新型碳基固体磺酸的合成及其在有机反应中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在能源和环境问题不断突出的现今,以少量能专一性地生成目的产物的化工过程成为当今绿色化工追求的目标。为了达到上述目标,需要提供一种具有广泛工业应用前景的固体酸催化剂。传统使用的液体酸,如硫酸、盐酸、对甲苯磺酸等,存在腐蚀设备严重、催化剂分离困难、无法重复使用等缺点。而目前文献报道的一些固体酸催化剂,如苯乙烯磺酸树脂,则存在耐热性差的缺点,这大大限制了其应用范围。相比之下,后来发展的聚四氟乙烯磺酸树脂(商品名:Nafion)虽然具有较高的热稳定性,但是其昂贵的价格限制了其在化工过程中的应用。另外,在无机体系中,沸石、二氧化硅-氧化铝、含水铌酸等固体酸催化剂在化工过程中得到了一些应用,但其表面的酸痕量不多,每单位重量的酸数量远远小于传统的液体酸催化剂,因此还远不能满足工业的需求。论文合成了新型的固体酸催化剂,使该材料兼具高酸度和高稳定性。
     本论文的具体内容如下:
     1、以稠环化合物为原料,在浓硫酸高温磺化碳化作用下,合成了一类高酸度和稳定性的碳基固体磺酸。在此过程中,硫酸的作用主要有两点,其一为催化稠环化合物之间的缩合,以形成较大的稠环芳香化合物,这样可以保证所合成的材料在催化过程中是非均相催化过程;其二为磺化试剂,对材料进行磺化,以形成磺酸基功能化的材料。在这一过程中,稠环化合物的选择是一个很重要的环节,因为不仅要考虑材料的成本,还要兼顾该化合物的反应活性,保证其在反应过程中能够被炭化和磺化。其次,反应温度时间和反应物的比例也是一个重要的方面,即要保证能够炭化,还要保证磺化能够充分进行。
     首先,考察了一系列稠环化合物原料制备碳基固体磺酸材料的情况,系统考察了硫酸用量,反应温度,反应时间,硫酸规格等因素对反应的影响,优化了催化剂制备条件。在筛选底物和优化反应条件的基础上,合成了一种新型碳基固体磺酸催化剂,该催化剂的耐热性高达200℃以上,而且酸值在3.4 mmol/g左右。
     接着,考察了催化剂催化合成缩醛缩酮类香料化合物的反应活性。首先,考察了催化剂催化环己酮和乙二醇的反应,对反应条件进行了优化考察;然后,在最佳条件下,考察了一系列不同醛酮与二醇化合物之间的反应。结果表明,该催化剂对反应具有很高的催化活性,具有催化剂用量少,催化剂可以重复使用多次等优点,不仅对传统五元环缩醛具有很高的催化活性,而且对七元环也体现出很高的催化活性,可以顺利将各种醛酮化合物转化为相应的七元环缩醛化合物。随之,考察该催化剂催化醛酮化合物与邻苯二酚类化合物缩合,制备苯并二(?)茂烷化合物的活性,结果表明,该催化剂对反应具有很高的催化活性,能够很好的避免邻苯二酚与醛类化合物之间的聚合成酚醛树脂的反应。最后,考察了该催化剂催化醛酮与巯基乙醇制备硫氧缩醛的反应,结果表明,该催化剂对反应具有很好的催化性能,反应条件温和,具有很好的化学选择性,能够优先对醛基进行保护。
     2、以糖类化合物为原料,经过高温碳化和磺化合成了一类新型碳基固体磺酸材料。在这里,碳化的条件非常关键,要控制碳化在一定的限度范围之内,一方面碳化不够,会导致碳化后的材料与水或有机溶剂相溶,从而不能形成固体酸催化剂;另一方面,如果碳化过度,使后面的磺化无法正常进行。因此对碳化、磺化条件进行了系统考察和优化。
     首先,分别选择不同的糖类化合物为原料,对其碳化条件和磺化条件进行了考察,优化了不同碳源的最佳合成条件。该催化剂的耐热性高达200℃以上,而且酸值在1.5 mmol/g左右。
     接着,考察了这些材料催化合成柠檬酸三丁酯的催化活性,结果表明,这些材料均可较好地催化柠檬酸与正丁醇的酯化反应。其中由多糖淀粉和纤维素为碳源合成的固体酸材料由于不容易被碳化,在一定温度条件下的碳化过程中还存在一些糖类类似结构,使得在磺化过程中,这些结构也容易被磺化接上磺酸基,在反应过程中容易脱落,从而使催化剂在反应重复使用过程中这部分磺酸基流失,导致合成的固体酸的酸值降低,催化活性降低。以葡萄糖为碳源,合成的碳基固体磺酸具有催化剂用量少,催化效率高,酯化率高等优点。与传统固体酸催化剂相比,催化剂的催化效率高,而且在催化剂重复使用过程中,活性中心没有流失,催化剂可重复使用多次。与传统硫酸催化剂相比,该催化剂由于副反应少,合成产品的纯度和品质有较大的提高,成为合成柠檬酸三丁酯的一种绿色的工艺。
     3、签于前两种方法中直接进行炭化的过程存在反应条件苛刻,产物收率低等缺点,考虑到加入交联剂,使其形成高交联度的绿色催化材料。在选择了芳香族化合物的基础上,先使其在一定条件下进行磺化,引入大量磺酸基,接着加入交联剂,在一定条件下进行交联聚合,以形成高稳定性和高酸度的聚合型碳基固体磺酸催化材料。
     我们分别以萘环化合物经磺化和缩合以及对甲苯磺酸的直接缩聚合成了两类聚合物型的高酸值的碳基固体磺酸材料。该催化剂的耐热性高达200℃以上,而且酸值在4.2 mmol/g左右。
     首先,考察了以萘环化合物为原料的聚合物型碳基固体磺酸催化剂的合成。对不同的原料,不同的磺化条件,缩合条件进行了考察,优化出了催化剂的最佳合成条件。接着,考察了该催化剂的催化性能,由于该催化剂具有很高的酸度,对偕二酸酯化合物的合成具有很高的催化活性,能够催化醛类化合物与乙酸酐在很短的时间内高效的进行反应,其催化反应能够在室温条件下,短短几分钟内完成,而且反应收率很高,催化剂可以重复使用多次,催化活性不会降低。
     然后,考察了以对甲苯磺酸为原料合成固体酸催化剂材料,使用多聚甲醛作为交联剂,对反应条件进行了优化,得出了最佳的催化剂制备条件。接着,对于该酸值最高的碳基固体磺酸材料的催化活性进行了考察,我们用Michael加成反应对催化剂的催化性能进行了研究,结果表明,该催化剂能够很好的催化有机胺类化合物与缺电子烯之间的反应,其催化反应能够在室温条件下,很短的时间内完成。催化剂具有很高的催化活性,能催化各类脂肪胺与各缺电子烯之间的反应,而且反应可以在较低的温度下,数分钟内高效完成,而且,该材料具有很好的稳定性,能够重复使用多次,催化活性没有降低。
     4、改变了传统高温碳化的方法,首次使用水热碳化法合成了新型碳基固体磺酸催化剂。传统碳化过程主要在氮气氛围中进行,在400℃以上的高温的条件下进行加热炭化,这一过程会产生大量的废气和废液,一方面会造成糖原料中大量的损失,其炭化收率也很低。水热碳化法条件相对更加温和,而且所需要的时间很短,只需要4 h左右,所需要的反应温度都很低,仅需要在150-180℃条件下进行。由于该方法具有反应条件温和,收率高等优点。
     首先,考察了一系列糖类化合物水热碳化的情况,对碳化温度,碳化时间,催化剂的种类,催化剂的加入量等因素进行了考察,优化了催化的制备条件。然后,考察了该催化剂制备生物柴油的催化性能,结果表明,该材料能够很好的催化生物柴油的合成,具有催化效率高,催化剂重复使用性能好等优点,是一类高效、绿色的催化材料。
The energy and environment pollution becomes one of the most seriousproblems nowadays.The aim of chemical industry is to get the single product bysimplify process.Under these circumstances,the solid acid catalysts which havewidely industry applications have been demanded.On the other hand,the traditionalliquid acids such as sulfuric acid,hydrochloric acid,p-toluenesulfonic acid,havemany disadvantages,including badly corruption of equipments,difficulties inremoving catalyst,non-reclaim of the catalyst.The reported catalyst such as thestyrene sulfonic resin had disadvantage of low thermal instability,that limited itsapplication area.Nafion owned excellent heat-resistant properties,but the high pricemade the catalyst impossible for the wider application in chemical industry.Inaddition,the inorganic solid acid catalysts including zeolite,silica-alumina andwater-containing niobium had some applications in the field of chemical industry,butthey had lower superficial trace acidity than traditional liquid acid,which did not meetthe demand of the chemical industry.In order to solve the problems as mentionedabove,we synthesizes a novel solid acid which has high acidity and high chemicalthermal stability.
     The main contents are as follows:
     1.The novel carbon based solid acids were synthesized through the carbonationand sulfonation of the aromatic compounds in sulfonic acid.Here,the sulfonic acidacted as both catalyst for the condensation of the aromatic compounds and thesulfonation agent.The condensation of the aromatic compounds should be takencompletely to form the solid-state compounds.So the proper aromatic compoundsshould be chose for the reactions and the proper reaction time and temperature shouldbe introduced for the synthesis of the novel carbon based solid acids.
     The effects of the amount of the sulfonic acid,reaction time,reactiontemperature and the concentration of the sulfonic acid were investigated to optimizethe reaction conditions using various aromatic compounds as raw materials first.Thenovel carbon based solid acid has been obtained with the acidity of 3.4mmol/g.
     Then,the catalytic activities of the novel carbon based acids were investigated through the acetaliztion and ketalization.The ketalization of cyclohexanone andglycol was investigated to figure out the optimal reaction conditions.Then thereactions between various carbonyl compounds and diols were carried out toinvestigate the catalytic activities of the novel carbon based acids.The results showedthat the catalyst owned very high activities for the reactions with very high yields.High activities,small catalyst amount and reusability are the key features of theprocedure.The catalyst was very efficient not only for the traditional five memberedring acetals,but also for the seven-membered-ring products.The catalytic activitieswere also very high for the synthesis of 1,3-benzodioxoles from catechol andcarbonyl compounds.The reactions accomplished in short time without thecopolymerization of the catechol and carbonyl compounds taken as the side reaction.The oxathioacetalization of carbonyl compounds and 2-mercaptoethanol undersolvent-free condition at room temperature was catalyzed by the novel carbon basedsolid acids.The results showed that the novel catalyst was very efficient for thereaction with the good to excellent yields in short time.Operational simplicity,without need of any solvent,small amount of usage,low cost of the catalyst used,high yields,applicability to large-scale reactions,reusability and chemoselectivity arethe key features of this methodology.
     2.The carbon based acids were synthesized through carbonization at hightemperature and the sulfonation in the sulfonic acid.The carbonation process shouldbe controlled well so that the carbon obtained could be sulfonation to produce thesolid carbon based acids.If the material was carbonized too deep,the sulfonationcould not be taken efficient.In the other hand,the solid acids could not be obtained ifthe carbonation was not carried out well.
     First,various sugars were used as the raw materials for the synthesis of the novelcarbon based acids.The carbonation and sulfonation conditions were investigated tooptimize the reaction conditions.The novel carbon based acid with both high acidityof 1.5mmol/g and thermal stability has been obtained successfully.
     Then,the catalyst was applied to the synthesis of tributyl citrate.The resultsshowed that the novel carbon based acids were all efficient for the reactions with high yield.The polysaccharide compounds such as starch and cellulose were difficult to becarbonized and carbonization products were still mixed with the sugar structure.Thesulfonic acid groups were also attached to the sugar structure in the sulfonation step,which made the sulfonic acid groups easy dropped during the catalytic procedure.Thecatalytic activities decreased quickly when the catalyst used for the first time,then theactivity remained for the sulfonic acid groups attached to the sugar structure droppedduring the reaction procedure for the first time.The novel carbon based solid acidsfrom glucose owned high activities and stability for the reactions with low catalystamount and high yield.The novel carbon based acids owned much higher activitiesand stability than the traditional solid acids for the active sites attached to the catalystthrough the chemical bonds.The quality of the product tributyl citrate was better thanthat produced by sulfonic acid,for the sulfonic acid was also efficient for the sidereactions such as dehydration.
     3.There were many drawbacks of the processed mentioned above.The reactionshould be taken under the stern conditions and the yields of the products were stillvery low.So the polymer carbon based sulfonic acids were synthesized usingnaphthalene compounds and P-toluenesulfonic acid as raw materials.First,the carbonbased sulfonic acids were synthesized through the naphthalene compounds.Theeffects of different naphthalene compounds,sulfonic acid,reaction temperature,andreaction time on the reactions were investigated to optimize the reaction conditions.The novel carbon based polymer acid has been obtained with the acidity of4.2mmol/g.
     The novel catalyst owned extremely high activities for the synthesis of acylalswith the average yields over 90% within several minutes.A comparative studyshowed that the novel catalyst has much higher activity than other catalysts with theadditional advantage of reusability.Besides,the novel catalyst has thechemoselectivity for the protection of aldehydes in the presence of ketones.
     Then,another carbon based sulfonic acids were synthesized by copolymerizationof p-toluenesulfonic acid and paraformaldehyde with sulfuric acid as catalyst.Thecatalytic activities of the novel carbon based acids were investigated through the Michael addition.The results showed that the catalyst was very efficient for theconjugate addition of amines to electron deficient alkenes with excellent yields inseveral minutes.Operational simplicity,no need of any solvent,low cost of thecatalyst used,high yields,reusability,excellent chemoselectivity and wideapplicability are the key features of this methodology.The catalyst also owned highstability with the catalytic activity remained when the catalyst was recycled for sixtimes.
     4.The hydrothermal carbonization procedure was introduced to instead of thetraditional carbonization.The traditional carbonation process was taken undernitrogen atmosphere at high temperature over 400℃.The waste liquid and gas wereproduced during the process,which made the carbonation yield was very low.Thehydrothermal carbonization procedure was carried out under much mild condition.The process was carried out at 150-180℃for 4h with much higher yield compared tothe traditional procedure.
     The effects of different sugar compounds,reaction temperature,reaction time,catalyst and catalyst amount on the reactions were investigated to find out the optimalreaction condition.Then the catalytic activities for the synthesis of biodiesel wereinvestigated carefully.The results showed that the catalyst was efficient for thereactions with high yield and reusability.
引文
[1]冀星,王璇.国际化工信息.2006,(4),18.
    [2]赵宗保,华艳艳.中国生物工程杂志.2005,25(11),1.
    [3] T.Yoshimoto,T.Mihama,K.Takahashi.Biochim Biophys Res Commun.1987,145,908
    [4]贾虎森,许亦农.植物生态学报.2006,30(2),221.
    [5]李娟.粮食形势.2005,(7),23.
    [6]张书芬,朱家成,王建平.河南农业科学.2006,(9),52.
    [7]戎茜.生物学教学.2006,31(6),65.
    [8]赵晨,付玉杰,祖元刚.植物学通报.2006,23(3),312.
    [9]颜治,陈晶.粮食与油脂.2003,(7),13.
    [10]杨革,王玉萍.菌物系统.1998,17(1),86.
    [11]余华.粮油食品.2001,(3),44.
    [12]罗玉萍,杨荣英,李思光.微生物学报.1995,35(6),400.
    [13]赵宗保.中国生物工程杂志.2005,25(2),8.
    [14]施安辉,周波,粘红酵.食品科学.2003,(1),48.
    [15]费栓琴.西部粮油科技.1998,23(2),23.
    [16]梁西爱,董文宾,苗晓洁.食品研究与开发.2006,27(3),46.
    [17]蒋霞敏,郑亦周.水生生物学报.2003,2(3),243.
    [18]李积华,刘成梅.食品科技.2007,(4),30.
    [19]王延耀,李里特.农业工程学报.2004,20(1),274.
    [20]张纪红,杨红键.天津化工.2006,20(6),15.
    [21]邢英.广东化工.2006,33(6),6.
    [22]武海棠.科技导报.2006,24(9),54.
    [23]岳鹍,王兴国,金青哲.中国油脂.2006,31(4),63.
    [24]陈和.酯交换制备生物柴油的催化反应过程研究.北京:清华大学,2006.
    [25]曹宏远,曹维良,张敬畅.北京化工大学学报.2005,(6),61.
    [26] K.K.Sanjib,C.Anju.Bioresource Technology.2005,96(13),1425.
    [27] E.L.Dora,J.G.Goodwin,D.A.Brace.Applied Catalysis A: General.2005,295,97.
    [28] J.Jitputti,B.Kitiyanan,P.Rangsunvigit.Chemical Engineering Journal.2006,116,61.
    [29] D.SerioM,R.Tesser,M.Dimiccoli.J.Mol.Cat.A: Chem.2005,239,111.
    [30] D.SerioM,B.Apicella,G.Greco.J.Mol.Cat.A: Chem.1998,130,233.
    [31] F.R.Abreua,M.B.Alvesa,C.C.S.Macedoa.J.Mol.Cat.A: Chem.2005,227,263
    [32] Xiaoming Sun and Yadong Li,Langmuir,2005,21,6019-6024.
    [33] Xiaoming Sun and Yadong Li,Angew.Chem.Int.Ed.2004,43,597-601.
    [34] Xiaoming Sun,Junfeng Liu and Yadong Li,Chem.Mater.,2006,18(15),3486-3494

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700