用户名: 密码: 验证码:
汽车覆盖件成形工艺的稳健优化与容差分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在实际生产中,板料性能和工艺参数的波动是汽车覆盖件废品率居高不下的关键因素。近年来,基于数值模拟的稳健优化与容差分析逐渐得到重视,然而稳健优化过程中随机模拟与反复迭代优化相结合的传统方法需要大量的数值模拟,还难以应用。虽然许多国内外学者已提出一些响应面模型与非随机模拟方法以降低模拟次数,但是当设计变量和参数个数增多时模拟次数激增,导致稳健优化与容差分析仍然局限于分析和优化简单零件。本文在国家自然科学基金项目(编号:50475020)和科技部863项目(编号:2007AA04Z130)的资助下,研究和建立了高效的稳健优化与容差分析模型,并成功应用于复杂汽车覆盖件成形工艺的优化。主要研究内容如下:
     (1)基于单项式容积法和混沌多项式展开,构造了简约配点响应面模型。采用加权余量法建立响应面模型残差与基函数正交的积分形式,并给出与积分形式等价的配点法。针对高斯积分点个数随变量维数增加而呈幂次递增的特性,采用单项式容积法代替高斯积分法,减少并合理配置了配点个数,提高了响应曲面模型的建模效率。研究结果表明,当变量维数增加时同等阶次的单项式容积法积分点个数远远少于高斯积分点个数,而且计算精度满足工程要求。该方法是本文的核心理论,在此基础上针对汽车覆盖件成形工艺的特点建立了稳健优化与容差分析模型。
     (2)稳健优化的关键是利用设计变量与设计参数的相互作用以及设计变量与响应量之间的非线性效应。为了应用简约配点响应面模型求解稳健优化问题,提出在简约配点响应面模型中同时包含设计变量和设计参数以及它们之间的交叉项。研究结果表明,该方法可以避免双响应面法只考虑设计变量与设计参数之间的一阶交互作用以及假设响应量为正态分布的局限。此外,该方法还允许设计变量围绕均值波动,具有更广的应用范围。
     (3)当输入参数波动比较大时,复杂汽车覆盖件成形的数值模拟可能产生数值不稳定,容易导致异常响应,所以在建立稳健优化和容差分析模型时需要考虑异常点的影响。为了降低和消除样本点的异常响应对响应面模型精度的影响,提出了一种构造简约配点响应面模型的稳健回归方法,从而允许在响应量中存在异常响应。将该方法应用于汽车行李箱外板成形工艺的容差分析,成功预测了冲压件拉裂的概率。
     (4)针对设计变量与响应量呈强非线性关系的问题,建立了逐步缩小设计变量取值范围的优化搜索方法,提高了混沌多项式的拟合精度和简约配点响应面模型的自适应性。研究结果表明,该方法允许设计变量在大区间内寻求工艺参数的最优值。将该方法应用于汽车行李箱外板成形工艺的稳健优化,验证了其求解强非线性稳健优化问题的可行性。
     (5)通过圆筒件拉深实验测量了压边力、摩擦系数、板料性能参数以及成形质量的概率分布,验证了基于简约配点响应面模型的稳健优化和容差分析的有效性。
In practical forming process, the fluctuations of material properties of sheet metal and processing parameters are the key aspects which result in the scrap rate of auto-body panel staying at a high level. In recent years, CAE-based robust optimization and tolerance analysis have been received increasing attention. However, the traditional method of coupling of iteration optimization and random simulation requires a great many numerical simulations, so it is difficult to apply in industry. Although many domestic and foreign researchers have presented some surrogate models and non-random simulation methods to reduce the computational cost, the number of numerical simulation increases rapidly in the case of multiple design variables and design parameters. Therefore, actual methods of robust optimization and tolerance analysis are limited to solve simple models. Funded by National Natural Science Foundation of China through grant #50475020, and co-funded by the High-Technology Research & Development Program of the Ministry of Science & Technology of China through grant #2007AA04Z130, the research work established efficient robust optimization and tolerance analysis models, which were successfully applied in complex auto-body panel stamping process. The main research content is as follows:
     (1) Reduced collocation response surface model (RCRSM) is constructed using polynomial chaos expansion (PCE) with points of monomial cubature rule (MCR). Weighted residual method is used to establish integration for the orthogonal form of the residual and the base function of RCRSM, and the corresponding collocation method is given. Since that the number of Gauss quadrature points is exponential growth of the number of model’s dimension, MCR is used to replace Gauss quadrature in solving the integration for reducing the number of collocation points and improving the efficiency of the construction of RCRSM. When the number of input variables increases, MCR requires points far less than those of Gauss quadrature according to the same degree and meets the precision demanded for practical engineering. This theory plays a key role in the research work.
     (2) It is important for robust optimization to utilize the interactions between design variables and design parameters and the nonlinear effect of response to design variables. In order to deal with problems with regard to robust optimization, RCRSM is built over both design variables and design parameters and their interactions. This procedure has advantages over dual response surface method, which only considers the first-order interactions between design variables and design parameters and assumes that the responses follow normal distributions. Furthermore, the procedure allows design variables fluctuate around their means, so the application is extensive.
     (3) In order to avoid the adverse effect of exceptional responses, a robust regression method which allows for outliers in sample points is presented to construct RCRSM. When the range of input variable is large, exceptional response may be occurring in the simulation of a complex stamping process due to numerical instable. Therefore, the adverse effect of exceptional responses should be considered when robust optimization and tolerance analysis models are constructed. The approach is applied successfully to tolerance analysis of the scrap rate of the stamping part of a car deck-lid outer panel.
     (4) For strongly nonlinear problems, the ranges of design variables are cut step by step during the optimization process to improve the fitting precision of PCE and the adaptation of RCRSM. It is shown that the procedure is able to find optimum values of design variables in wide range. The method is applied to the robust optimization of a car deck-lid outer panel to demonstrate the availability.
     (5) Experiments of a cylindrical cup drawing and material tensile are performed to measure probability density functions of the sheet metal material properties, friction coefficient, blank holder force and forming quality. Robust optimization and tolerance analysis are performed and their validity is proved.
引文
[1] Majeske K. D., Hammett P. C., Identifying sources of variation in sheet metal stamping, International Journal of Flexible Manufacturing Systems, 2003, 15 (n1): 5-18
    [2] Gantar G., Kuzman K., Sensitivity and stability evaluation of the deep drawing process, Journal of materials processing technology, 2002, 125-126: 302-308
    [3] Karthik V., Comstock R. J., Variability of sheet formability and formability testing, Journal of Materials Processing Technology, 2002, 121: 350-362
    [4] Cao J., Kinsey B. L., Next generation stamping dies - controllability and flexibility Robotics and Computer Integrated Manufacturing, 2001, 17: 49-56
    [5] Col A., Investigation on press forming scatter origin, Proceedings of the Sixth International ESAFORM Conference on Material Forming, Salerno, Italy, 2003, 183-186
    [6] Li K. P., Carden W. P., Wagoner R. H., Simulation of springback, International Journal of Mechanical Sciences, 2002, 44 (1): 103-122
    [7] Burkhardt L., Oberpriller B., Sensitivity analysis of process and material parameters for the efficient simulation of hot forming, Forming technology forum 2007 - Application of stochastics and optimization methods, ETH Zurich, Switzerland, 2007, 101-105
    [8] Maeder G., Material Forming and Dimensioning Problems: Expectations from the Car Industry, Advanced Methods in Material Forming, 2006, 19-33
    [9]张冬娟,板料冲压成形回弹理论及有限元数值模拟研究,上海交通大学博士学位, 2006
    [10]王金彦,板料成形数值模拟的新型有限元理论模型研究,上海交通大学博士学位, 2006
    [11] Queipo Nestor V., Haftka Raphael T., Shyy Wei, etc., Surrogate-based analysis and optimization, Progress in Aerospace Sciences, 2005, 41 (1): 1-28
    [12] Box G. E. P., Wilson K. B., On the experimental attainment of optimum condition, Journal of the Royal Statistical Society, 1951, 13 (Series B): 1-45
    [13] Taguchi G., Off-line and on-line quality control systems, Proceeding of the InternationalConference on Quality Control (ISQC), Tokyo, Japan, 1978, 1-5
    [14] Myers R. H., Montgomery D. C., Response surface methodology: process and product optimization using designed experiments, J. Wiley, New York, 2002
    [15] Hopfield J. J., Collective properties of neural networks, Proceedings of the 35th Annual Conference on Engineering in Medicine and Biology, Philadelphia, PA, USA, 1982, 1-189
    [16] Stein M. L., Interpolation of spatial data : some theory for kriging New York, Springer, 1999
    [17] Jeong S., Murayama M., Yamamoto K., Efficient optimization design method using kriging model, Journal of Aircraft, 2005, 42 (2): 413-420
    [18] Sekishiro M., Venter G., Balabanov V., Combined kriging and gradient-based optimization method, Portsmouth, VA, United States, 2006, 2174-2188
    [19] Daberkow D. D., Mavris D. N., An investigation of metamodeling techniques for complex systems design, Symposium on Multidisciplinary Analysis and Design, Atlanta, 2002, AIAA-2002-5457
    [20] Jin R., Chen W., Simpson T. W., Comparative studies of metamodelling techniques under multiple modelling criteria, Structural and Multidisciplinary Optimization, 2001, 23 (1): 1-13
    [21] Wilson B., Cappelleri D. J., Frecker M. I., etc., Efficient Pareto Frontier Exploration using surrogate approximations, Optimization and Engineering, 2001, 2 (1): 31-50
    [22]林忠钦,艾健,张卫刚等,冲压稳健设计方法及其应用,塑性工程学报, 2004, 11 (4): 56-60
    [23]张峻,柯映林,基于动态序列响应面方法的钣金成形过程参数优化,中国机械工程, 2005, 16 (4): 307-310
    [24] Wang H., Li G. Y., Zhong Z. H., Optimization of sheet metal forming processes by adaptive response surface based on intelligent sampling method, Journal of Materials Processing Technology, 2008, 197 (1-3): 77-88
    [25] Song J. H., Huh H. , Kim S. H., etc., Springback reduction in stamping of front side member with a response surface method, 6th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, Detroit, MI, U.S.A., 2005, 303-308
    [26] Roy S., Kunju R., Kirby D., An interactive and flexible approach to stamping design and optimization, NUMIFORM, 2004, 1975-1979
    [27] Naceur H., Ben-Elechi S., Batoz J. L., etc., Response surface methodology for the rapid design of aluminum sheet metal forming parameters, Materials and Design|Materials and Design, 2008: 781-790
    [28]崔令江,杨玉英,朱玉萍,利用神经网络构建方盒件成形数值模拟模型,塑性工程学报, 2005, 12 (1): 20-23
    [29]潘江峰,钟约先,袁朝龙等,基于人工神经网络技术的板料拉深成形工艺优化的数值建模,塑性工程学报, 2007, 14 (5): 1-14
    [30] Viswanathan V., Kinsey B., Cao J., Experimental implementation of neural network springback control for sheet metal forming, Journal of Engineering Materials and Technology, Transactions ofthe ASME, 2003, 125 (2): 141-147
    [31] Liew K. M., Tan H., Ray T., etc., Optimal process design of sheet metal forming for minimum springback via an integrated neural network evolutionary algorithm, Structural and Multidisciplinary Optimization, 2004, 26 (3-4): 284-294
    [32]谢延敏,基于Kriging模型和灰色关联分析的板料成形工艺稳健优化设计研究,上海交通大学博士学位, 2007
    [33] Jakumeit J., Herdy M., Nitsche M., Parameter optimization of the sheet metal forming process using an iterative parallel Kriging algorithm, Structural and Multidisciplinary Optimization, 2005, 29 (6): 498-507
    [34]金兹伯格V. B.著,姜明东,王国栋等译,高精度板带材轧制理论与实践,北京,冶金工业出版社, 2000
    [35] Moore R. E., Interval analysis, New Jersey, Prentice-Hall, Englewood Cliffs, 1966
    [36] Neumaier A., Interval Methods for Systems of Equations, Cambridge, England, Cambridge University Press, 1990
    [37] Du X. P., Interval reliability analysis, Las Vegas, NV, United States, 2008, 1103-1109
    [38] Rao S. S., Majumder Luna, Optimization of aircraft wings for gust loads: Interval analysis-based approach, AIAA Journal, 2008, 46 (3): 723-732
    [39] Vigneron V., Some applications of interval analysis to statistical problems, San Sebastian, Spain, 2007, 564-579
    [40] Kutscher S. , Schulze J. , Some Aspects of Uncertain Modelling Experiences in Applying Interval Mathematics to Practical Problems, Modelling Uncertain Data, Berlin, 1993, 62-68
    [41] Zadeh L. A., Fuzzy Sets, Information and Control, 1965, 8 (3): 338-353
    [42] Kraslawski A., Koiranen T., Nystrom L., Concurrent engineering: Robust design in fuzzy environment, Computers & Chemical Engineering, 1993, 17 (Suppl): 447-452
    [43] Vanegas L. V., Labib A. W., Fuzzy approaches to evaluation in engineering design, Journal of Mechanical Design, Transactions of the ASME, 2005, 127 (1): 24-33
    [44] Delgado M., Olavarrieta P., Vergara P., Fuzzy set based protocols for process quality control, International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2006, 14 (1): 61-76
    [45] Hryniewicz O., Statistics with fuzzy data in statistical quality control, Soft Computing, 2008, 12 (3): 229-234
    [46] Papoulis A., Probability, Random Variables, and Stochastic Processes, New York, McGraw-Hill, 1991
    [47] Cha J. H., Mi J., Some probability functions in reliability and their applications, Naval Research Logistics, 2007, 54 (2): 128-135
    [48] Lyle K. H., Stockwell A. E., Hardy R. C., Application of probability methods to assess airframe crash modeling uncertainty, Journal of Aircraft, 2007, 44 (5): 1568-1573
    [49] Melnikov V. N., Pepelyshev Y. N., Chistozvonov A. S., Application of the probability method foranalysis of disruptions in the operation of research nuclear facilities, Atomic Energy, 2007, 103 (5): 917-920
    [50] Isukapalli S. S., Uncertainty analysis of transport-transformation models, the State University of New Jersey, Doctor of Philosophy, 1999
    [51] Devroye L., Non-uniform random variate generation, New York, Springer-Verlag, 1986
    [52] Anile A. M., Spinella S., Rinaudo S., Stochastic response surface method and tolerance analysis in microelectronics, COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2003, 22 (2): 314-327
    [53] McKay M. D., Beckman R. J., Conover W. J., Comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 2000, 42 (1): 55-61
    [54] Gardner R. H., O'Neill R. V., Mankin J. B., etc., A comparison of sensitivity analysis and error analysis based on a stream ecosystem model, Ecological Modelling, 1981, 12: 173-190
    [55] Tatang M. A., Pan W., Prinn R. G., etc., An efficient method for parametric uncertainty analysis of numerical geophysical models, Journal of Geophysical Research, 1997, 102 (D18): 21925-21932
    [56]方开泰,均匀设计与均匀设计表,北京,科学出版社, 1994
    [57]方开泰,马长兴,正交与均匀试验设计,北京,科学出版社, 2001
    [58] Taguchi G., Introduction to Quality Engineering, Asian Productivity Organization, Tokyo, Japan, 1986,
    [59] Phadke M. S., Quality engineering using robust design, New Jersey, Prentice-Hall, 1989
    [60] Park G. J., Lee T. H., Lee K. H., etc., Robust design: An overview, AIAA Journal, 2006, 44 (1): 181-191
    [61] Vining G. G., Myers R. H., Combining Taguchi and response surface philosophies:a dual response approach, Journal of Quality Technology, 1990, 22 (1): 38-45
    [62] Myers R. H., Khuri A. I., Vining G. G., Response surface alternatives to the Taguchi's robust parameter design, Approach.American Statistician, 1992, 46 (2): 131-139
    [63]李玉强,板料拉深成形工艺的6-sigma稳健优化设计研究,上海交通大学博士学位, 2006
    [64] Hu J., Peng Y.h., Li D. Y., etc., Robust optimization based on knowledge discovery from metal forming simulation, Journal of Materials Processing Technology, 2007, 187-188: 698-701
    [65] Strano M., Optimization under uncertainty of sheet-metalforming processes by the finite element method, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2006, 220 (8): 1305-1315
    [66] Bonte M. H. A., Boogaard van den A. H., Ravenswaaij van R. , A robust optimisation strategy for metal forming processes, NUMIFORM 2007, International Conference in numerical methods in industrial forming processes, Porto, Portugal, 2007, 493-498
    [67] Strano M., Robustness evaluation and tolerance prediction for a stamping process with springback calculation, Proceedings of the 6th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Process, 2005, 266-271
    [1] Anile A. M., Spinella S., Rinaudo S., Stochastic response surface method and tolerance analysis in microelectronics, COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2003, 22 (2): 314-327
    [2] Tatang M. A., Pan W., Prinn R. G., etc., An efficient method for parametric uncertainty analysis of numerical geophysical models, Journal of Geophysical Research, 1997, 102 (D18): 21925-21932
    [3] Wiener N., The homogeneous chaos, American Journal of Mathematics, 1938, 60: 897-936
    [4] Ghanem R., Spanos P., Stochastic finite elements: a spectral approach, New York, Springer-Verlag, 1991
    [5] Acharjee S., Zabaras N., Uncertainty propagation in finite deformations - A spectral stochasticLagrangian approach, Computer Methods in Applied Mechanics and Engineering, 2006, 195 (19-22): 2289-2312
    [6] Acharjee S., Zabaras N., A non-intrusive stochastic Galerkin approach for modeling uncertainty propagation in deformation processes, Computers and Structures, 2007, 85 (5-6): 244-254
    [7] Finette S., A stochastic representation of environmental uncertainty and its coupling to acoustic wave propagation in ocean waveguides, Journal of the Acoustical Society of America, 2006, 120 (5): 2567-2579
    [8] Xiu D. B., Karniadakis G.E., The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM Journal of Scientific Computing, 2002, 24 (2): 619-644
    [9] Xiu D. B., Karniadakis G.E., A new stochastic approach to transient heat conduction modeling with uncertainty, International Journal of Heat and Mass Transfer, 2003, 46 (24): 4681-4693
    [10] Walters R. W., Towards stochastic fluid mechanics via polynomial chaos, proceedings of the 41st AIAA aerospace sciences meeting and exhibit, 2003, AIAA-2003-0413
    [11] Sarkar A., Ghanem R., Mid-frequency structural dynamics with parameter uncertainty, Computer Methods in Applied Mechanics and Engineering, 2002, 191 (47-48): 5499-5513
    [12] Ghanem R., Probabilistic characterization of transport in heterogeneous porous media, Computer Methods in Applied Mechanics and Engineering, 1998, 158 (3-4): 199-220
    [13] Tatang M. A., Direct incorporation of uncertainty in chemical and environmental engineering systems, Massachusetts Institute of Technology Doctor of Philosophy, 1995
    [14] Villadsen J., Michelsen M. L., Solution of differential equation models by polynomial approximation, New Jersey, Prentice-Hall, 1978
    [15] Isukapalli S. S., Uncertainty analysis of transport-transformation models, the State University of New Jersey, Doctor of Philosophy, 1999
    [16] Isukapalli S. S., Roy A., Georgopoulos P. G., Stochastic response surface methods (SRSMs) for uncertainty propagation: Application to environmental and biological systems, Risk Analysis, 1998, 18 (3): 351-363
    [17] Isukapalli S. S., Roy A., Georgopoulos P. G., Efficient sensitivity/uncertainty analysis using the combined stochastic response surface method and automated differentiation: Application to environmental and biological systems, Risk Analysis, 2000, 20 (5): 591-602
    [18] Kim Y. K., Lee G. H., Hong J. P., etc., Prediction of torque characteristic on barrier-type SRM using stochastic response surface methodology combined with moving least square, IEEE Transactions on Magnetics, 2004, 40 (2 II): 738-741
    [19] Kim N. H., Wang H. Y., Queipo N. V., Efficient shape optimization under uncertainty using polynomial chaos expansions and local sensitivities, AIAA Journal, 2006, 44 (5): 1112-1116
    [20] Wei D. L., Cui Z. S., Chen J., Optimization and tolerance prediction of sheet metal forming process using response surface model, Computational Materials Science, 2007, 42 (2): 228-233
    [21] Isukapalli S. S., Balakrishnan Suhrid, Georgopoulos Panos G., Computationally efficientuncertainty propagation and reduction using the stochastic response surface method, Nassau, Bahamas, 2004, 2237-2243
    [22] Smolyak S., Quadrature and interpolation formulas for tensor products of certain classes of functions, Soviet Mathematics Doklady, 1963, 4: 240-243
    [23] Bungartz H. J., Dirnstorfer S., Multivariate quadrature on adaptive sparse grids, Computing (Vienna/New York), 2003, 71 (1): 89-114
    [24] Bungartz H. J., Griebel M., Sparse grids, Cambridge University Press, 2004
    [25] Yserentant H., Sparse grids, adaptivity, and symmetry, Computing (Vienna/New York), 2006, 78 (3): 195-209
    [26] Stroud A. H., Approximate calculation of multiple integrals, NJ, Prentice-Hall, 1971
    [27] Cools R., Rabinowitz P., Monomial cubature rules since 'Stroud': A compilation - Part 1, Journal of Computational and Applied Mathematics, 1993, 48 (3): 309
    [28] Cools R., Monomial cubature rules since `Stroud': A compilation - Part 2, Journal of Computational and Applied Mathematics, 1999, 112 (1-2): 21-27
    [29] Cools R., An encyclopaedia of cubature formulas, Journal of Complexity, 2003, 19 (3): 445-453
    [30] Myers R. H., Montgomery D. C., Response surface methodology: process and product optimization using designed experiments, J. Wiley, New York, 2002
    [31] Devroye L., Non-uniform random variate generation, New York, Springer-Verlag, 1986
    [32] Buranathiti T., Cao J., Chen W., etc., A weighted three-point-based methodology for variance estimation, Engineering Optimization, 2006, 38 (5): 557-576
    [33] Stander N., Roux W., Eggleston T., etc., A design optimization and probabilistic analysis tool for the engineering analyst (LS-OPT User's Manual Version 3.1), Livermore software technology corporation, 2006
    [34] Webster M. D., Tatang M. A., McRae G. J., Application of the probabilistic collocation method for an uncertainty analysis of a simple ocean model, MIT Joint Program on the Science and Policy of Global Change, 1996, 4: 1-21
    [1] Belytschko T., Liu W. K., Moran B., Nonlinear finite elements for continua and structures, John Wiley & Sons Inc, 2000
    [2] Rousseeuw P. J., Leroy A. M., Robust regression and outlier detection, Hoboken, NJ, Wiley-Interscience, 2003
    [3] Box G. E. P., Non-normality and test on variances, Biometrika, 1953, 40: 318-335
    [4] Myers R. H., Montgomery D. C., Response surface methodology: process and product optimization using designed experiments, J. Wiley, New York, 2002
    [5] Rousseeuw P. J., Wagner J., Robust regression with a distributed intercept using least median of squares, Computational Statistics & Data Analysis, 1994, 17 (1): 65
    [6] Rousseeuw P. J., Katrien V. D., Computing LTS regression for large data sets, Data Mining and Knowledge Discovery, 2006, 12 (1): 29-45
    [7] Maronna R. A., Bustos O., Yohai V., Bias and efficiency robustness of general M-estimators for regression with random carriers, New York, Springer Verlag, 1979
    [8]王彤,何大卫, LTS回归与M估计稳健性的比较,中国卫生统计, 1999, 16 (2): 79-81
    [9]陈立周,稳健设计,北京,机械工业出版社, 2000
    [1] Arora J. S., Introduction to optimum design, New York, McGraw-Hill, 1989
    [2]陈立周,稳健设计,北京,机械工业出版社, 2000
    [3] Phadke M. S., Quality engineering using robust design, New Jersey, Prentice-Hall, 1989
    [4]康立山,非数值并行算法(第一册),模拟退火算法,北京,科学出版社, 1994
    [5] Jin R. C., Chen W., Sudjianto A., An efficient algorithm for constructing optimal design of computer experiments, Chicago, IL, United States, 2003, 545-554
    [6] Mian L., Shapour A., Vikrant A., A multi-objective genetic algorithm for robust design optimization, GECCO’05, 2005, 771-778
    [7] Do T. T., Fourment L., Laroussi M., Sensitivity analysis and optimization algorithms for 3D forging process design, NUMIFORM, 2004, 2026-2031
    [8] Lawrence C. T., Zhou J. L., Tits A. L., User's guide for CFSQP Version 2.5: A C code for solving (large scale) constrained nonlinear (minimax) optimization problems, generating iterates satisfying all Inequality constraints, College Park, Maryland, 1998
    [9] Wang H. Y., Kim N. H., Robust design using stochastic response surface and sensitivities, 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Portsmouth, VA, United States, 2006, 1225-1239
    [10] Choi S. K., Grandhi R. V., Canfield R. A., Robust design of mechanical systems via stochastic expansion, International Journal of Materials and Product Technology, 2006, 25 (1-3): 127-143
    [11] Ghanmi S., Bouazizi M. L., Bouhaddi N., Robustness of mechanical systems against uncertainties, Finite Elements in Analysis and Design, 2007, 43 (9): 715-731
    [12] Tatang M. A., Pan W., Prinn R. G., etc., An efficient method for parametric uncertainty analysis of numerical geophysical models, Journal of Geophysical Research, 1997, 102 (D18): 21925-21932
    [13] Isukapalli S. S., Roy A., Georgopoulos P. G., Efficient sensitivity/uncertainty analysis using the combined stochastic response surface method and automated differentiation: Application to environmental and biological systems, Risk Analysis, 2000, 20 (5): 591-602
    [14] Myers R. H., Montgomery D. C., Response surface methodology: process and product optimization using designed experiments, J. Wiley, New York, 2002
    [15] Devroye L., Non-uniform random variate generation, New York, Springer-Verlag, 1986
    [16] Isukapalli S. S., Uncertainty analysis of transport-transformation models, the State University of New Jersey, Doctor of Philosophy, 1999
    [17] Huang B. Q., Du X. P., A robust design method using variable transformation and Gauss-Hermite integration, International Journal for Numerical Methods in Engineering, 2006, 66 (12): 1841-1858
    [18] Dimarrogons A. D., Machine design: a CAD approach, New York, Wiley, 2002
    [19] Makinouchi A., Nakamachi E., Onate E., etc., Numerical Simulation of 3-D Sheet Metal Forming Processes-Verification of Simulation with Experiment, Proceedings of 2nd International Conference NUMISHEET'93, Isehara, Japan, 1993, 109-123
    [20] Altair, Hyperform 8.0 help tutorial for optimization 1step - HF-4020, Altair Engineering, Inc., 2006
    [1] Lin Y., An Efficient Robust Concept Exploration Method and Sequential Exploratory Experimental Design, Georgia Institute of Technology, Ph.D. dissertation thesis, 2004
    [2] Perez V. M., Renaud J. E., Watson L. T., Reduced sampling for construction of quadratic response surface approximations using adaptive experimental design, Engineering Computations (Swansea, Wales), 2008, 25 (8): 764-782
    [3] Wang G. G., Simpson T. W., Fuzzy clustering based hierarchical metamodeling for design space reduction and optimization, Engineering Optimization, 2004, 36 (3): 313-335
    [4] Stander N., Craig K. J., On the robustness of a simple domain reduction scheme for simulation-based optimization, Engineering Computations (Swansea, Wales), 2002, 19 (3-4): 431-450
    [5]孙成智,基于变压边力的薄板冲压成形理论与实验研究,上海交通大学博士学位, 2003
    [6] Wang G. G., Dong Z., Aitchison P., Adaptive response surface method—a global optimization scheme for computation-intensive design problems, Journal of Engineering Optimization, 2001, 33 (6): 707-734
    [7] Wang G. G., Adaptive response surface method using inherited Latin hypercube design points, Journal of Mechanical Design, Transactions of the ASME, 2003, 125 (2): 210-220
    [8] Wei D. L., Cui Z. S., Chen J., Optimization and tolerance prediction of sheet metal forming processusing response surface model, Computational Materials Science, 2007, 42 (2): 228-233
    [9] Li R., Ghanem R., Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration, Probabilistic Engineering Mechanics, 1998, 13 (2): 125-136
    [10] Montgomery D. C., Design and analysis of experiments, John Wiley & Sons, 2005
    [11] Guo Y. Q., Batoz J. L., Naceur H., etc. , Recent developments on the analysis and optimum design of sheet metal forming parts using a simplified inverse approach, Computers and Structures, 2000, 78: 133-148
    [1] Sigvant M., Mattiasson K., Skogsgardh A., Industrial experiences of stochastic simulations of sheet metal forming, Proceedings of the conference: Application of Stochastics and Optimization methods, Zurich, Switzerland, 2007, 23-29
    [2] Royston P., Algorithm AS 181: The W test for Normality, Applied Statistics, 1982, 31: 176-180
    [3] Guo Y. Q., Batoz J. L., Naceur H., etc. , Recent developments on the analysis and optimum design of sheet metal forming parts using a simplified inverse approach, Computers and Structures, 2000, 78: 133-148
    [1] Stroud A. H., Approximate calculation of multiple integrals, NJ, Prentice-Hall, 1971

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700