 (47):6356-6361.
    [67]Wang J.-Y., Hau S. K., Yip H.-L., Davies J. A., Chen K.-S., Zhang Y, Sun Y Jen A. K. Y. Benzobis(silolothiophene)-Based Low Bandgap Polymers for Efficient Polymer Solar Cells[J]. Chem. Mater.,2010,23 (3):765-767.
    [68]Cheng Y.-J., Chen C.-H., Lin Y.-S., Chang C.-Y.,Hsu C.-S. Ladder-Type Nonacyclic Structure Consisting of Alternate Thiophene and Benzene Units for Efficient Conventional and Inverted Organic Photovoltaics[J]. Chem. Mater., 2011,23 (22):5068-5075.
    [69]Chen Y.-L., Chang C.-Y, Cheng Y.-J.,Hsu C.-S. Synthesis of a New Ladder-Type Benzodi(cyclopentadithiophene) Arene with Forced Planarization Leading to an Enhanced Efficiency of Organic Photovoltaics[J]. Chem. Mater., 2012,24 (20):3964-3971.
    [70]Li Y. Molecular design of photovoltaic materials for polymer solar cells:Toward suitable electronic energy levels and broad absorption[J]. Acc. Chem. Res.,2012, 45 (5):723-733.
    [71]Cheng Y.-J., Chen C.-H., Lin T.-Y.,Hsu C.-S. Dithienocyclopentathieno[3,2-b]thiophene Hexacyclic Arene for Solution-Processed Organic Field-Effect Transistors and Photovoltaic Applications[J]. Chem. Asian J.,2012,7 (4):818-825.
    [72]Wu J.-S., Cheng Y.-J., Dubosc M., Hsieh C.-H., Chang C.-Y.,Hsu C.-S. Donor-acceptor polymers based on multi-fused heptacyclic structures:synthesis, characterization and photovoltaic applications[J]. Chem. Commun.,2010,46 (19):3259-3261.
    [73]McCulloch I., Ashraf R. S., Biniek L., Bronstein H., Combe C., Donaghey J. E., James D. I., Nielsen C. B., Schroeder B. C.,Zhang W. Design of Semiconducting Indacenodithiophene Polymers for High Performance Transistors and Solar Cells[J]. Acc. Chem. Res.,2012,45 (5):714-722.
    [74]Lee J. K., Ma W. L., Brabec C. J., Yuen J., Moon J. S., Kim J. Y., Lee K., Bazan G. C.,Heeger A. J. Processing additives for improved efficiency from bulk heterojunction solar cells[J]. J. Am. Chem. Soc.,2008,130 (11):3619-3623.
    [75]Hadipour A., de Boer B., Wildeman J., Kooistra F. B., Hummelen J. C., Turbiez M. G., Wienk M. M., Janssen R. A.,Blom P. W. Solution-Processed Organic Tandem Solar Cells[J]. Adv. Funct. Mater.,2006,16 (14):1897-1903.
    [76]Hadipour A., de Boer B.,Blom P. W. Solution-processed organic tandem solar cells with embedded optical spacers[J]. J. Appl. Phys.,2007,102 (7): 074506-074506-6.
    [77]Chen H. Y, Hou J., Hayden A. E., Yang H., Houk K.,Yang Y. Silicon Atom Substitution Enhances Interchain Packing in a Thiophene-Based Polymer System[J]. Adv. Mater.,2010,22 (3):371-375.
    [78]Morana M., Azimi H., Dennler G., Egelhaaf H. J., Scharber M., Forberich K., Hauch J., Gaudiana R., Waller D.,Zhu Z. Nanomorphology and Charge Generation in Bulk Heterojunctions Based on Low-Bandgap Dithiophene Polymers with Different Bridging Atoms[J]. Adv. Funct. Mater.,2010,20 (7): 1180-1188.
    [79]Sista S., Park M. H., Hong Z., Wu Y, Hou J., Kwan W. L., Li G.,Yang Y Highly efficient tandem polymer photovoltaic cells[J]. Adv. Mater.,2010,22 (3): 380-383.
    [80]Coffin R. C., Peet J., Rogers J.,Bazan G. C. Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells[J]. Nature Chem.,2009,1 (8):657-661.
    [81]Yue W., Zhao Y, Shao S., Tian H., Xie Z., Geng Y.,Wang F. Novel NIR-absorbing conjugated polymers for efficient polymer solar cells:effect of alkyl chain length on device performance [J]. J. Mater. Chem.,2009,19 (15): 2199-2206.
    [82]Zhang Y, Zou J., Cheuh C.-C., Yip H.-L.,Jen A. K. Y Significant Improved Performance of Photovoltaic Cells Made from a Partially Fluorinated Cyclopentadithiophene/Benzothiadiazole Conjugated Polymer[J]. Macromolecules,2012,45 (13):5427-5435.
    [83]Albrecht S., Janietz S., Schindler W., Frisch J., Kurpiers J., Kniepert J., Inal S., Pingel P., Fostiropoulos K., Koch N.,Neher D. Fluorinated Copolymer PCPDTBT with Enhanced Open-Circuit Voltage and Reduced Recombination for Highly Efficient Polymer Solar Cells[J]. J. Am. Chem. Soc..,2012,134 (36): 14932-14944.
    [84]Burgi L., Turbiez M., Pfeiffer R., Bienewald F., Kirner H. J.,Winnewisser C. High-Mobility Ambipolar Near-Infrared Light-Emitting Polymer Field-Effect Transistors[J]. Adv. Mater.,2008,20 (11):2217-2224.
    [85]Wienk M. M., Turbiez M., Gilot J.,Janssen R. A. Narrow-Bandgap Diketo-Pyrrolo-Pyrrole Polymer Solar Cells:The Effect of Processing on the Performance[J]. Adv. Mater.,2008,20 (13):2556-2560.
    [86]Gilot J., Wienk M. M.,Janssen R. A. Measuring the External Quantum Efficiency of Two-Terminal Polymer Tandem Solar Cells[J]. Adv. Funct. Mater., 2010,20 (22):3904-3911.
    [87]Bijleveld J. C., Zoombelt A. P., Mathijssen S. G., Wienk M. M., Turbiez M., de Leeuw D. M.,Janssen R. A. Poly (diketopyrrolopyrrole-terthiophene) for Ambipolar Logic and Photovoltaics[J]. J. Am. Chem. Soc.,2009,131 (46): 16616-16617.
    [88]Bijleveld J. C., Gevaerts V. S., Di Nuzzo D., Turbiez M., Mathijssen S. G., de Leeuw D. M., Wienk M. M.,Janssen R. A. Efficient solar cells based on an easily accessible diketopyrrolopyrrole polymer[J]. Adv. Mater.,2010,22 (35): E242-E246.
    [89]Huo L., Hou J., Chen H.-Y., Zhang S., Jiang Y., Chen T. L.,Yang Y. Bandgap and molecular level control of the low-bandgap polymers based on 3, 6-dithiophen-2-yl-2,5-dihydropyrrolo [3,4-c] pyrrole-1,4-dione toward highly efficient polymer solar cells[J]. Macromolecules,2009,42 (17):6564-6571.
    [90]Woo C. H., Beaujuge P. M., Holcombe T. W., Lee O. P.,Frechet J. M. Incorporation of furan into low band-gap polymers for efficient solar cells[J]. J. Am. Chem. Soc.,2010,132 (44):15547-15549.
    [91]Bijleveld J. C., Karsten B. P., Mathijssen S. G., Wienk M. M., de Leeuw D. M.,Janssen R. A. Small band gap copolymers based on furan and diketopyrrolopyrrole for field-effect transistors and photovoltaic cells[J]. J. Mater. Chem.,2011,21 (5):1600-1606.
    [92]Bronstein H., Chen Z., Ashraf R. S., Zhang W., Du J., Durrant J. R., Shakya Tuladhar P., Song K., Watkins S. E.,Geerts Y. Thieno [3,2-b] thiophene-Diketopyrrolopyrrole-Containing Polymers for High-Performance Organic Field-Effect Transistors and Organic Photovoltaic Devices[J]. J. Am. Chem. Soc., 2011,133 (10):3272-3275.
    [93]Zhang G., Fu Y., Xie Z.,Zhang Q. Synthesis and photovoltaic properties of new low bandgap isoindigo-based conjugated polymers[J]. Macromolecules,2011,44 (6):1414-1420.
    [94]Liu B., Zou Y., Peng B., Zhao B., Huang K., He Y.,Pan C. Low bandgap isoindigo-based copolymers:design, synthesis and photovoltaic applications [J]. Poly. Chem.,2011,2 (5):1156-1162.
    [95]Wang E., Ma Z., Zhang Z., Henriksson P., Inganas O., Zhang F.,Andersson M. R. An isoindigo-based low band gap polymer for efficient polymer solar cells with high photo-voltage[J]. Chem. Commun.,2011,47 (17):4908-4910.
    [96]Wang M., Hu X., Liu P., Li W., Gong X., Huang F.,Cao Y. Donor-acceptor conjugated polymer based on naphtho [1,2-c:5,6-c] bis [1,2,5] thiadiazole for high-performance polymer solar cells[J]. J. Am. Chem. Soc.,2011,133 (25): 9638-9641.
    [97]Zhou H., Yang L., Price S. C., Knight K. J.,You W. Enhanced Photovoltaic Performance of Low-Bandgap Polymers with Deep LUMO Levels[J]. Angew. Chem. Int. Ed.,2010,122 (43):8164-8167.
    [98]Price S. C., Stuart A. C.,You W. Low band gap polymers based on benzo [1,2-b: 4,5-b'] dithiophene:rational design of polymers leads to high photovoltaic performance[J]. Macromolecules,2010,43 (10):4609-4612.
    [99]Scharber M. C., Muhlbacher D., Koppe M., Denk P., Waldauf C, Heeger A. J.,Brabec C. J. Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10% Energy-Conversion Efficiency[J]. Adv. Mater.,2006,18 (6):789-794.
    [100]You J., Dou L., Hong Z., Li G.,Yang Y. Recent trends in polymer tandem solar cells research[J]. Prog. Polym. Sci.,2013,38 (12):1909-1928.
    [101]Wudl F., Kobayashi M.,Heeger A. Poly (isothianaphthene)[J]. J. Org. Chem., 1984,49 (18):3382-3384.
    [102]Pomerantz M., Chaloner-Gill B., Harding L. O., Tseng J. J.,Pomerantz W. J. Poly (2,3-dihexylthieno [3,4-b] pyrazine). A new processable low band-gap polyheterocycle[J]. J. Chem. Soc., Chem. Commun.,1992, (22):1672-1673.
    [103]Hong S. Y.,Marynick D. S. Understanding the conformational stability and electronic structures of modified polymers based on polythiophene[J]. Macromolecules,1992,25 (18):4652-4657.
    [104]Sotzing G. A.,Lee K. Poly (thieno [3,4-b] thiophene):a p-and n-dopable polythiophene exhibiting high optical transparency in the semiconducting state[J]. Macromolecules,2002,35 (19):7281-7286.
    [105]Qin Y., Kim J. Y, Frisbie C. D.,Hillmyer M. A. Distannylated isothianaphthene: A versatile building block for low bandgap conjugated polymers[J]. Macromolecules,2008,41 (15):5563-5570.
    [106]Hou J., Park M.-H., Zhang S., Yao Y, Chen L.-M., Li J.-H.,Yang Y. Bandgap and molecular energy level control of conjugated polymer photovoltaic materials based on benzo [1,2-b:4,5-b'] dithiophene[J]. Macromolecules,2008,41 (16): 6012-6018.
    [107]Kleinhenz N., Yang L., Zhou H., Price S. C.,You W. Low-Band-Gap Polymers That Utilize Quinoid Resonance Structure Stabilization by Thienothiophene: Fine-Tuning of HOMO Level[J]. Macromolecules,2011,44 (4):872-877.
    [108]Roncali J. Synthetic principles for bandgap control in linear π-conjugated systems[J]. Chem. Rev.,1997,97 (1):173-206.
    [109]Ajayaghosh A. Donor-acceptor type low band gap polymers:polysquaraines and related systems[J]. Chem. Soc. Rev.,2003,32 (4):181-191.
    [110]Zhang Q. T.,Tour J. M. Alternating donor/acceptor repeat units in polythiophenes. Intramolecular charge transfer for reducing band gaps in fully substituted conjugated polymers[J]. J. Am. Chem. Soc.,1998,120 (22): 5355-5362.
    [111]Chochos C. L.,Choulis S. A. How the structural deviations on the backbone of conjugated polymers influence their optoelectronic properties and photovoltaic performance[J]. Prog. Polym. Sci.,2011,36 (10):1326-1414.
    [112]Zhou H., Yang L., Stuart A. C., Price S. C., Liu S.,You W. Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency[J]. Angewandte Chemie,2011,123 (13):3051-3054.
    [113]Huo L., Zhang S., Guo X., Xu F., Li Y.,Hou J. Replacing alkoxy groups with alkylthienyl groups:a feasible approach to improve the properties of photovoltaic polymers[J]. Angewandte Chemie,2011,123 (41):9871-9876.
    [114]Cabanetos C. m., El Labban A., Bartelt J. A., Douglas J. D., Mateker W. R., Frechet J. M., McGehee M. D.,Beaujuge P. M. Linear Side Chains in Benzo [1, 2-b:4,5-b'] dithiophene-Thieno [3,4-c] pyrrole-4,6-dione Polymers Direct Self-Assembly and Solar Cell Performance[J]. J. Am. Chem. Soc.,2013,135 (12):4656-4659.
    [115]Amb C. M., Chen S., Graham K. R., Subbiah J., Small C. E., So F.,Reynolds J. R. Dithienogermole as a fused electron donor in bulk heterojunction solar cells[J]. J. Am. Chem. Soc.,2011,133 (26):10062-10065.
    [116]Chang C.-Y., Cheng Y.-J., Hung S.-H., Wu J.-S., Kao W.-S., Lee C.-H.,Hsu C.-S. Combination of Molecular, Morphological, and Interfacial Engineering to Achieve Highly Efficient and Stable Plastic Solar Cells[J]. Adv. Mater.,2012,24 (4):549-553.
    [117]Chu T.-Y, Alem S., Tsang S.-W., Tse S.-C., Wakim S., Lu J., Dennler G., Waller D., Gaudiana R.,Tao Y. Morphology control in polycarbazole based bulk heterojunction solar cells and its impact on device performance[J]. Appl. Phys. Lett.,2011,98 (25):253301-253303.
    [118]Yang X., Chueh C.-C., Li C.-Z., Yip H.-L., Yin P., Chen H., Chen W.-C. Jen A. K. Y. High-Efficiency Polymer Solar Cells Achieved by Doping Plasmonic Metallic Nanoparticles into Dual Charge Selecting Interfacial Layers to Enhance Light Trapping[J]. Adv. Energy Mater.,2013,3 (5):666-673.
    [119]Yiu A. T., Beaujuge P. M., Lee O. P., Woo C. H., Toney M. F.,Frechet J. M. J. Side-Chain Tunability of Furan-Containing Low-Band-Gap Polymers Provides Control of Structural Order in Efficient Solar Cells[J]. J. Am. Chem. Soc.,2011, 134 (4):2180-2185.
    [120]Jung J. W., Liu F., Russell T. P.,Jo W. H. A high mobility conjugated polymer based on dithienothiophene and diketopyrrolopyrrole for organic photovoltaics[J]. Energy Environ. Sci.,2012,5 (5):6857-6861.
    [1]He Z., Zhong C., Su S., Xu M., Wu H.,Cao Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure[J]. Nat Photon,2012,6 (9):591-595.
    [2]Cheng Y.-J., Yang S.-H.,Hsu C.-S. Synthesis of Conjugated Polymers for Organic Solar Cell Applications[J]. Chem. Rev.,2009,109 (11):5868-5923.
    [3]Duan C., Huang F.,Cao Y. Recent development of push-pull conjugated polymers for bulk-heterojunction photovoltaics:rational design and fine tailoring of molecular structures[J]. J. Mater. Chem.,2012,22 (21):10416-10434.
    [4]Li C.-Z., Yip H.-L. Jen A. K. Y. Functional fullerenes for organic photovoltaics[J]. J. Mater. Chem.,2012,22 (10):4161-4177.
    [5]Zhou H., Yang L.,You W. Rational Design of High Performance Conjugated Polymers for Organic Solar Cells[J]. Macromolecules,2012,45 (2):607-632.
    [6]He F.,Yu L. How Far Can Polymer Solar Cells Go? In Need of a Synergistic Approach[J]. J. Phys. Chem. Lett.,2011,2 (24):3102-3113.
    [7]Gevaerts V. S., Furlan A., Wienk M. M., Turbiez M.,Janssen R. A. J. Solution Processed Polymer Tandem Solar Cell Using Efficient Small and Wide bandgap Polymer:Fullerene Blends[J]. Adv. Mater.,2012,24 (16):2130-2134.
    [8]Li W., Roelofs W. S. C., Wienk M. M.,Janssen R. A. J. Enhancing the Photocurrent in Diketopyrrolopyrrole-Based Polymer Solar Cells via Energy Level Control[J]. J. Am. Chem. Soc.,2012,134 (33):13787-13795.
    [9]Bronstein H., Chen Z., Ashraf R. S., Zhang W., Du J., Durrant J. R., Shakya Tuladhar P., Song K., Watkins S. E., Geerts Y, Wienk M. M., Janssen R. A. J., Anthopoulos T., Sirringhaus H., Heeney M.,McCulloch I. Thieno[3,2-b]thiophene-Diketopyrrolopyrrole-Containing Polymers for High-Performance Organic Field-Effect Transistors and Organic Photovoltaic Devices[J]. J. Am. Chem. Soc.,2011,133 (10):3272-3275.
    [10]Liu F., Gu Y, Wang C., Zhao W., Chen D., Briseno A. L.,Russell T. P. Efficient Polymer Solar Cells Based on a Low Bandgap Semi-crystalline DPP Polymer-PCBM Blends[J]. Adv. Mater.,2012,24 (29):3947-3951.
    [11]Ong K.-H., Lim S.-L., Tan H.-S., Wong H.-K., Li J., Ma Z., Moh L. C. H., Lim S.-H., de Mello J. C.,Chen Z.-K. A Versatile Low Bandgap Polymer for Air-Stable, High-Mobility Field-Effect Transistors and Efficient Polymer Solar Cells[J]. Adv. Mater.,2011,23 (11):1409-1413.
    [12]Schroeder B. C., Ashraf R. S., Thomas S., White A. J. P., Biniek L., Nielsen C. B., Zhang W., Huang Z., Tuladhar P. S., Watkins S. E., Anthopoulos T. D., Durrant J. R.,McCulloch I. Synthesis of novel thieno[3,2-b]thienobis(silolothiophene) based low bandgap polymers for organic photovoltaics[J]. Chem. Comm.,2012, 48 (62):7699-7701.
    [13]Shahid M., Ashraf R. S., Huang Z., Kronemeijer A. J., McCarthy-Ward T., McCulloch I., Durrant J. R., Sirringhaus H.,Heeney M. Photovoltaic and field effect transistor performance of selenophene and thiophene diketopyrrolopyrrole co-polymers with dithienothiophene[J]. J. Mater. Chem.,2012,22 (25): 12817-12823.
    [14]Peng Q., Huang Q., Hou X., Chang P., Xu J.,Deng S. Enhanced solar cell performance by replacing benzodithiophene with naphthodithiophene in diketopyrrolopyrrole-based copolymers[J]. Chem. Comm.,2012,48 (93): 11452-11454.
    [15]Osaka I., Shimawaki M., Mori H., Doi I., Miyazaki E., Koganezawa T.,Takimiya K. Synthesis, Characterization, and Transistor and Solar Cell Applications of a Naphthobisthiadiazole-Based Semiconducting Polymer[J]. J. Am. Chem. Soc., 2012,134 (7):3498-3507.
    [16]Wu J.-S., Lin C.-T., Wang C.-L., Cheng Y.-J.,Hsu C.-S. New Angular-Shaped and Isomerically Pure Anthradithiophene with Lateral Aliphatic Side Chains for Conjugated Polymers:Synthesis, Characterization, and Implications for Solution-Prossessed Organic Field-Effect Transistors and Photovoltaics[J]. Chem. Mater.,2012,24 (12):2391-2399.
    [17]Hou J., Chen H.-Y., Zhang S., Li G.,Yang Y. Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2,1,3-Benzothiadiazole[J]. J. Am. Chem. Soc.,2008,130 (48):16144-16145.
    [18]Wang M., Hu X., Liu P., Li W., Gong X., Huang F.,Cao Y. Donor-Acceptor Conjugated Polymer Based on Naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for High-Performance Polymer Solar Cells[J]. J. Am. Chem. Soc.,2011,133 (25): 9638-9641.
    [19]Zhang Y, Zou J., Cheuh C.-C., Yip H.-L.,Jen A. K. Y Significant Improved Performance of Photovoltaic Cells Made from a Partially Fluorinated Cyclopentadithiophene/Benzothiadiazole Conjugated Polymer[J]. Macromolecules,2012,45 (13):5427-5435.
    [20]Albrecht S., Janietz S., Schindler W., Frisch J., Kurpiers J., Kniepert J., Inal S., Pingel P., Fostiropoulos K., Koch N.,Neher D. Fluorinated Copolymer PCPDTBT with Enhanced Open-Circuit Voltage and Reduced Recombination for Highly Efficient Polymer Solar Cells[J]. J. Am. Chem. Soc.,2012,134 (36): 14932-14944.
    [21]Tsao H. N., Cho D. M., Park I., Hansen M. R., Mavrinskiy A., Yoon D. Y., Graf R., Pisula W., Spiess H. W.,Mullen K. Ultrahigh Mobility in Polymer Field-Effect Transistors by Design[J]. J J. Am. Chem. Soc.,2011,133 (8): 2605-2612.
    [22]Price S. C., Stuart A. C., Yang L., Zhou H.,You W. Fluorine Substituted Conjugated Polymer of Medium Band Gap Yields 7% Efficiency in Polymer-Fullerene Solar Cells[J]. J. Am. Chem. Soc.,2011,133 (12): 4625-4631.
    [23]Zhou H., Yang L., Stuart A. C., Price S. C., Liu S.,You W. Development of Fluorinated Benzothiadiazole as a Structural Unit for a Polymer Solar Cell of 7% Efficiency [J]. Angew. Chem. Inter. Edition,2011,50 (13):2995-2998.
    [24]Zhang Y, Chien S.-C., Chen K.-S., Yip H.-L., Sun Y, Davies J. A., Chen F.-C.,Jen A. K. Y. Increased open circuit voltage in fluorinated benzothiadiazole-based alternating conjugated polymers[J]. Chem. Comm.,2011, 47(39):11026-11028.
    [25]Son H. J., Wang W., Xu T., Liang Y, Wu Y, Li G.,Yu L. Synthesis of Fluorinated Polythienothiophene-co-benzodithiophenes and Effect of Fluorination on the Photovoltaic Properties[J]. J. Am. Chem. Soc.,2011,133 (6): 1885-1894.
    [26]Xu Y.-X., Chueh C.-C., Yip H.-L., Ding F.-Z., Li Y.-X., Li C.-Z., Li X., Chen W.-C.,Jen A. K. Y Improved Charge Transport and Absorption Coefficient in Indacenodithieno[3,2-b]thiophene-based Ladder-Type Polymer Leading to Highly Efficient Polymer Solar Cells[J]. Adv. Mater.,2012,24 (47):6356-6361.
    [27]Coffin R. C., Peet J., Rogers J. ,Bazan G. C. Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells[J]. Nat Chem,2009,1 (8):657-661.
    [28]Li Y, Pan Z., Fu Y, Chen Y, Xie Z.,Zhang B. Soluble reduced graphene oxide functionalized with conjugated polymer for heterojunction solar cells[J]. J. Polym. Sci., Part A:Polym. Chem.,2012,50 (9):1663-1671.
    [29]Zotti G., Schiavon G., Berlin A., Fontana G.,Pagani G. Novel, Highly Conducting, and Soluble Polymers from Anodic Coupling of Alkyl-Substituted Cyclopentadithiophene Monomers[J]. Macromolecules,1994,27 (7):1938-1942.
    [30]Gadisa A., Oosterbaan W. D., Vandewal K., Bolsee J.-C., Bertho S., D'Haen J., Lutsen L., Vanderzande D.,Manca J. V. Effect of Alkyl Side-Chain Length on Photovoltaic Properties of Poly(3-alkylthiophene)/PCBM Bulk Heterojunctions[J]. Adv. Func. Mater.,2009,19 (20):3300-3306.
    [31]Li Z., Tsang S.-W., Du X., Scoles L., Robertson G., Zhang Y, Toll F., Tao Y, Lu J.,Ding J. Alternating Copolymers of Cyclopenta[2,1-b;3,4-b']dithiophene and Thieno[3,4-c]pyrrole-4,6-dione for High-Performance Polymer Solar Cells[J]. Adv. Func. Mater.,2011,21 (17):3331-3336.
    [32]Burkhart B., Khlyabich P. P.,Thompson B. C. Influence of the Ethylhexyl Side-Chain Content on the Open-Circuit Voltage in rr-Poly(3-hexylthiophene-co-3-(2-ethylhexyl)thiophene) Copolymers[J]. Macromolecules,2012,45 (9):3740-3748.
    [1]Chen C.-P., Chan S.-H., Chao T.-C., Ting C.,Ko B.-T. Low-Bandgap Poly(Thiophene-Phenylene-Thiophene) Derivatives with Broaden Absorption Spectra for Use in High-Performance Bulk-Heterojunction Polymer Solar Cells[J]. J. Am. Chem. Soc.,2008,130 (38):12828-12833.
    [2]McCulloch I., Ashraf R. S., Biniek L., Bronstein H., Combe C, Donaghey J. E., James D. I., Nielsen C. B., Schroeder B. C.,Zhang W. Design of Semiconducting Indacenodithiophene Polymers for High Performance Transistors and Solar Cells[J]. Acc. Chem. Res.,2012,45 (5):714-722.
    [3]Bronstein H., Leem D. S., Hamilton R., Woebkenberg P., King S., Zhang W., Ashraf R. S., Heeney M., Anthopoulos T. D., Mello J. d.,McCulloch I. Indacenodithiophene-co-benzothiadiazole Copolymers for High Performance Solar Cells or Transistors via Alkyl Chain Optimization[J]. Macromolecules, 2011,44 (17):6649-6652.
    [4]Zhang Y, Zou J., Yip H.-L., Chen K.-S., Zeigler D. F., Sun Y.,Jen A. K. Y. Indacenodithiophene and Quinoxaline-Based Conjugated Polymers for Highly Efficient Polymer Solar Cells[J]. Chem. Mater.,2011,23 (9):2289-2291.
    [5]Zhang J., Cai W., Huang F., Wang E., Zhong C., Liu S., Wang M., Duan C., Yang T.,Cao Y. Synthesis of Quinoxaline-Based Donor-Acceptor Narrow-Band-Gap Polymers and Their Cyclized Derivatives for Bulk-Heterojunction Polymer Solar Cell Applications[J]. Macromolecules,2011,44 (4):894-901.
    [6]Zhang Y, Chien S.-C., Chen K.-S., Yip H.-L., Sun Y, Davies J. A., Chen F.-C.,Jen A. K. Y Increased open circuit voltage in fluorinated benzothiadiazole-based alternating conjugated polymers[J]. Chem. Commun., 2011,47(39):11026-11028.
    [7]Wu J.-S., Cheng Y-J., Dubosc M., Hsieh C.-H., Chang C.-Y.,Hsu C.-S. Donor-acceptor polymers based on multi-fused heptacyclic structures:synthesis, characterization and photovoltaic applications[J]. Chem. Commun.,2010,46 (19):3259-3261.
    [8]Cheng Y-J., Chen C.-H., Lin Y.-S., Chang C.-Y.,Hsu C.-S. Ladder-Type Nonacyclic Structure Consisting of Alternate Thiophene and Benzene Units for Efficient Conventional and Inverted Organic Photovoltaics[J]. Chem. Mater., 2011,23 (22):5068-5075.
    [9]Chang C.-Y, Cheng Y-J., Hung S.-H., Wu J.-S., Kao W.-S., Lee C.-H.,Hsu C.-S. Combination of Molecular, Morphological, and Interfacial Engineering to Achieve Highly Efficient and Stable Plastic Solar Cells[J]. Adv. Mater.,2012,24 (4):549-553.
    [10]Chen Y.-L., Chang C.-Y., Cheng Y.-J.,Hsu C.-S. Synthesis of a New Ladder-Type Benzodi(cyclopentadithiophene) Arene with Forced Planarization Leading to an Enhanced Efficiency of Organic Photovoltaics[J]. Chem. Mater., 2012,24 (20):3964-3971.
    [11]Wu J.-S., Cheng Y.-J., Lin T.-Y, Chang C.-Y, Shih P.-I.,Hsu C.-S. Dithienocarbazole-Based Ladder-Type Heptacyclic Arenes with Silicon, Carbon, and Nitrogen Bridges:Synthesis, Molecular Properties, Field-Effect Transistors, and Photovoltaic Applications[J]. Adv. Funct. Mater.,2012,22 (8):1711-1722.
    [12]Bronstein H., Ashraf R. S., Kim Y, White A. J. P., Anthopoulos T., Song K., James D., Zhang W.,McCulloch I. Synthesis of a Novel Fused Thiophene-thieno[3,2-b]thiophene-thiophene Donor Monomer and Co-polymer for Use in OPV and OFETs[J]. Macromol. Rapid Commun.,2011,32 (20): 1664-1668.
    [13]Fei Z., Ashraf R. S., Huang Z., Smith J., Kline R. J., D'Angelo P., Anthopoulos T. D., Durrant J. R., McCulloch I.,Heeney M. Germaindacenodithiophene based low band gap polymers for organic solar cells[J]. Chem. Commun.,2012,48 (24): 2955-2957.
    [14]Wu J.-S., Lai Y.-Y, Cheng Y.-J., Chang C.-Y., Wang C.-L.,Hsu C.-S. A New sp2-sp2 Dialkylethylene-Bridged Heptacyclic Ladder-Type Arene for High Efficiency Polymer Solar Cells[J]. Adv. Energy Mater.,2013,3 (4):457-465.
    [15]Cheng Y.-J., Chen C.-H., Lin T.-Y.,Hsu C.-S. Dithienocyclopentathieno[3,2-b]thiophene Hexacyclic Arene for Solution-Processed Organic Field-Effect Transistors and Photovoltaic Applications[J]. Chem. Asian J.,2012,7 (4):818-825.
    [16]Zhang Y, Zou J., Cheuh C.-C., Yip H.-L. Jen A. K. Y Significant Improved Performance of Photovoltaic Cells Made from a Partially Fluorinated Cyclopentadithiophene/Benzothiadiazole Conjugated Polymer[J]. Macromolecules,2012,45 (13):5427-5435.
    [17]Albrecht S., Janietz S., Schindler W., Frisch J., Kurpiers J., Kniepert J., Inal S., Pingel P., Fostiropoulos K., Koch N.,Neher D. Fluorinated Copolymer PCPDTBT with Enhanced Open-Circuit Voltage and Reduced Recombination for Highly Efficient Polymer Solar Cells[J]. J. Am. Chem. Soc.,2012,134 (36): 14932-14944.
    [18]Hou J., Chen T. L., Zhang S., Chen H.-Y.,Yang Y. Poly[4,4-bis(2-ethylhexyl)cyclopenta[2,1-b;3,4-b']dithiophene-2,6-diyl-alt-2,1,3-benzoselenadiazole-4,7-diyl], a New Low Band Gap Polymer in Polymer Solar Cells[J]. J. Phys. Chem. C,2009,113 (4):1601-1605.
    [19]Dou L., Chen C.-C., Yoshimura K., Ohya K., Chang W.-H., Gao J., Liu Y, Richard E.,Yang Y Synthesis of 5H-Dithieno[3,2-b:2',3'-d]pyran as anElectron-Rich Building B1ock for Donor-Acceptor Type Low-BandgapPolymers[J]. Macromolecules,2013,46 (9):3384-3390.
    [20]Xu Y-X.,Chueh C.-C.,Yip H.-L.,DingF.-Z.,Li Y-X.,Li C.-Z.,Li X.,ChenW.-C.,Jen A.K.Y Improved Charge Transport and Absorption Coefficient inIndacenodithieno[3,2-b]thiophene-based Ladder-Type Polymer Leading to Highly Efficient Polymer Solar Cells[J]. Adv. Mater.,2012,24 (47):6356-6361.
    [21]Xu Y-X.,Chueh C.-C.,Yip H.-L.,Chang C.-Y.,Liang P.-W.,Intemann J.J.,Chen W.-C. Jen A. K. Y Indacenodithieno[3,2-b]thiophene-based broad bandgap polymers for high efficiency polymer solar cells[J]. Poly. Chem.,2013.
    [22]Li Y, Pan Z., Fu Y, Chen Y, Xie Z.,Zhang B. Soluble reduced graphene oxide functionalized with conjugated polymer for heterojunction solar cells[J]. J. Polym. Sci., Part A:Polym. Chem.,2012,50 (9):1663-1671.
    [23]Li Y, Pan Z., Miao L., Xing Y, Li C.,Chen Y Fluoro-benzoselenadiazole-based low band gap polymers for high efficiency organic solar cells[J]. Poly. Chem., 2014,5 (2):330-334.
    [24]Ren Y, Lam J. W. Y, Dong Y, Tang B. Z.,Wong K. S. Enhanced Emission Efficiency and Excited State Lifetime Due to Restricted Intramolecular Motion in Silole Aggregates [J]. J. Phys. Chem. C,2005,109 (3):1135-1140.
    [25]Zade S. S.,Bendikov M. Study of Hopping Transport in Long Oligothiophenes and Oligoselenophenes:Dependence of Reorganization Energy on Chain Length[J]. Chem. Eur. J,2008,14 (22):6734-6741.
    [26]Hutchison G. R., Ratner M. A.,Marks T. J. Hopping Transport in Conductive Heterocyclic Oligomers:Reorganization Energies and Substituent Effects[J]. J. Am. Chem. Soc.,2005,127 (7):2339-2350.
    [27]Chen X.-K., Guo J.-F., Zou L.-Y., Ren A.-M.,Fan J.-X. A Promising Approach to Obtain Excellent n-Type Organic Field-Effect Transistors:Introducing Pyrazine Ring[J]. J. Phys. Chem. C,2011,115 (43):21416-21428.
    [28]Becke A. D. Density-functional thermochemistry. III. The role of exact exchange[J]. J. Chem. Phys.,1993,98 (7):5648-5652.
    [29]Stephens P. J., Devlin F. J., Chabalowski C. F.,Frisch M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields[J]. J. Phys. Chem.,1994,98 (45):11623-11627.
    [30]Sun Y., Chien S.-C., Yip H.-L., Zhang Y, Chen K.-S., Zeigler D. F., Chen F.-C., Lin B.,Jen A. K. Y. High-mobility low-bandgap conjugated copolymers based on indacenodithiophene and thiadiazolo[3,4-c]pyridine units for thin film transistor and photovoltaic applications[J]. J. Mater. Chem.,2011,21 (35):13247-13255.
    [31]O'Malley K. M., Li C.-Z., Yip H.-L. Jen A. K. Y. Enhanced Open-Circuit Voltage in High Performance Polymer/Fullerene Bulk-Heterojunction Solar Cells by Cathode Modification with a C60 Surfactant[J]. Adv. Energy Mater.,2012,2 (1):82-86.
    [32]Li C.-Z., Chueh C.-C., Yip H.-L., O'Malley K. M., Chen W.-C. Jen A. K. Y. Effective interfacial layer to enhance efficiency of polymer solar cells via solution-processed fullerene-surfactants[J]. J. Mater. Chem.,2012,22 (17): 8574-8578.
    [1]Wienk M. M., Turbiez M., Gilot J.,Janssen R. A. J. Narrow-Bandgap Diketo-Pyrrolo-Pyrrole Polymer Solar Cells:The Effect of Processing on the Performance[J]. Adv. Mater.,2008,20 (13):2556-2560.
    [2]Bijleveld J. C., Zoombelt A. P., Mathijssen S. G. J., Wienk M. M., Turbiez M., de Leeuw D. M. Janssen R. A. J. Poly(diketopyrrolopyrrole-terthiophene) for Ambipolar Logic and Photovoltaics[J]. J. Am. Chem. Soc.,2009,131 (46): 16616-16617.
    [3]Zhou E., Wei Q., Yamakawa S., Zhang Y., Tajima K., Yang C.,Hashimoto K. Diketopyrrolopyrrole-Based Semiconducting Polymer for Photovoltaic Device with Photocurrent Response Wavelengths up to 1.1 μm[J]. Macromolecules, 2009,43 (2):821-826.
    [4]Ashraf R. S., Chen Z., Leem D. S., Bronstein H., Zhang W., Schroeder B., Geerts Y, Smith J., Watkins S., Anthopoulos T. D., Sirringhaus H., de Mello J. C., Heeney M.,McCulloch I. Silaindacenodithiophene Semiconducting Polymers for Efficient Solar Cells and High-Mobility Ambipolar Transistors [J]. Chem. Mater., 2010.23 (3):768-770.
    [5]Qu S.,Tian H. Diketopyrrolopyrrole (DPP)-based materials for organic photovoltaics[J]. Chem. Commun.,2012,48 (25):3039-3051.
    [6]Huang Y., Guo X., Liu F., Huo L., Chen Y., Russell T. P., Han C. C., Li Y.,Hou J. Improving the Ordering and Photovoltaic Properties by Extending π-Conjugated Area of Electron-Donating Units in Polymers with D-A Structure[J]. Adv. Mater., 2012,24 (25):3383-3389.
    [7]Huo L., Hou J., Zhang S., Chen H.-Y.,Yang Y. A Polybenzo[1,2-b:4,5-b']dithiophene Derivative with Deep HOMO Level and Its Application in High-Performance Polymer Solar Cells[J]. Angew. Chem. Int. Ed., 2010,49 (8):1500-1503.
    [8]Li Z., Zhang Y, Tsang S.-W., Du X., Zhou J., Tao Y.,Ding J. Alkyl Side Chain Impact on the Charge Transport and Photovoltaic Properties of Benzodithiophene and Diketopyrrolopyrrole-Based Copolymers[J]. J. Phys. Chem. C,2011,115 (36):18002-18009.
    [9]Cabanetos C., El Labban A., Bartelt J. A., Douglas J. D., Mateker W. R., Frechet J. M. J., McGehee M. D.,Beaujuge P. M. Linear Side Chains in Benzo 1,2-b:4,5-b'dithiophene-Thieno 3,4-c pyrrole-4,6-dione Polymers Direct Self-Assembly and Solar Cell Performance[J]. J. Am. Chem. Soc.,2013,135 (12):4656-4659.
    [10]Son H. J., Lu L. Y., Chen W., Xu T., Zheng T. Y., Carsten B., Strzalka J., Darling S. B., Chen L. X.,Yu L. P. Synthesis and Photovoltaic Effect in Dithieno 2,3-d:2 ',3'-d'Benzo 1,2-b:4,5-b'dithiophene-Based Conjugated Polymers[J]. Adv. Mater.,2013,25 (6):838-843.
    [11]Tan H., Deng X. P., Yu J. T., Zhao B. F., Wang Y. F., Liu Y, Zhu W. G., Wu H. B.,Cao Y. A Novel Benzo 1,2-b:4,5-b'dithiophene-Based Conjugated Polymer with a Pendant Diketopyrrolopyrrole Unit for High-Performance Solar Cells[J]. Macromolecules,2013,46 (1):113-118.
    [12]Peng Q., Lim S.-L., Wong I. H.-K., Xu J.,Chen Z.-K. Synthesis and Photovoltaic Properties of Two-Dimensional Low-Bandgap Copolymers Based on New Benzothiadiazole Derivatives with Different Conjugated Arylvinylene Side Chains[J]. Chem. Eur. J,2012,18 (38):12140-12151.
    [13]Ong B. S., Wu Y, Li Y, Liu P.,Pan H. Thiophene Polymer Semiconductors for Organic Thin-Film Transistors[J]. Chem. Eur. J,2008,14 (16):4766-4778.
    [14]Huo L., Ye L., Wu Y., Li Z., Guo X., Zhang M., Zhang S.,Hou J. Conjugated and Nonconjugated Substitution Effect on Photovoltaic Properties of Benzodifuran-Based Photovoltaic Polymers[J]. Macromolecules,2012,45 (17): 6923-6929.
    [15]Duan R., Ye L., Guo X., Huang Y., Wang P., Zhang S., Zhang J., Huo L.,Hou J. Application of Two-Dimensional Conjugated Benzo[1,2-b:4,5-b']dithiophene in Quinoxaline-Based Photovoltaic Polymers[J]. Macromolecules,2012,45 (7): 3032-3038.
    [16]Li W, Roelofs W S. C., Wienk M. M.,Janssen R. A. J. Enhancing the Photocurrent in Diketopyrrolopyrrole-Based Polymer Solar Cells via Energy Level Control[J]. J. Am. Chem. Soc.,2012,134 (33):13787-13795.
    [17]Bronstein H., Chen Z., Ashraf R. S., Zhang W., Du J., Durrant J. R., Shakya Tuladhar P., Song K., Watkins S. E., Geerts Y, Wienk M. M., Janssen R. A. J., Anthopoulos T., Sirringhaus H., Heeney M.,McCulloch I. Thieno[3,2-b]thiophene-Diketopyrrolopyrrole-Containing Polymers for High-Performance Organic Field-Effect Transistors and Organic Photovoltaic Devices[J]. J. Am. Chem. Soc.,2011,133 (10):3272-3275.
    [18]Yuan J., Huang X., Zhang F., Lu J., Zhai Z., Di C., Jiang Z.,Ma W. Design of benzodithiophene-diketopyrrolopyrrole based donor-acceptor copolymers for efficient organic field effect transistors and polymer solar cells[J]. J. Mater. Chem.,2012,22 (42):22734-22742.
    [19]Pandey L., Risko C., Norton J. E.,Bredas J.-L. Donor-Acceptor Copolymers of Relevance for Organic Photovoltaics:A Theoretical Investigation of the Impact of Chemical Structure Modifications on the Electronic and Optical Properties [J]. Macromolecules,2012,45 (16):6405-6414.
    [20]Li Y., Pan Z., Fu Y., Chen Y., Xie Z.,Zhang B. Soluble reduced graphene oxide functionalized with conjugated polymer for heterojunction solar cells[J]. J. Polym. Sci., Part A:Polym. Chem.,2012,50 (9):1663-1671.
    [21]Zhang Y, Chien S.-C., Chen K.-S., Yip H.-L., Sun Y, Davies J. A., Chen F.-C.,Jen A. K. Y Increased open circuit voltage in fluorinated benzothiadiazole-based alternating conjugated polymers[J]. Chem. Commun., 2011,47(39):11026-11028.
    [22]Zhang Y, Zou J., Cheuh C.-C., Yip H.-L. Jen A. K. Y. Significant Improved Performance of Photovoltaic Cells Made from a Partially Fluorinated Cyclopentadithiophene/Benzothiadiazole Conjugated Polymer[J]. Macromolecules,2012,45 (13):5427-5435.
    [23]Zhang J., Cai W., Huang F., Wang E., Zhong C., Liu S., Wang M., Duan C., Yang T.,Cao Y. Synthesis of Quinoxaline-Based Donor-Acceptor Narrow-Band-Gap Polymers and Their Cyclized Derivatives for Bulk-Heterojunction Polymer Solar Cell Applications[J]. Macromolecules,2011,44 (4):894-901.
    [24]Sun Y, Chien S.-C., Yip H.-L., Zhang Y, Chen K.-S., Zeigler D. F., Chen F.-C., Lin B.,Jen A. K. Y High-mobility low-bandgap conjugated copolymers based on indacenodithiophene and thiadiazolo[3,4-c]pyridine units for thin film transistor and photovoltaic applications[J]. J. Mater. Chem.,2011,21 (35):13247-13255.
    [25]Zhang Y, Zou J., Yip H.-L., Sun Y, Davies J. A., Chen K.-S., Acton O.,Jen A. K. Y Conjugated polymers based on C, Si and N-bridged dithiophene and thienopyrroledione units:synthesis, field-effect transistors and bulk heterojunction polymer solar cells[J]. J. Mater. Chem.,2011,21 (11):3895-3902.
    [26]Huang J., Zhan C., Zhang X., Zhao Y, Lu Z., Jia H., Jiang B., Ye J., Zhang S., Tang A., Liu Y, Pei Q.,Yao J. Solution-Processed DPP-Based Small Molecule that Gives High Photovoltaic Efficiency with Judicious Device Optimization[J]. ACS Appl. Mat. Interfaces,2013,5 (6):2033-2039.
    [27]Kim H.-S., Kim Y.-H., Kim T.-H., Noh Y.-Y., Pyo S., Yi M. H., Kim D.-Y,Kwon S.-K. Synthesis and Studies on 2-Hexylthieno[3,2-b]thiophene End-Capped Oligomers for OTFTs[J]. Chem. Mater.,2007,19 (14):3561-3567.
    [28]Chang C. Y, Zuo L., Yip H. L., Li Y, Li C. Z., Hsu C. S., Cheng Y J., Chen H. Jen A. K. Y. A Versatile Fluoro-Containing Low-Bandgap Polymer for Efficient Semitransparent and Tandem Polymer Solar Cells[J]. Adv. Funct. Mater.,2013,23 (40):5084-5090.
    [1]Zade S. S., Zamoshchik N.,Bendikov M. Oligo- and Polyselenophenes:A Theoretical Study[J]. Chem. Eur. J,2009,15 (34):8613-8624.
    [2]Zhou E., Cong J., Hashimoto K.,Tajima K. A Benzoselenadiazole-Based Low Band Gap Polymer:Synthesis and Photovoltaic Application[J]. Macromolecules, 2013,46 (3):763-768.
    [3]Intemann J. J., Yao K., Yip H.-L., Xu Y.-X., Li Y.-X., Liang P.-W., Ding F.-Z., Li X.,Jen A. K. Y. Molecular Weight Effect on the Absorption, Charge Carrier Mobility, and Photovoltaic Performance of an Indacenodiselenophene-Based Ladder-Type Polymer[J]. Chem. Mater.,2013,25 (15):3188-3195.
    [4]Dou L., Chang W.-H., Gao J., Chen C.-C., You J.,Yang Y. A Selenium-Substituted Low-Bandgap Polymer with Versatile Photovoltaic Applications[J]. Adv. Mater.,2013,25 (6):825-831.
    [5]Saadeh H. A., Lu L., He F., Bullock J. E., Wang W., Carsten B.,Yu L. Polyselenopheno[3,4-b]selenophene for Highly Efficient Bulk Heterojunction Solar Cells[J]. ACS Macro Lett.,2012,1 (3):361-365.
    [6]Hou J., Park M.-H., Zhang S., Yao Y, Chen L.-M., Li J.-H.,Yang Y. Bandgap and Molecular Energy Level Control of Conjugated Polymer Photovoltaic Materials Based on Benzo[1,2-b:4,5-b']dithiophene[J]. Macromolecules,2008, 41 (16):6012-6018.
    [7]Zhao W., Cai W., Xu R., Yang W., Gong X., Wu H.,Cao Y. Novel conjugated alternating copolymer based on 2,7-carbazole and 2,1,3-benzoselenadiazole[J]. Polymer,2010,51 (14):3196-3202.
    [8]Zhang Y, Chien S.-C., Chen K.-S., Yip H.-L., Sun Y, Davies J. A., Chen F.-C.,Jen A. K. Y. Increased open circuit voltage in fluorinated benzothiadiazole-based alternating conjugated polymers[J]. Chem. Commun., 2011,47(39):11026-11028.
    [9]Xu Y.-X., Chueh C.-C., Yip H.-L., Ding F.-Z., Li Y.-X., Li C.-Z., Li X., Chen W.-C. Jen A. K. Y. Improved Charge Transport and Absorption Coefficient in Indacenodithieno[3,2-b]thiophene-based Ladder-Type Polymer Leading to Highly Efficient Polymer Solar Cells[J]. Adv. Mater.,2012,24 (47):6356-6361.
    [10]Price S. C., Stuart A. C., Yang L., Zhou H.,You W. Fluorine Substituted Conjugated Polymer of Medium Band Gap Yields 7% Efficiency in Polymer-Fullerene Solar Cells[J]. J. Am. Chem. Soc.,2011,133 (12): 4625-4631.
    [11]Zhou H., Yang L., Stuart A. C., Price S. C., Liu S.,You W. Development of Fluorinated Benzothiadiazole as a Structural Unit for a Polymer Solar Cell of 7% Efficiency[J]. Angew. Chem. Int. Ed.,2011,50 (13):2995-2998.
    [12]Love J. A., Nagao I., Huang Y., Kuik M., Gupta V, Takacs C. J., Coughlin J. E., Qi L., van der Poll T. S., Kramer E. J., Heeger A. J., Nguyen T.-Q.,Bazan G. C. Silaindacenodithiophene-Based Molecular Donor:Morphological Features and Use in the Fabrication of Compositionally Tolerant, High-Efficiency Bulk Heterojunction Solar Cells[J]. J. Am. Chem. Soc.,2014,136 (9):3597-3606.
    [13]Yang L., Tumbleston J. R., Zhou H., Ade H.,You W. Disentangling the impact of side chains and fluorine substituents of conjugated donor polymers on the performance of photovoltaic blends[J]. Energy Environ. Sci.,2013,6 (1): 316-326.
    [14]Zhang Y, Zou J., Cheuh C.-C., Yip H.-L. Jen A. K. Y. Significant Improved Performance of Photovoltaic Cells Made from a Partially Fluorinated Cyclopentadithiophene/Benzothiadiazole Conjugated Polymer[J]. Macromolecules,2012,45 (13):5427-5435.
    [15]Li Y, Zou J., Yip H.-L., Li C.-Z., Zhang Y, Chueh C.-C., Intemann J., Xu Y, Liang P.-W., Chen Y.,Jen A. K. Y. Side-Chain Effect on Cyclopentadithiophene/Fluorobenzothiadiazole-Based Low Band Gap Polymers and Their Applications for Polymer Solar Cells[J]. Macromolecules,2013,46 (14):5497-5503.
    [16]Lai L. F., Love J. A., Sharenko A., Coughlin J. E., Gupta V., Tretiak S., Nguyen T.-Q., Wong W.-Y.,Bazan G. C. Topological Considerations for the Design of Molecular Donors with Multiple Absorbing Units[J]. J. Am. Chem. Soc.,2014, 136 (15):5591-5594.
    [17]Yang L., Tumbleston J. R., Zhou H., Ade H.,You W. Disentangling the impact of side chains and fluorine substituents of conjugated donor polymers on the performance of photovoltaic blends[J]. Energy Environ. Sci.,2013,6 (1): 316-326.
    [18]Stuart A. C., Tumbleston J. R., Zhou H., Li W., Liu S., Ade H.,You W. Fluorine Substituents Reduce Charge Recombination and Drive Structure and Morphology Development in Polymer Solar Cells[J]. J. Am. Chem. Soc.,2013, 135 (5):1806-1815.
    [19]Li Y, Pan Z., Fu Y, Chen Y, Xie Z.,Zhang B. Soluble reduced graphene oxide functionalized with conjugated polymer for heterojunction solar cells[J]. J. Polym. Sci., Part A:Polym. Chem.,2012,50 (9):1663-1671.
    [20]Sun Y, Chien S.-C., Yip H.-L., Zhang Y, Chen K.-S., Zeigler D. F., Chen F.-C., Lin B.,Jen A. K. Y. High-mobility low-bandgap conjugated copolymers based on indacenodithiophene and thiadiazolo[3,4-c]pyridine units for thin film transistor and photovoltaic applications[J]. J. Mater. Chem.,2011,21 (35):13247-13255.
    [21]Wang J.-Y, Hau S. K., Yip H.-L., Davies J. A., Chen K.-S., Zhang Y, Sun Y.,Jen A. K. Y Benzobis(silolothiophene)-Based Low Bandgap Polymers for Efficient Polymer Solar Cells [J]. Chem. Mater.,2010,23 (3):765-767.
    [22]Zhang Y., Zou J., Yip H.-L., Sun Y, Davies J. A., Chen K.-S., Acton O. Jen A. K. Y Conjugated polymers based on C, Si and N-bridged dithiophene and thienopyrroledione unite:synthesis, field-effect transistors and bulk heterojunction polymer solar cells[J]. J. Mater. Chem.,2011,21 (11):3895-3902.
    [23]Li C.-Z., Chueh C.-C., Yip H.-L., O'Malley K. M., Chen W.-C.,Jen A. K. Y Effective interfacial layer to enhance efficiency of polymer solar cells via solution-processed fullerene-surfactants[J]. J. Mater. Chem.,2012,22 (17): 8574-8578.
    [1]Muhlbacher D., Scharber M., Morana M., Zhu Z., Waller D., Gaudiana R.,Brabec C. High photovoltaic performance of a low-bandgap polymer[J]. Adv. Mater.,2006,18 (21):2884-2889.
    [2]K., Ma W. L., Brabec C. J., Yuen J., Moon J. S., Kim J. Y., Lee K., Bazan G. C.,Heeger A. J. Processing additives for improved efficiency from bulk heterojunction solar cells[J]. J. Am. Chem. Soc.,2008,130 (11):3619-3623.
    [3]Hadipour A., de Boer B., Wildeman J., Kooistra F. B., Hummelen J. C., Turbiez M. G., Wienk M. M., Janssen R. A.,Blom P. W. Solution-Processed Organic Tandem Solar Cells[J]. Adv. Funct. Mater.,2006,16 (14):1897-1903.
    [4]Hadipour A., de Boer B.,Blom P. W. Solution-processed organic tandem solar cells with embedded optical spacers[J]. J. Appl. Phys.,2007,102 (7): 074506-074506-6.
    [5]Chen H. Y, Hou J., Hayden A. E., Yang H., Houk K.,Yang Y. Silicon Atom Substitution Enhances Interchain Packing in a Thiophene-Based Polymer System[J]. Adv. Mater.,2010,22 (3):371-375.
    [6]Coffin R. C., Peet J., Rogers J.,Bazan G. C. Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells[J]. Nature Chem.,2009,1 (8):657-661.
    [7]Yue W., Zhao Y, Shao S., Tian H., Xie Z., Geng Y.,Wang F. Novel NIR-absorbing conjugated polymers for efficient polymer solar cells:effect of alkyl chain length on device performance[J]. J. Mater. Chem.,2009,19 (15): 2199-2206.
    [8]Zhang Y, Zou J., Cheuh C.-C., Yip H.-L. Jen A. K. Y. Significant Improved Performance of Photovoltaic Cells Made from a Partially Fluorinated Cyclopentadithiophene/Benzothiadiazole Conjugated Polymer[J]. Macromolecules,2012,45 (13):5427-5435.
    [9]Albrecht S., Janietz S., Schindler W., Frisch J., Kurpiers J., Kniepert J., Inal S., Pingel P., Fostiropoulos K., Koch N.,Neher D. Fluorinated Copolymer PCPDTBT with Enhanced Open-Circuit Voltage and Reduced Recombination for Highly Efficient Polymer Solar Cells[J]. J. Am. Chem. Soc.,2012,134 (36): 14932-14944.
    [10]Small C. E., Chen S., Subbiah J., Amb C. M., Tsang S.-W., Lai T.-H., Reynolds J. R.,So F. High-efficiency inverted dithienogermole-thienopyrrolodione-based polymer solar cells[J]. Nat Photon,2012,6 (2):115-120.
    [11]Schroeder B. C., Ashraf R. S., Thomas S., White A. J. P., Biniek L., Nielsen C. B., Zhang W., Huang Z., Tuladhar P. S., Watkins S. E., Anthopoulos T. D., Durrant J. R.,McCulloch I. Synthesis of novel thieno[3,2-b]thienobis(silolothiophene) based low bandgap polymers for organic photovoltaics[J]. Chem. Commun., 2012,48 (62):7699-7701.
    [12]You J., Dou L., Yoshimura K., Kato T., Ohya K., Moriarty T., Emery K., Chen C.-C., Gao J., Li G.,Yang Y. A polymer tandem solar cell with 10.6% power conversion efficiency[J]. Nat Commun,2013,4:1446.
    [13]L., Chen C.-C., Yoshimura K., Ohya K., Chang W.-H., Gao J., Liu Y, Richard E.,Yang Y. Synthesis of 5H-Dithieno[3,2-b:2',3'-d]pyran as an Electron-Rich Building Block for Donor-Acceptor Type Low-Bandgap Polymers [J]. Macromolecules,2013,46 (9):3384-3390.
    [14]Soci C., Hwang I. W., Moses D., Zhu Z., Waller D., Gaudiana R., Brabec C. J.,Heeger A. J. Photoconductivity of a Low-Bandgap Conjugated Polymer[J]. Adv. Funct. Mater.,2007,17 (4):632-636.
    [15]Bijleveld J. C., Shahid M., Gilot J., Wienk M. M. Janssen R. A. J. Copolymers of Cyclopentadithiophene and Electron-Deficient Aromatic Units Designed for Photovoltaic Applications[J]. Adv. Functional Mater.,2009,19 (20):3262-3270.
    [16]Mihlbacher D., Scharber M., Morana M., Zhu Z., Waller D., Gaudiana R.,Brabec c. High Photovoltaic Performance of a Low-Bandgap Polymer[J]. Adv. Mater.,2006,18 (21):2884-2889.
    [17]Zhu Z., Waller D., Gaudiana R., Morana M., Muhlbacher D., Scharber M.,Brabec C. Panchromatic Conjugated Polymers Containing Alternating Donor/Acceptor Units for Photovoltaic Applications[J]. Macromolecules,2007, 40(6):1981-1986.
    [18]Coffin R. C., Peet J., Rogers J.,Bazan G. C. Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells[J]. Nature Chem.,2009,1 (8):657-661.
    [19]Horie M., Kettle J., Yu C.-Y, Majewski L. A., Chang S.-W., Kirkpatrick J., Tuladhar S. M., Nelson J., Saunders B. R.,Turner M. L. Cyclopentadithiophene-benzothiadiazole oligomers and polymers; synthesis, characterisation, field-effect transistor and photovoltaic characteristics[J]. J. Mater. Chem.,2012,22 (2):381-389.
    [20]Albrecht S., Janietz S., Schindler W., Frisch J., Kurpiers J., Kniepert J., Inal S., Pingcl P., Fostiropoulos K., Koch N.,Neher D. Fluorinated Copolymer PCPDTBT with Enhanced Open-Circuit Voltage and Reduced Recombination for Highly Efficient Polymer Solar Cells[J]. J. Am. Chem. Soc.,2012,134 (36): 14932-14944.
    [21]Chang C. Y., Zuo L., Yip H. L., Li Y, Li C. Z., Hsu C. S., Cheng Y. J., Chen H. Jen A. K. Y A Versatile Fluoro-Containing Low-Bandgap Polymer for Efficient Semitransparent and Tandem Polymer Solar Cells[J]. Adv. Funct. Mater.,2013,23 (40):5084-5090.
    [22]Zhang J., Cai W., Huang F., Wang E., Zhong C., Liu S., Wang M., Duan C., Yang T.,Cao Y. Synthesis of Quinoxaline-Based Donor-Acceptor Narrow-Band-Gap Polymers and Their Cyclized Derivatives for Bulk-Heterojunction Polymer Solar Cell Applications[J]. Macromolecules,2011,44 (4):894-901.
    [23]Zhang Y., Zou J., Yip H.-L., Chen K.-S., Zeigler D. F., Sun Y.,Jen A. K. Y. Indacenodithiophene and Quinoxaline-Based Conjugated Polymers for Highly Efficient Polymer Solar Cells[J]. Chem. Mater.,2011,23 (9):2289-2291.
    [24]Gadisa A., Mammo W., Andersson L. M., Admassie S., Zhang F., Andersson M. R.,Inganas O. A New Donor-Acceptor-Donor Polyfluorene Copolymer with Balanced Electron and Hole Mobility[J]. Adv. Funct. Mater.,2007,17 (18): 3836-3842.
    [25]Zhang Y, Zou J., Yip H.-L., Chen K.-S., Davies J. A., Sun Y.,Jen A. K. Y. Synthesis, Characterization, Charge Transport, and Photovoltaic Properties of Dithienobenzoquinoxaline-and Dithienobenzopyridopyrazine-Based Conjugated Polymers[J]. Macromolecules,2011,44 (12):4752-4758.
    [26]Wang E., Hou L., Wang Z., Hellstrom S., Zhang F., Inganas O.,Andersson M. R. An Easily Synthesized Blue Polymer for High-Performance Polymer Solar Cells[J]. Adv. Mater.,2010,22 (46):5240-5244.
    [27]Huang Y, Zhang M., Ye L., Guo X., Han C. C., Li Y.,Hou J. Molecular energy level modulation by changing the position of electron-donating side groups[J]. J. Mater. Chem.,2012,22 (12):5700-5705.
    [28]Zhou E., Cong J., Tajima K.,Hashimoto K. Synthesis and Photovoltaic Properties of Donor-Acceptor Copolymers Based on 5,8-Dithien-2-yl-2,3-diphenylquinoxaline[J]. Chem. Mater.,2010,22 (17): 4890-4895.
    [29]Wang E., Hou L., Wang Z., Ma Z., Hellstrom S., Zhuang W., Zhang F., Inganas O.,Andersson M. R. Side-Chain Architectures of 2,7-Carbazole and Quinoxaline-Based Polymers for Efficient Polymer Solar Cells[J]. Macromolecules,2011,44 (7):2067-2073.
    [30]Price S. C., Stuart A. C., Yang L., Zhou H.,You W. Fluorine Substituted Conjugated Polymer of Medium Band Gap Yields 7% Efficiency in Polymer-Fullerene Solar Cells[J]. J. Am. Chem. Soc.,2011,133 (12): 4625-4631.
    [31]Zhou H., Yang L., Stuart A. C., Price S. C., Liu S.,You W. Development of Fluorinated Benzothiadiazole as a Structural Unit for a Polymer Solar Cell of 7% Efficiency[J]. Angew. Chem. Int. Ed.,2011,50 (13):2995-2998.
    [32]Zhang Y, Chien S.-C., Chen K.-S., Yip H.-L., Sun Y, Davies J. A., Chen F.-C. Jen A. K. Y. Increased open circuit voltage in fluorinated benzothiadiazole-based alternating conjugated polymers[J]. Chem. Commun., 2011,47(39):11026-11028.
    [33]Wang E., Bergqvist J., Vandewal K., Ma Z., Hou L., Lundin A., Himmelberger S., Salleo A., Muller C., Inganas O., Zhang F.,Andersson M. R. Conformational Disorder Enhances Solubility and Photovoltaic Performance of a Thiophene-Quinoxaline Copolymer[J]. Adv. Energy Mater.,2013,3(60):806-814.
    [34]Lindgren L. J., Zhang F., Andersson M., Barrau S., Hellstrom S., Mammo W., Perzon E., Inganas O.,Andersson M. R. Synthesis, Characterization, and Devices of a Series of Alternating Copolymers for Solar Cells[J]. Chem. Mater., 2009,21 (15):3491-3502.
    [1]Burkhart B., Khlyabich P. P.,Thompson B. C. Influence of the Acceptor Composition on Physical Properties and Solar Cell Performance in Semi-Random Two-Acceptor Copolymers[J]. ACS Macro Lett.,2012,1 (6): 660-666.
    [2]Li J., Ong K.-H., Lim S.-L., Ng G.-M., Tan H.-S.,Chen Z.-K. A random copolymer based on dithienothiophene and diketopyrrolopyrrole units for high performance organic solar cells[J]. Chem. Commun.,2011,47 (33):9480-9482.
    [3]Hendriks K. H., Heintges G. H. L., Gevaerts V. S., Wienk M. M.,Janssen R. A. J. High-Molecular-Weight Regular Alternating Diketopyrrolopyrrole-based Terpolymers for Efficient Organic Solar Cells[J]. Angew. Chem. Int. Ed.,2013, 52(32):8341-8344.
    [4]Nielsen C. B., Ashraf R. S., Schroeder B. C., D'Angelo P., Watkins S. E., Song K., Anthopoulos T. D.,McCulloch I. Random benzotrithiophene-based donor-acceptor copolymers for efficient organic photovoltaic devices[J]. Chem. Commun.,2012,48 (47):5832-5834.
    [5]Zhang Y., Chien S.-C., Chen K.-S., Yip H.-L., Sun Y, Davies J. A., Chen F.-C.,Jen A. K. Y. Increased open circuit voltage in fluorinated benzothiadiazole-based alternating conjugated polymers[J]. Chem. Commun., 2011,47(39):11026-11028.
    [6]Li Y, Zou J., Yip H.-L., Li C.-Z., Zhang Y, Chueh C.-C., Intemann J., Xu Y, Liang P.-W., Chen Y. Jen A. K. Y. Side-Chain Effect on Cyclopentadithiophene/Fluorobenzothiadiazole-Based Low Band Gap Polymers and Their Applications for Polymer Solar Cells [J]. Macromolecules,2013,46 (14):5497-5503.
    [7]Zhang Y, Zou J., Yip H.-L., Sun Y., Davies J. A., Chen K.-S., Acton O.,Jen A. K. Y Conjugated polymers based on C, Si and N-bridged dithiophene and thienopyrroledione units:synthesis, field-effect transistors and bulk heterojunction polymer solar cells[J]. J. Mater. Chem.,2011,21 (11):3895-3902.
    [8]Li Y, Chang C.-Y., Chen Y, Song Y, Li C.-Z., Yip H.-L., Jen A. K. Y.,Li C. The effect of thieno[3,2-b]thiophene on the absorption, charge mobility and photovoltaic performance of diketopyrrolopyrrole-based low bandgap conjugated polymers[J]. J. Mater. Chem. C,2013,1 (45):7526-7533.
    [9]Coffin R. C., Peet J., Rogers J.,Bazan G. C. Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells[J]. Nature Chem.,2009,1 (8):657-661.
    [10]Bronstein H., Chen Z., Ashraf R. S., Zhang W., Du J., Durrant J. R., Shakya Tuladhar P., Song K., Watkins S. E., Geerts Y., Wienk M. M., Janssen R. A. J., Anthopoulos T., Sirringhaus H., Heeney M.,McCulloch I. Thieno[3,2-b]thiophene-Diketopyrrolopyrrole-Containing Polymers for High-Performance Organic Field-Effect Transistors and Organic Photovoltaic Devices[J]. J. Am. Chem. Soc.,2011,133 (10):3272-3275.
    [11]Zhang Y, Zou J., Cheuh C.-C., Yip H.-L. Jen A. K. Y. Significant Improved Performance of Photovoltaic Cells Made from a Partially Fluorinated Cyclopentadithiophene/Benzothiadiazole Conjugated Polymer[J]. Macromolecules,2012,45 (13):5427-5435.
    [12]Dou L., You J., Yang J., Chen C.-C., He Y, Murase S., Moriarty T., Emery K., Li G.,Yang Y. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer[J]. Nat Photon,2012,6 (3):180-185.
    [13]Yang L., Tumbleston J. R., Zhou H., Ade H.,You W. Disentangling the impact of side chains and fluorine substituents of conjugated donor polymers on the performance of photovoltaic blends[J]. Energy Environ. Sci.,2013,6 (1): 316-326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700