新型高固态荧光分子和氮桥头多并环共轭分子的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统的无机光电材料相比,有机光电材料具有具有重量轻、工艺简单、成本低廉、可制备大面积柔性器件,并且具有更高的发光效率和更宽的发光颜色选择范围等优点。近年来,有机光电材料受到越来越多的关注,并广泛应用于有机电致发光器件、有机光伏电池、有机场效应晶体管、有机激光器以及有机传感器等领域。
     在有机光电器件中,这些有机光电材料通常是以固体薄膜的形式来使用,但大多数有机光电材料都是在稀溶液中有很强的荧光,而在固态下发生严重的荧光淬灭,从而大大影响了器件的效率。因而设计并合成具有高固态荧光效率的有机化合物具有重要意义。本论文的前两部分所做的研究,就是通过增强分子内的电荷转移和抑制固态分子紧密堆积来抑制固态荧光的淬灭,从而得到具有高固态荧光效率的有机共轭分子。
     在这些有机光电材料中,多并苯类及杂环多并苯类化合物,以其特殊的电子离域特征,在有机光电器件中尤其是有机场效应晶体管(OFETs)中具有重要的应用价值,一直受到受到广泛的关注和研究。目前对这类线性稠环化合物的研究主要集中在多并苯类和含硫原子的线性稠杂环共轭分子。而对含氮原子的线性稠杂环类化合物则相对较少,而含氮桥头的稠杂环类共轭分子更是鲜有报道。本论文的最后两部分的内容,就是利用新型串联反应合成了一系列氮桥头芳杂五环并吡啶类化合物,以及通过分子内的对称反应合成结构新颖的含氮桥头的多并环稠杂环类共轭分子。
     第一部分,我们以较小的π-共轭体系联苯作为共轭桥,在其o,o’-位分别引入硼取代基和氨基,分别作为吸电子基团(A)和给电子基团(D)。由于硼取代基和氨基之间的距离较近,受激分子可通过空间实现分子内的电荷转移。我们还合成了两个取代基位于不同位置的联苯参照物,并对这系列化合物的性质进行了多项表征。研究发现,当硼取代基和氨基分别位于o,o’-位时不仅具有较大的发射波长和Stokes位移,并且其固态荧光效率达到了0.86。当该化合物与氟离子作用后其发射波长发生显著蓝移,可作为比率荧光探针。
     第二部分,我们通过Pd(0)催化的Suzuki-Miyaura偶联反应得到了一系列对称的和不对称的含二米基硼取代基的2,1,3-苯并噻二唑(BTD)类衍生物。我们对它们的性质进行了多项研究,包括X-射线单晶衍射、稀溶液和固态下的紫外吸收和荧光发射、密度泛函理论计算(DFT计算)、热重分析(TGA)以及氟离子滴定等。由于二米基硼取代基的大位阻效应抑制了固态分子的相互作用,这系列化合物不仅在溶液中,而且在固态下均有很强的荧光。
     第三部分,我们将JWang's串联反应中的γ-溴代-α,β-不饱和碳酸酯换成Y-溴代-α,β-不饱和腈,与一系列芳基取代的吡唑醛,在碳酸钾作用下反应,得到了一系列芳基取代的吡唑并[1,5-a]吡啶类衍生物。同时在吡啶环上的4-位引入了强吸电子基团腈基,增强了分子内的电荷转移,并可通过还原对腈基进行进一步的修饰。我们的工作为合成含腈基取代氮桥头芳杂五环并吡啶类化合物提供了一个简单高效的方法。
     第四部分,我们期望通过1,2,4,5-苯四胺发生一系列对称的反应得到含桥头氮的五并环稠杂环共轭分子。但由于中间产物的溶解性极差,导致对产物的提纯及分离不易进行。因而我们采用了分步合成的方法,以4,7-二溴-2,1,3-苯并噻二唑为起始原料,合成了一系列4,7-二苯基-吡啶并[1,2-a]苯并咪唑类化合物。另外对4,7-二溴-2,1,3-苯并噻二唑进行硝化、偶联、还原,得到相应的二胺或四胺衍生物,由于取代基效应影响,进一步的合环反应条件正在探索当中。
Compared with conventional inorganic optoelectronics materials, organic optoelectronics materials have attracted substantial interests and investigation in recent years, due to their advantages, such as light-weight, low-cost, simple-process, flexibility and reel-to-reel coating applied in large area, higher luminous efficiency and wider choice of luminous color. They can be widely utilized in the field of organic light-emitting diodes (OLEDs), organic photovoltaic cells (OPVs), organic field effect transistor (OFETs), organic solid-state lasers and organic fluorescent sensors.
     In these organic photoelectric devices, the organic emissive materials are usually used in the forms of aggregate or thin solid films. As we known, most of the emissive materials are highly emissive in dilute solution, but severe fluorescence quenching in the solid state as the result of intermolecular interactions, thus greatly affecting the properties of materials and efficiency of devices. Therefore the rational design of such highly emissive organic materials in solid state is still a challenging and interesting issue. The front two parts of this dissertation are about the design and synthesises of the novel highly emissive organic π-conjugated molecules in solid state through promoting the intramolecular charge transfer and suppressing the intermolecular interaction.
     In these organic photoelectric materials, the polyacene and heteroacenes have attracted extensive attention and research due to its unique property of linear π-electron delocalized. Recently, extensive efforts have brought significant progress in the development of high performance optoelectronic devices based on these polyacenes and heteroacenes, especially to development the high performance organic field-effect transistors (OFETs). Recently, mostly of the research is mainly focused on the polyacene and sulfur-containing heteroacenes, while only a few reports is about nitrogen-containing heteroacenes, and even rarely reported on the nitrogen-bridge-containing heteroacenes. So the latter two parts of this dissertation are about the synthesises of a series of pyrazolo[1,5-a]pyridine derivatives with nitrile group substituted at the pyridine ring and further to obtain nitrogen-bridge-containing heteroacenes.
     The first part of this dissertation, we have designed and synthesized a new class of organoboron compounds containing a boryl and an amino group as acceptor and donor at the o,o'-positions of biphenyls. The distance between the boryl group and the amino group is much shorter than those of the through-space CT emitting organoboron compounds reported so far. We also synthesized two reference compounds with only the amino group or both the boryl and the amino group at the p-position of biphenyls. We find that the biphenyl derivative with o,o'-substituent not only have longer emission wavelength and large Stokes shift, but also have high fluorescence quantum efficiency (ΦF=0.86) in solid state. In addition, binding of the fluoride ions results in the remarkable blue shift and color change of the fluorescence, enabling colorimetric and ratiometric fluoride ion sensing.
     The second part, one symmetrical and two unsymmetrical dimesityboryl-substituted2,1,3-benzothiadiazole (BTD) derivatives have been prepared through Pd(0)-catalyzed Suzuki-Miyaura coupling reaction. These compounds are characterized by X-ray crystallography, UV-vis and fluorescence spectroscopy in solution and in solid state, DFT calculations, thermogravimetric analysis (TGA) and titration of fluoride ion. All these compounds display intense fluorescence not only in solution but also in the solid state due to steric bulkiness of the boryl group, which is effective to suppress the intermolecular interaction in the solid state. In addition, the symmetrical boryl-substituted BTD displays prompt fluorescence responses to fluoride ions with high sensitivity through the complexation of the boron center with fluoride, demonstrating its potential utility as fluorescent sensor for fluoride ions.
     The third part, we have developed the novel JWang's tandem reaction to synthesize several pyrazolo[1,5-a]pyridine derivatives with nitrile group substituted at the pyridine ring by condensing the4-bromobut-2-enenitrile with pyrazole-aldehydes in mild conditions. The obtained novel compounds are particularly interesting molecules and can be further modified on the nitrile group to construct potential biological activity molecular.
     The fourth part, we try to synthesize bridged-nitrogen five-cyclic heteroacenes from benzene-1,2,4,5-tetraamine. However, it is difficult to purify and separate the intermediate product due to the poor solubility. Thus we used4,7-dibromo-2,1,3-benzothiadiazole as a starting material to synthesize4,7-diphenyl-pyrido[1,2-a]benzimidazole derivatives. In addition, the4,7-dibromo-2,1,3-benzothiadiazole goes by nitration, coupling and reduction to give the corresponding diamine or tetraamine derivative, and the reaction conditions of next cyclization reaction is on exploring.
引文
[1]K. Mullen, U. Scherf, Organic Light-emitting devices:synthesis, properties and applications, Wiley-VCH, Weinheim,2006.
    [2]C. W. Tang, S. Vanslyke, Organic electroluminescent diodes. [J]. A. Appl. Phys. Lett.1987,51,913-916.
    [3]J. H. Burroughes, D. D. C. Bradley, A. R. Brown, Light-emitting diodes based on conjugated polymers. [J]. Nature,1990,347,539-541.
    [4]陈金鑫,黄孝文,田民波,OLED有机电致发光材料与器件[M],北京,清华大学出版社,2007.
    [5]C. Adachi, T. Tsutsui, S. Saito, Electroluminescent mechanism of organic multilayer thin film devices. [J]. Optoelectron.-Devices Technol.1991,6, 25-36.
    [6]S. A. VanSlyke, C. H. Chen, C. W. Tang, Organic electroluminescent devices with improved stability. [J]. Appl. Phys. Lett.1996,69,2160-2162.
    [7]黄春辉,李富友,黄维,有机电致发光材料与器件导论[M],上海,复旦大学出版社,2005.
    [8]J. M. Halls, D. R. Baigent. Light-emitting and photoconductive diodes fabricated with conjugated polymers. [J]. The Solid Film,1996,276,13-20.
    [9]O. B. Pei, Y. Yang, Efficient Photoluminescence and Electroluminescence from a Soluble Polyfluorene. [J]. J. Am. Chem. Soc.1996,118(31), 7416-7417.
    [10]G J. Samecki, R. H. Friend, A. B. Holmes, et al. The synthesis of a new regioregnlar conjugated polymer, Poly(2-Bromo-5-Dodecyloxy-1,4-Phenylenevinylene). [J]. Synth. Meth.1995,69,545-546.
    [11]M. Oranstrom, O. lnganas, White light emission from a polymer blend light emiRing diode. [J]. Appl. Phys. Lett.1996,68(2),147-149.
    [12]M. Fukada, K. Sawada, K. Yoshino, Synthesis of fusible and soluble conducting polyfluorene derivatives and their characteristics. [J]. T, Polym, Sci. Polym. Chem.1993,31,2465-2471.
    [13]P. Abhishek, X. X. Kulkarni, Fluorenone-containing polyfluorenes and oligofluorenes, photophysics, origin of the green emission and efficient green electroluminescence. [J]. J. Phys. Chem.B 2004,108,8689-8701.
    [14]K. Tada, M. Onoda, H. Nakayama et al. Photocell with heterojunction of donor/acceptor polymers. [J]. Synth. Met.1999,102,982-983.
    [15]W. A. Gazotti, J. N. Ganaiona, et al. A new configuration of the solid-state battery:magnesium polymer proton conductor gold, based on the use of poly (o-methoxyaniline). [J]. Synth. Met.1997,90,31-36.
    [16]E. Tsuchida, K. Yamamoto, T. Asada, et al. Electrochemical preparation of poly (p-phenylene) using trifluoromethane sulfonic acid as a catalytic electrolyte. [J]. Chem. Lett.1987,1541-1544.
    [17]I. D. Norris, L. A. P. Kane-Maguire, G. G. Wallace, Thermochromism in optically active polyaniline salts. [J]. Macromolecules 1998,31,6529-6533.
    [18]R. O. Loutfy, J. H. Sharp, C. K. Hsiao, et al. Phthalocyanine organic solar cells: Indium/x-metal free phthalocyanine Schottky barriers. [J]. J. Appl. Phys.1981, 52,5218-5230.
    [19]J. J. M. Halls, K. Pichler, R. H. Friend, et al. Exciton diffusion and dissociation in a poly (p-phenylenevinylene)/C60 heteroj unction photovoltaic cell. [J].Appl. Phys. Lett.1996,68,3120-3122.
    [20]L. Sicot, C. Fiorini, A. Lorin, et al. Improvement of the photovoltaic properties of polythiophene-based cells. [J]. Solar Energy Materials and Solar Cells 2000,63,49-60.
    [21]T. Mikayama, H. Matsuoka, M. Are, et al. Au/Poly (3-methylthiophene)/ 10-(p-nitrobenzyl)-2(10H)-phenazinone/Al organic hetero-j unction photovoltaic device. [J]. Solar Energy Materials and Solar Cells 2001,65, 133-139.
    [22]J. H. Schon, C. Kloc, E. Bucher, et al, Efficient organic photovoltaic diodes based on doped pentacene. [J]. Nature 2000,403,408-410.
    [23]C. W. Tang, Two-layer organic photovoltaic cell. [J]. Appl. Phys. Lett.1986, 48,183-185.
    [24]Y. Y. Liang, Z. Xu, J. B. Xia, et al. For the bright futurebulk heterojunction polymer solar cells with power conversion effieiency of 7.4%. [J]. Adv. Mater. 2010,22,1-4.
    [25]L. J. Huo, S. Q. Zhang, X. Guo, et al, Replacement of alkoxy with alkylthienyl, a feasible approach to improve photovohaic properties of PBDTTT-based Polymers. [J]. Angew. Chem. Int. Ed.2011,50,9697-9702
    [26]T. Sato, D. L. Jiang, T. Aida, et al, A Blue-Luminescent Dendritic Rod: Poly(phenyleneethynylene) within a Light-Harvesting Dendritic Envelope. [J]. J. Am. Chem. Soc.1999,121,10658-10659.
    [27]B. Z. Tang, X. Zhan, G. Yu, et al, Efficient blue emission from siloles. [J]. J. Mater. Chem.2001,11,2974-2978.
    [28]J. Chen, C. C. W. Law, J. W. Y. Lam, et al, Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3, 4,5-tetraphenylsiloles. [J]. Chem. Mater.2003,15,1535-1536.
    [29]B. K. An, S. K. Kwon, S. D. Jung, et al, Enhanced emission and its switching in fluorescent organic nanoparticles. [J]. J. Am. Chem. Soc.2002,124, 14410-14415.
    [30]Z. Q. Xie, B. Yang, G. Cheng, et al, Supramolecular interactions induced fluorescencein crystal:anomalous emission of 2,5-diphenyl-1,4-distyrylbenzene with all cis double bonds. [J]. Chem. Mater.2005,17: 1287-1289.
    [31]Z. Xie, B. Yang, F. Li, et al, Cross Dipole Stacking in the Crystal of Distyrylbenzene Derivative:The Approach toward High Solid-State Luminescence Efficiency. [J]. J. Am. Chem. Soc.2005,127,14152-14153.
    [32](a) G. Scheibe, Angew. Chem.1937,50,51. (b) G. Scheibe, L. Kandler, H. Ecker, Naturwissenschaften 1937,25,75. (c) Scheibe, Angew. Chem.1937,50, 212-219. (d) G. Scheibe, Angew. Chem.1936,49,563
    [33](a) E. E. Jelley, Spectral absorption and fluorescence of dyes in the molecular state. [J]. Nature 1936,138,1009-1010. (b) E. E. Jelley, Molecular, nematic and crystal states of 1:1-diethyl--cyanine chloride. [J]. Nature 1937,139, 631-632.
    [34]F. Wurthner, T. E. Kaiser, C. R. Saha-Moller, J-Aggregates:from serendipitous discovery to supramolecular engineering of functional dye materials. [J]. Angew. Chem. Int. Ed. 2011,50,3376-3410.
    [35]W. J. Feast, P. W. Lovenich, H. Puschmann, et al, Synthesis and structure of 4,4'-bis(2,3,4,5,6-pentafluorostyryl)stilbene, a self-assembling J aggregate based on aryl-fluoroaryl interactions. [J]. Chem. Commun.2001,1(5): 505-506.
    [36]C. Roger, Y. Miloslavina, D. Brunner, et al, Self-assembled zinc chlorin rod antennae powered by peripheral light-harvesting chromophores. [J]. J. Am. Chem. Soc.2008,130,5929-5939.
    [37]T. E. Kaiser, H. Wang, V. Stepanenko, et al, Supramolecular construction of cluorescent J-aggregates based on hydrogen-bonded perylene dyes. [J]. Angew. Chem. Int. Ed. 2007,46,5541-5544.
    [38]A. Wakamiya, K. Mori, S. Yamaguchi,3-boryl-2,2'-bithiophene as a versatile core skeleton for full-color highly emissive organic solids. [J]. Angew. Chem. Int. Ed.2007,46,4273-4276.
    [39]C. H. Zhao, A. Wakamiya, Y. Inukai, et al, Highly emissive organic solids containing 2,5-diboryl-1,4-phenylene unit. [J]. J. Am. Chem. Soc.2006,128, 15934-15935.
    [40]M. Shimizu, Y. Takeda, M. Higashi, et al, Angew. Chem. Int. Ed.2009,48, 3653-3656.
    [41]G. Wittig, W. Herwig, Chem. Ber.1995,88,962-976.
    [42]J. L. R. Williams, P. J. Grisdale, J. C. Doty, Boron photochemistry. Possible role of bridged intermediates in the photolysis of borate complexes. [J]. J. Org. Chem.1971,36,544-549.
    [43]J. C. Doty, B. Babb, P. J. Grisdale, et al, Boron photochemistry:Ⅸ. Synthesis and fluorescent properties of dimesityl-phenylboranes. [J]. Organomet. Chem. 1972,38,229-236.
    [44]Z. Yuan, N. J. Taylor, T. B. Marder, et al, Three Coordinate Phosphorus and Boron as π-Donor and π-Acceptor Moieties Respectively, in Conjugated Organic Molecules for Nonlinear Optics:Crystal and Molecular Structures of E-Ph-CH=CH-B(Mes2), E-4-MeO-C6H4-CH=CH-B(Mes2), and E-Ph2P-CH=CH-B(Mes2). [J]. J. Chem. Soc. Chem. Commun,1990, 1489-1492.
    [45]Z. Yuan, J. C. Collings, N. J. Taylor, et al, Linear and Nonlinear Optical Properties of Three-Coordinate Organoboron Compounds. [J]. J. Solid State Chem.2000,449,27-37.
    [46]Z. Q. Liu, Q. Fang, D. Wang, et al, Trivalent boron as acceptor in D-π-A chromophores:synthesis, structure and fluorescence following single-and two-photon excitation. [J]. Chem. Commun.2002,2009-2901.
    [47]Z. Q. Liu, Q. Fang, D. X. Cao, et al, Triaryl Boron-Based A-π-A vs triaryl nitrogen-based D-π-D quadrupolar compounds for single-and two-photon excited eluorescence, [J]. Org. Lett.2004,6,2933-2936.
    [48]N. Matsumi, K. Naka, Y. Chujo, Extension of π-Conjugation Length via the Vacant p-Orbital of the Boron Atom. Synthesis of Novel Electron Deficient π-Conjugated Systems by Hydroboration Polymerization and Their Blue Light Emission. [J]. J. Am. Chem. Soc.1998,120,5112-5113.
    [49]A. Sundaraman, M. Victor, R. Varughese, et al, A Family of Main-Chain Polymeric Lewis Acids:Synthesis and Fluorescent Sensing Properties of Boron-Modified Polythiophenes. [J]. J. Am. Chem. Soc.2005,127, 13748-13749.
    [50]S. Yamaguchi, S. Akiyama, K. Tamao, Tri-9-anthrylborane and Its Derivatives: New Boron-Containing π-Electron Systems with Divergently Extended π-Conjugation through Boron. [J]. J. Am. Chem. Soc.2000,122,6335-6336.
    [51]S. Yamaguchi, S. Akiyama, K. Tamao, Colorimetric Fluoride Ion Sensing by Boron-Containing π-Electron Systems. [J]. J. Am. Chem. Soc.2001,123, 11372-11375.
    [52]S. Yamaguchi, T. Shirasaka, K. Tamao, Tridurylboranes Extended by Three Arylethynyl Groups as a New Family of Boron-Based π-Electron Systems. [J]. Org. Lett.2000,2,4129-4132.
    [53]S. Yamaguchi, T. Shirasaka, S. Akiyama, et al, Dibenzoborole-Containing π-Electron Systems:Remarkable Fluorescence Change Based on the "On/Off' Control of the pπ-π* Conjugation. [J]. J. Am. Chem. Soc.2002,124, 8816-8817.
    [54]G. L. Fu, H. Y. Zhang, Y. Q. Yan, et al, Para-Quarterphenyls Laterally Substituted with a dimesitylboryl Group:A Promising Class of Solid-state Blue Emitters, J. Org. Chem.2012,77,1983-1990.
    [55]A. N. Aleshin, J. Y. Lee, S. W. Chu, et al, Mobility studies offield-effect transistor structures based on anthracene single crystals. [J]. Appl. Phys. Lett. 2004,84(26),5383-5385.
    [56]A. K. Tripathi, M. Heinrich, T. Siegrist, et al, Growth and electronic transport in 9,10-diphenylanthracene single crystals-An organic semiconductor of high electron and hole mobility. [J]. Adv. Mater.2007,19(16),2097-2101.
    [57]K. Ito, T. Suzuki, Y. Sakamoto, et al, Oligo(2,6-anthrylene)s, Acene-oligomer approach for organic field-efect transistors. [J]. Angew. Chem. Int. Ed.2003, 42(10),1159-1162.
    [58]H. Klauk, U. Zschieschang, R. T. Weitz, et al, Organic transistors based on di(phenylvinyl)anthracene, Performance and stability. [J]. Adv Mater,2007, 19(22),3882-3887.
    [59]H. Meng, F. Sun, M. B. Goldfinger, et al,2,6-bis[2-(4-pentylphenyl) vinyl]anthracene:A stable and high charge mobility organic semiconductor with densely packed crystal structure. [J]. J. Am. Chem. Soc.2006,128(29), 9304-9305.
    [60]C. Wang, Y. Liu, Z. Ji, et al. Cruciforms, Assembling single crystal micro-and nanostructures from one to three dimensions and their applications in organic field-effect transistors. [J]. Chem. Mater.2009,21,2840-2845.
    [61]J. E. Anthony, J. S. Brooks, D. L. Eaton, et al. Functionalized pentacene, Improved electronic properties from control of solid-state order. [J]. J. Am. Chem. Soc.2001,123(38),9482-948
    [62]T. Kimoto, K. Tanaka, M. Kawahata, et al. Bis(methyhhio) tetracenes, Synthesis, crystal-packing structures, and OFET properties. [J]. J. Org. Chem. 2011,76(12),5018-5025
    [63]V. C. Sundar, J. Zaumseil, J. A. Rogers, et al. Elastomeric transistor stamps, Reversible probing of charge transport in organic crystals. [J]. Science 2004, 303(5664),1644-1646.
    [64]S. Haas, A. F. Stassen, G. Schuck, et al. High charge-carrier mobility and low trap density in a rubrene derivatives. [J]. Physical Review B 2007,76, 115203/1-115203/6.
    [65]C. H. Wang, S. D. Jian, S. W. Chen, et al. Enhanced stability of organic field-efect transistors with blend pentacene/anthradithiophenefilms. [J]. J. Phys. Chem. C2011,116(1),1225-1231.
    [66]Q. Miao, X. L. Chi, S. X. Xiao, et al. Organization of acenes with a cruciform assembly motif. [J]. J. Am. Chem. Soc.2006,128(4),1340-1345.
    [67]T. W. Kelley, L. D. Boardman, T. D. Dunber et al. High-performance OTFTs using surface modified alumina dielectrics. [J].J. Phy. Chem.B 2003,107(24), 5877-5881.
    [68]J. E. Anthony, D. L. Eaton, S. R. Parkin, A road map to stable, soluble, easily crystallized pentacene derivatives. [J]. Org. Lett.2002,4(1),15-18.
    [69]H. Dong, C. Wang, W. Hu, High performance organic semiconductors for field-effect transistors. [J]. Chem. Commun.2010,46 (29),5211-5222
    [70]X. C. Li, H. Sirringhaus, F. Gamier, et al. A highly π-stacked organic semiconductor for thin film transistors based on fused thiophenes. [J]. J. Am. Chem. Soc.1998,120(9),2206-2207.
    [71]Y. M. Sun, Y. W. Ma, Y. Q. Liu, et al, High-performance and stable organic thin-film transistors based oil fused thiophenes. [J]. Adv. Funet. Mater.2006, 16,426-432.
    [72]Y. Liu, Y. Wang, W. P. Wu, et al, Synthesis, characterization, and field-effect transistor performance of thieno[3,2-b]thieno[2,3,4,5]thieno[2,3-d]thiophene derivatives. [J]. Adv. Funct. Mater.2009,19(5),772-78.
    [73]K. Xiao, Y. Liu, T. Qi, et al. A highly π-stacked organic semiconductor for field-effect transistors based on linearly condensed pentathienoacene[J]. J. Am. Chem. Soc.2005,127(38),13281-13286.
    [74]M. M. Payne, S. R. Parkin, J. E.Anthomy, et al. Organic field-efect transistors from solution deposited funetionalized acenes with inabilities as high as 1 cm2 V-1 s-1. [J]. J. Am. Chem. Soc.2005,127 (14),4986-4987.
    [75]Q. Miao, T. Q. Nguyen, T. Someya, et al, Synthesis, Assembly, and Thin Film Transistors of Dihydrodiazapentacene:An Isostructural Motif for Pentacene. [J]. J. Am. Chem. Soc.2003,125,10284-10287.
    [76]Q. Tang, D. Zhang, S. Wang, et al. A meaningful analogue of pentacene, Charge transport, polymorphs, and electronic structures of dihydlodiazapentacene. [J]. Chem. Mater.2009,21(7),1400-1405.
    [77]P. L. T. Bouderault, S. Wakim, N. Blouin, et al. Synthesis, characterization, and application of indolo[3,2-b]carbazole semiconductors [J]. J. Am. Chem. Soc.2007,129,9125-9130.
    [1]C. R. Wade, A. E. J. Broomsgrove, S. Aldridge, et al, Fluoride ion complexation and sensing using organoboron compounds. [J]. Chem. Rev. 2010,110,3958-3984.
    [2]F. Jakel, Advances in the synthesis of organoborane polymers for optical, electronic, and sensory applications. [J]. Chem. Rev.2010,110,3985-4022.
    [3]T. W. Hudnall, C.-W. Chiu, F. P. Gabbai, Fluoride ion recognition by chelating and cationic boranes. [J].Acc. Chem. Res.2009,42,388-397.
    [4]S. Yamaguchi, A. Wakamiya, Boron as a key component for new π-electron materials. [J]. Pure Appl. Chem.2006,78,1413-1415.
    [5]C. D. Entwistle, T. B. Marder, Applications of three-coordinate organoboron compounds and polymers in optoelectronics. [J]. Chem. Mater.2004,16, 4574-4595.
    [6]C. D. Entwistle, T. B. Marder, Boron chemistry lights the way:optical properties of molecular and polymeric systems. [J]. Angew. Chem. Int. Ed. 2002,41,2927-2931.
    [7]Z. Yuan, N. J. Taylor, Y. Sun, et al, Synthesis and second-order nonlinear optical properties of three coordinate organoboranes with diphenylphosphino and ferrocenyl groups as electron donors, [J]. J. Organomet. Chem.1993,449, 27-37.
    [8]Z. Yuan, N. J. Taylor, R. Ramachanran, et al, Third-order Nonlinear Optical Properties of Organoboron Compounds:Molecular Structures and Second Hyperpolarizabilities. [J].Appl. Organomet. Chem.1996,10,305-316.
    [9]Z. Yuan, J. C. Collings, N. J. Taylor, et al, Linear and nonlinear optical properties of three-coordinate organoboron compounds. [J]. J. Solid State Chem.2000,154,5-12.
    [10]Z. Yuan, C. D. Entwistle, J. C. Collings, et al, Synthesis, Crystal Structures, Linear and Nonlinear Optical Properties, and Theoretical Studies of (p-R-Phenyl)-,(p-R-Phenylethynyl)-, and (E)-[2-(p-R-Phenyl)ethenyl] dimesitylboranes and Related Compounds. [J]. Chem. Eur. J.2006,12, 2758-2771.
    [11]Z.-Q. Liu, Q. Fang, D. Wang, et al, Trivalent boron as acceptor in D-π-A chromophores:synthesis, structure and fluorescence following single-and two-photon excitation. [J]. Chem. Commun.2002,2900-2901.
    [12]Z.-Q. Liu, Q. Fang, D.-X. Cao, et al, Triaryl boron-based A-π-A vs triaryl nitrogen-based D-π-D quadrupolar compounds for single-and two-photon excited fluorescence. [J]. Org. Lett.2004,6,2933-2936.
    [13]J. C. Collings, S.-Y. Poon, C. Le Droumaguet, et al, The Synthesis and One-and Two-Photon Optical Properties of Dipolar, Quadrupolar and Octupolar Donor-Acceptor Molecules Containing Dimesitylboryl Groups. [J]. Chem. A Eur. J.2009,15,198-208.
    [14]T. Noda, Y. Shirota,5,5'-Bis(dimesitylboryl)-2,2'-bithiophene and 5,5"-Bis (dimesitylboryl)-2,2':5',2"-terthiophene as a Novel Family of Electron-Transporting Amorphous Molecular Materials. [J]. J. Am. Chem. Soc.1998, 120,9714-1915.
    [15]T.Noda, H. Ogawa, Y. Shirota, A Blue-Emitting Organic Electroluminescent Device Using a Novel Emitting Amorphous Molecular Material,5,5'-Bis (dimesitylboryl)-2,2'-bithiophene. [J]. Adv. Mater.1999,11,283-285.
    [16]Y. Shirota, M. Knoshita, T. Noda, et al, T. A novel class of emitting amorphous molecular materials as bipolar radical formants:2-{4-[bis (4-methylphenyl) amino] phenyl}-5-(dimesitylboryl) thiophene and 2-{4-[bis (9, 9-dimethylfluorenyl) amino] phenyl}-5-(dimesitylboryl)thiophene. [J]. J. Am. Chem. Soc.2000,122,11021-11022.
    [17]H. Kinoshita, H. Kita, Y. Shirota, A Novel Family of Boron-Containing Hole-Blocking Amorphous Molecular Materials for Blue-and Blue-Violet-Emitting Organic Electroluminescent Devices. [J].Sdv.Funct. Mater.2002,12, 780-786.
    [18]H. Doi, M. Kinoshita, K. Okumoto, et al, A novel class of emitting amorphous molecular materials with bipolar character for electroluminescence. [J]. Chem. Mater.2003,15,1080-1089.
    [19]W. L. Jia, D. Song, S. Wang, Blue luminescent three-coordinate organoboron compounds with a 2,2'-dipyridylamino functional group. [J]. J. Org. Chem. 2003,68,701-705.
    [20]W. L. Jia, M. J. Moran, Y. Y. Yuan, et al, (1-Naphthyl) phenylamino functionalized three-coordinate organoboron compounds:syntheses, structures, and applications in OLEDs. [J]. J. Mater. Chem.2005,15,3326-3333.
    [21]G. J. Zhou, C. L. Ho, W. Y. Wong, et al, Manipulating Charge-Transfer Character with Electron-Withdrawing Main-Group Moieties for the Color Tuning of Iridium Electrophosphors. [J]. Adv. Funct. Mater.2008,18, 499-511.
    [22]Z. M. Hudson, C. Sun, M. G. Helander, et al, Enhancing Phosphorescence and Electrophosphorescence Efficiency of Cyclometalated Pt (Ⅱ) Compounds with Triarylboron. [J].Adv. Func. Mater.2010,20,3426-3439.
    [23]M. Mazzeo, V. Vitale, F. Della Sala, et al, Bright White Organic Light-Emitting Devices from a Single Active Molecular Material. [J]. Adv. Mater.2005,17,34-39.
    [24]S. Yamaguchi, S. Akiyama, K. Tamao, Tri-9-anthrylborane and its derivatives: new boron-containing π-electron systems with divergently extended π-conjugation through boron. [J]. J. Am. Chem. Soc.2000,122,6335-6336.
    [25]S. Yamaguchi, S. Akiyama, K. Tamao, Colorimetric fluoride ion sensing by boron-containing π-electron systems. [J]. J. Am. Chem. Soc.2001,123, 11372-11375.
    [26]S. Yamaguchi, T. Shirasaka, S. Akiyama, et al, Dibenzoborole-containing π-electron systems:remarkable fluorescence change based on the "on/off' control of the pπ-π* conjugation. [J]. J. Am. Chem. Soc.2002,124, 8816-8817.
    [27]Y. Kubo, M. Yamatoto, M. Ikeda, et al, A colorimetric and ratiometric fluorescent chemosensor with three emission changes:fluoride ion sensing by a triarylborane-porphyrin conjugate. [J]. Angew. Chem. Int. Ed. 2003,42, 2036-2040.
    [28]A. Sundararaman, K. Venkatasubbaiah, M. Victor, et al, Electronic communication and negative binding cooperativity in diborylated bithiophenes. [J].J.Am. Chem. Soc.2006,128,16554-16565.
    [29]A. Sundararaman, M. Victor, R. Varughese, et al, A Family of main-chain polymeric lewis acids:synthesis and fluorescent sensing properties of boron-modified polythiophenes. [J]. J. Am. Chem. Soc.2005,127, 13748-13749.
    [30]M. Melaimi, F. P. Gabbai, A heteronuclear bidentate Lewis acid as a phosphorescent fluoride sensor. [J]. J. Am. Chem. Soc.2005,127,9680-9681.
    [31]C. W. Chiu, F. P. Gabbai, Fluoride ion capture from water with a cationic borane. [J]. J. Am. Chem. Soc.2006,128,14248-14249.
    [32]M. H. Lee, T. Agou, J. Kobayashi, et al, Fluoride ion complexation by a cationic borane in aqueous solution. [J]. Chem. Commun.2007,1133-1135.
    [33]D. R. Bai, X. Y. Liu, S. Wang, Charge-Transfer Emission Involving Three-Coordinate Organoboron:V-Shape versus U-Shape and Impact of the Spacer on Dual Emission and Fluorescent Sensing. [J]. Chem. Eur. J.2007,13, 5713-5723.
    [34]Z. M. Hudson, X. Y. Liu, S. Wang, Switchable Three-State Fluorescence of a Nonconjugated Donor-Acceptor Triarylborane. [J]. Org. Lett.2010,13,300-303.
    [1]M. Karikomi, C. Kitamura, S. Tanaka, et al, New Narrow-Bandgap Polymer Composed of Benzobis(1,2,5-thiadiazole) and Thiophenes. [J]. J. Am. Chem. Soc.1995,117,6791-6792.
    [2]B. Liu, G. C. Bazan, Interpolyelectrolyte Complexes of Conjugated Copolymers and DNA:Platforms for Multicolor Biosensors. [J]. J. Am. Chm. Soc.2004,126,1942-1943.
    [3]H. Yan, P. Lee, N. R. Armstrong, et al, Effects of Packing Structure on the Optoelectronic and Charge Transport Properties in Poly(9,9-di-n-octylfluorene-alt-benzothiadiazole). [J]. J. Am. Chem. Soc.2005, 127,3172-3183.
    [4]A. Dhanabalan, J. K. J. van Duren, P. A. van Hal, et al, Synthesis and Characterization of a Low Bandgap Conjugated Polymer for Bulk Heterojunction Photovoltaic Cells. [J]. Adv. Funct. Mater.2001,11,255-262.
    [5]A. Dhanabalan, J. L. J. van Dongen, J. K. J. van Duren, et al, Synthesis, Characterization, and Electrooptical Properties of a New Alternating N-Dodecylpyrrole-Benzothiadiazole Copolymer. [J]. Macromolecules 2001, 34,2495-2501.
    [6]C. J. Brabec, C. Winder, N. S. Sariciftci, et al, A Low-Bandgap Semiconducting Polymer for Photovoltaic Devices and Infrared Emitting Diodes. [J].Adv. Funct. Mater.2002,12,709-712.
    [7]J. Huang, Y. H. Niu, W. Yang, et al, Novel Electroluminescent Polymers Derived from Carbazole and Benzothiadiazole. [J]. Macromolecules 2002,35, 6080-6082.
    [8]R. Yang, R. Tian, Q. Hou, et al, Synthesis and Optical and Electroluminescent Properties of Novel Conjugated Copolymers Derived from Fluorene and Benzoselenadiazole. [J]. Macromolecules 2003,36,7453-7460.
    [9]F. Huang, L. Hou, H. Wu, et al, High-Efficiency, Environment-Friendly Electroluminescent Polymers with Stable High Work Function Metal as a Cathode:Green-and Yellow-Emitting Conjugated Polyfluorene Polyelectrolytes and Their Neutral Precursors. [J]. J. Am. Chem. Soc.2004, 126,9845-9853.
    [10]Q. Hou, Q. Zhou, Y. Zhang, et al, Synthesis and Electroluminescent Properties of High-Efficiency Saturated Red Emitter Based on Copolymers from Fluorene and 4,7-Di(4-hexylthien-2-yl)-2,1,3-benzothiadiazole. [J]. Macromolecules 2004,37,6299-6305.
    [11]R. Yang, R. Tian, J. Yan, et al, Deep-Red Electroluminescent Polymers: Synthesis and Characterization of New Low-Band-Gap Conjugated Copolymers for Light-Emitting Diodes and Photovoltaic Devices. [J]. Macromolecules 2005,38,244-253.
    [12]J. Jiang, Y. Xu, W. Yang, et al, High-Efficiency White-Light-Emitting Devices from a Single Polymer by Mixing Singlet and Triplet Emission. [J]. Adv. Mater.2006,18,1769-1773.
    [13]J. Chen, Y. Cao, Development of Novel Conjugated Donor Polymers for High-Efficiency Bulk-Heterojunction Photovoltaic Devices. [J]. Accounts of chemical research 2009,42,1709-1718
    [14]C. G. Bangcuyo, U. Evans, M. L. Myrick, et al, Synthesis and Characterization of a 2,1,3-Benzothiadiazole-b-alkyne-b-1,4-bis(2-ethylhexyloxy)benzene Terpolymer, a Stable Low-Band-Gap Poly(heteroaryleneethynylene). [J]. Macromolecules 2001,34,7592-7594.
    [15]P. Herguth, X. Jiang, M. S. Liu, et al, Highly Efficient Fluorene-and Benzothiadiazole-Based Conjugated Copolymers for Polymer Light-Emitting Diodes. [J]. Macromolecules 2002,35,6094-6100.
    [16]T. Yamamoto, Q. Fang, T. Morikita, New Soluble Poly(aryleneethynylene)s Consisting of Electron-Accepting Benzothiadiazole Units and Electron-Donating Dialkoxybenzene Units. Synthesis, Molecular Assembly, Orientation on Substrates, and Electrochemical and Optical Properties. [J]. Macromolecules 2003,36,4262-4267.
    [17]J. S. Kim, P. K. H. Ho, C. E. Murphy, et al. Phase Separation in Polyfluorene-Based Conjugated Polymer Blends:Lateral and Vertical Analysis of Blend Spin-Cast Thin Films. [J]. Macromolecules 2004,37, 2861-2871.
    [18]T. Yasuda, T. Imase, T. Yamamoto, Synthesis, Characterization, and Optical and Electrochemical Properties of New 2,1,3-Benzoselenadiazole-Based CT-Type Copolymers. [J]. Macromolecules 2005,38,7378-7385.
    [19]K. Y. Pu, R. Y. Zhan, B. Liu, Conjugated polyelectrolyte blend as perturbable energy donor-acceptor assembly with multicolor fluorescence response to proteins. [J]. Chem. Commun.2010,46,1470-1472.
    [20]L. Yang, J. K. Feng, A. M. Ren, Theoretical study on electronic structure and optical properties of novel donor-acceptor conjugated copolymers derived from benzothiadiazole and benzoselenadiazole. [J].J. Mol. Struc: THEOCHEM.2007,816,161-170.
    [21]H. Q. Zhang, X. J. Wan, X. S Xue, et al, Selective Tuning of the HOMO-LUMO Gap of Carbazole-Based Donor-Acceptor-Donor Compounds toward Different Emission Colors. [J]. Eur. J. org. Chem.2010, 1681-1687.
    [22]C. Kitamura, S. Tanaka, Y. Yamashita, Design of narrow-bandgap polymers. Syntheses and properties of monomers and polymers containing aromatic-donor and o-quinoid-acceptor units. [J]. Chem. Mater.1996,8, 570-578.
    [23]H. A. M. van Mullekom, J. A. J. M. Vekemans, E. W. Meijer, Band-Gap Engineering of Donor-Acceptor-Substituted π-Conjugated Polymers. [J]. Chem. Eur. J.1998,4,1235-1243.
    [24]M. Jayakannan, P. A. van Hal, R. A. J. Janssen, Synthesis and structure-property relationship of new donor-acceptor-type conjugated monomers and polymers on the basis of thiophene and benzothiadiazole. [J]. J. Polym. Sci. Part A:Polym. Chem.2002,40,251-261.
    [25]M. Akhtaruzzaman, M. Tomura, M. B. Zaman, et al, J Synthesis and characterization of new linear π-conjugated molecules containing bis (ethynylpyridine) units with a benzothiadiazole spacer. [J]. Org. Chem.2002, 67,7813-7818.
    [26]M. Akhtaruzzaman, M. Tomura, J. I. Nishida, et al, Synthesis and characterization of novel dipyridylbenzothiadiazole and bisbenzothiadiazole derivatives. [J].J. Org. Chem.2004,69,2953-2958.
    [27]K. R. J. Thomas, J. T. Lin, M. Velusamy, et al, Color Tuning in Benzo [1,2,5] thiadiazole-Based Small Molecules by Amino Conjugation/Deconjugation: Bright Red-Light-Emitting Diodes. [J]. Adv. Funct. Mater.2004,14,83-90.
    [28]S. Kato, T. Matsumoto, T. Ishi-i, et al Strongly red-fluorescent novel donor-π-bridge-acceptor-π-bridge-donor (D-π-A-π-D) type 2,1,3-benzot hiadiazoles with enhanced two-photon absorption cross-sections. [J]. Chem. Commun.2004,2342-2343.
    [29]B. A. D. Neto, A. S. A. Lopes, G. Ebeling, et al Photophysical and electrochemical properties of π-extended molecular 2,1,3-benzothiadiazoles. [J]. Tetrahedron,2005,61,10975-10982.
    [30]Shin-ichiro Kato, T. Matsumoto, M. Shigeiwa, et al, Novel 2,1,3-Benzothiadiazole-Based Red-Fluorescent Dyes with Enhanced Two-Photon Absorption Cross-Sections. [J]. Chem. Eur. J.2006,12, 2303-2317.
    [31]Y. Li, L. Scudiero, T. Ren, W. J. Dong, Synthesis and characterizations of benzothiadiazole-based fluorophores as potential wavelength-shifting materials. [J]. J. Photochem. Photobio. A:Chem.2012,231,51-59.
    [32]T. Ishi-i, K. Ikeda, Y. Kichise, et al, Red-Light-Emitting System Based on Aggregation of Donor-Acceptor Derivatives in Polar Aqueous Media. [J]. Chem. Asian J.2012,7,1553-1557.
    [33]M. Velusamy, K. R. J. Thomas, J. T. Lin, et al, Organic dyes incorporating low-band-gap chromophores for dye-sensitized solar cells. [J]. Org. Lett.2005, 7,1899-1902.
    [34]D. H. Lee, M. J. Lee, H. M. Song, et al, Organic dyes incorporating low-band-gap chromophores based on π-extended benzothiadiazole for dye-sensitized solar cells. [J]. Dyes Pigments 2011,91,192-198.
    [35]Q. Zou, H. Tian, Chemodosimeters for mercury (II) and methylmercury (I) based on 2,1,3-benzothiadiazole. [J]. Sens. Actuators, B:Chem.2010,149, 20-27.
    [36]A. V. Moro, P. C. Ferreira, P. Migowski, et al, Synthesis and photophysical properties of fluorescent 2,1,3-benzothiadiazole-triazole-linked glycoconjugates:selective chemosensors for Ni (Ⅱ). [J]. Tetrahedron 2013,69, 201-206.
    [37]B. A. D. Neto, A. A. M. Lapis, F. S. Mancilha, I. B. Vasconcelos, C. Thum, L. A. Basso, D. S. Santos, J. Dupont, New sensitive fluorophores for selective DNA detection. [J]. Org. Lett.2007,9,4001-4004.
    [38]K. Pilgram, M. Zupan, R. Skiles, Bromination of 2,1,3-benzothiadiazoles. [J]. J. Heterocycl. Chem.1970,7,629-633.
    [1]J. W. Wang, J. Jia, D. J. Hou, et al, A Novel Tandem Reaction to Synthesis Imidazo[1,5-a]pyridine Derivatives, [J]. Chin. J. Org. Chem.2003,23, 173-175.
    [2]Y. Q. Ge, J. Jia, Y. Li, et al, A Novel and Efficient Approach to Pyrazolo[1,5-a]pyridine Derivatives via One-pot Tandem Reaction, [J]. Heterocycles 2009,78(1),197-206.
    [3]Y. Q. Ge, J. Jia, H. Yang, et al, A Facile Approach to Indolizines via Tandem Reaction, [J]. Heterocycles 2009,78(3),725-736.
    [4]J. Jia, Y. Q. Ge, X. T. Tao, et al, Facile Synthesis of Imidazo[l,2-a]pyridines via Tandem Reaction, [J]. Heterocycles 2010,81(1),185-194.
    [5]W. M. Zhao, Y. Q. Ge, W. R. Xu, et al, A New Method for the Synthesis of [1,2,4]triazole[1,5-a]pyridine Derivatives, [J]. Heterocycles 2013,87, 869-876.
    [6]Y. Q. Ge, J. Jia, H. Yang, et al, The synthesis, characterization and optical properties of novel pyrido[1,2-a]benzimidazole derivatives, [J]. Dyes and Pigments 2011,88,344-349.
    [7]Y. Q. Ge, B. Q. Hao, G. Y. Duan, et al, The synthesis, characterization and optical properties of novel 1,3,4-oxadiazole-containing imidazo[1,5-a]pyridine derivatives. [J]. J. Lumin.2011,131,1070-1076.
    [8]H. Yang, Y. Q. Ge, J. Jia, et al, Synthesis and optical properties of novel pyrido[1,2-a]benzimidazole-containing 1,3,4-oxadiazole derivatives, [J]. J. Lumin,2011,131(4),749-755.
    [9]H. Yang, J. L. Mu, X. Chen, et al, Synthesis, X-ray crystal structure and optical properties of novel 2,5-diaryl-1,3,4-oxadiazole derivatives containing substituted pyrazolo[1,5-a]pyridine units, [J]. Dyes Pigments,2011,91, 446-453.
    [10]X. Chen, H. Yang, Y. Q. Ge, et al, Synthesis, X-ray crystal structure and optical properties of novel 2-aryl-3-ethoxycarbonyl-4-phenylpyrido [1,2-a]benzimidazoles, [J]. Lumin,2012,27,382-389.
    [11]Y. Q. Ge, T. Wang, G. Y. Duan, et al, Synthesis, characterization, optical properties and theoretical studies of novel substituted imidazo [1,5-a] pyridinyl 1,3,4-oxadiazole derivatives. [J]. J. Fluoresc.2012,22,1531-1538.
    [12]Y. Q. Ge, J. Jia, T. Wang, et al, The synthesis, characterization and optical properties of novel 5-(3-aryl-1H-pyrazol-5-yl)-2-(3-butyl-1-chloroimidazo [1, 5-a] pyridin-7-yl)-1,3,4-oxadiazole. [J]. Spectrochim. Acta Part A.2014,123, 336-341.
    [13]Y. Q. Ge, F. R. Li, Y. J. Zhang, et al, Synthesis, crystal structure, optical properties and antibacterial evaluation of novel imidazo[1,5-a]pyridine derivatives bearing a hydrazone moiety. [J]. Lumin. DOI:10.1002/bio.2547, 2013.
    [14]Y. F. Xie, Y. Q. Ge, L. Feng, et al, Synthesis of nitrogen bridgehead heterocycles with phosphonates via a novel tandem process. [J]. Heterocycles 2013,87,815-826.
    [15]W. J. Zhao, Y F. Xie, Y. Q. Ge, et al, Facile synthesis of pyrido imidazo[1, 2-a]benzimidazole derivatives via novel tandem reaction involving Horner-Emmons reaction. [J]. Heterocycles 2013,87,1121-1126.
    [16]F. Wei, B. X. Zhao, B. Huang, et al, Design, synthesis, and preliminary biological evaluation of novel ethyl 1-(2'-hydroxy-3'-aroxypropyl)-3-aryl-1H-pyrazole-5-carboxylate, [J]. Bioorg. Med. Chem. Lett.2006,16, 6342-6347.
    [1]H. Zhao, L. Jiang, H. Dong, et al, Influence of intermolecular NH π-interactions on molecular packing and field-effect performance of organic semiconductors. [J]. Chem. Phys. Chem.2009,10,2345-2348.
    [2]P. L. T. Boudreault, S. Wakim, N. Blouin, et al, Synthesis, characterization; and application of indolo[3,2-b]carbazole semiconductors. [J]. J. Am. Chem. Soc.2007,129,9125-9136.
    [3]B. Gao, M. Wang, Y. Cheng, et al, Pyrazine-containing acene-type molecular ribbons with up to 16 rectilinearly arranged fused aromatic rings. [J]. J. Am. Chem. Soc.2008,130,8297-8360.
    [4]H. Wang, Y. Wen, X. Yang, et al, Fused-Ring Pyrazine Derivatives for n-Type Field-Effect Transistors. [J]. ACS Applied Materials & Interfaces,2009,1, 1122-129.
    [5]M. Wang, Y. Li, H. Tong, et al, (2011). Hexaazatriphenylene Derivatives with Tunable Lowest Unoccupied Molecular Orbital Levels. [J]. Org. Lett.2011,13, 4378-4381.
    [6]C. Tong, W. Zhao, J. Luo, et al, Large-Size Linear and Star-Shaped Dihydropyrazine Fused Pyrazinacenes. [J]. Org. Lett.2012,14,494-497.
    [7]P. Gawrys, T. Marszalek, E. Bartnik, et al, Novel, Low-Cost, Highly Soluble n-Type Semiconductors:Tetraazaanthracene Tetraesters. [J]. Org. Lett.2011, 13,6090-6093.
    [8]S. More, R. Bhosale, S. Choudhary, et al, Versatile 2,7-Substituted Pyrene Synthons for the Synthesis of Pyrene-Fused Azaacenes. [J]. Org. Lett.2012, 14,4170-4173.
    [9]C. A. Di, J. Li, G. Yu, et al, (2008). Trifluoromethyltriphenodioxazine: air-stable and high-performance n-type semiconductor. [J]. Org. Lett.2008,10, 3025-3028.
    [10]E. Ahmed, A. L. Briseno, Y. N. Xia, et al, High mobility single-crystal field-effect transistors from bisindoloquinoline semiconductors. [J]. J. Am. Chem. Soc.2008,130,1118-1119.
    [11]G. Song, D. Chen, C. L. Pan, et al, Rh-Catalyzed Oxidative Coupling between Primary and Secondary Benzamides and Alkynes:Synthesis of Polycyclic Amides. J. Org Chem. [J].2010,75,7487-7490.
    [12]K. Morimoto, K. Hirano, T. Satoh, et al, Rhodium-Catalyzed Oxidative Coupling/Cyclization of 2-Phenylindoles with Alkynes via C-H and N-H Bond Cleavages with Air as the Oxidant. [J]. Org. Lett.2010,12,2068-2071.
    [13]L. Zhu, E. G. Kim, Y. Yi, et al, Charge-Transport Properties of the Tetraphenylbis (indolo [1,2-a]) quinoline and 5,7-Diphenylindolo [1,2-a] quinoline Crystals. [J]. J. Phys. Chem. C,2010,114,20401-20409.
    [14]A. Bunescu, Q. Wang, J. Zhu, Three-Component Povarov Reaction-Heteroannulation with Arynes:Synthesis of 5,6-Dihydroindolo [1,2-a] quinolines. [J]. Org. Lett.2014.
    [15]V. C. Gibson, G. B. Jacobsen, A. K. Tomov, U.S. Patent No.8,067,328. Washington, DC:U.S. Patent and Trademark Office.2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700