基于凸优化理论的自适应波束形成技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阵列信号处理作为信号处理领域的一个重要分支,其应用涉及雷达、声纳、通信以及医疗诊断多个领域。通过对信号在时间和空间上的采样和处理,能够更加充分地发掘信号中蕴含的信息,有效地抑制干扰,提高系统的效率。虽然自适应阵列信号处理在理想的情况下可以达到良好的性能,但是实际系统存在的误差会严重影响阵列信号处理最后的输出性能。所以,寻求稳健的自适应信号处理算法一直是广大研究者追求的目标。本文通过对阵列信号处理中现有算法的研究,提出和改进了一些现有的算法,使之更具有稳健性,适应更加复杂和恶劣的环境。本文所做的主要工作概述如下:
     1.针对传统波束形成算法对指向误差敏感的缺点,提出了一种基于概率约束的有效设计方法,它在假定随机的方向矢量符合高斯分布的前提下,保证其指向约束以一定的概率大于单位响应,并将概率约束的优化问题通过凸近似的方法转变成一个迭代的二阶锥优化问题,从而可以利用内点法求解。此外,迭代过程的收敛性也在文中进行了分析和证明。与现有的算法相比,文中提出的算法具有较低的复杂度,更易于实现,且算法的性能较好,因而具有较高的实用价值。
     2.通信中的大部分信号具有循环平稳特性,利用信号的循环平稳特性已经在阵列信号处理中形成了很多算法。它们无需事先已知信号的指向,因此属于盲波束形成算法。本文分析了当系统存在循环频率误差时基于梯度下降的循环平稳算法,由于存在sinc的零点效应,算法的性能随着快拍数的增加而出现周期性的恶化。基于上述现象,文中提出了一种利用共轭梯度求解的稳健算法,它利用共轭梯度算法快速收敛的特点,首先寻求一个粗略的解,并求出大致的方向矢量作为信号的指向,进而利用传统的波束形成算法求解,避免了循环频率误差对其的影响,仿真实验证明了算法具有较好的性能。
     3.近期,基于多输入多输出系统的线性接收技术也得到了较多的关注,其核心思想与波束形成算法类似,在提取感兴趣用户信号的同时抑制其他用户对它的干扰。然而,其算法的性能同样依赖于信道状态信息的精确程度。因此,文中提出了一种基于随机规划理论的稳健线性接收算法。在已知信道误差统计信息的情况下,利用切比雪夫不等式求解最差分布情况下的概率约束表达式,并将其转化成迭代的凸优化问题求解,同时,本文还证明了算法的收敛性。与现有的稳健接收算法相比,文中提出的算法通过允许小的溢出概率和更具一般性的不确定模型来提高算法的性能,并在文末给出了一些有意义的结论。
The array signal processing as an important branch of the signal processing domain is applied for many areas such as radar, sonar, communication and biomedical testing. It can exploit sufficiently the information of the signal by sampling the signal in time-spatial domain to suppress the interference and increase the signal to interference and noise ratio of the system. The adaptive array signal processing can obtain good performance in the ideal cases. But the errors in the system always severely affect the performance of the array signal processing. So many researchers are trying to research robust array signal processing algorithms. This paper introduces several algorithms to improve the robustness, which makes the system more robust for the complicated scenario. The main work in this paper is listed as follows:
     1. A powerful adaptive beamforming algorithm in the presence of the pointing error is proposed by probabilistic constraints, aiming at the shortcoming of the sensitivity to the pointing error. It is under the assumption that the random steering vector mismatch has Gaussian distribution, we guarantee that the pointing constraint is greater than unit response with some selected probability. Then by convex approximation, the original problem is converted to an iterative second-order cone programming problem, which can be solved efficiently via well-established interior-point method. Furthermore, a mathematical convergence analysis of the iterative solution is also provided. Compared to existing approaches, our proposed method enjoys the advantages of easier implementation and lower computational complexity, and has better performance. So it is more appropriate in practice.
     2. The most signals in the communication system have the cyclostationary property. Many algorithms based on the cyclostationary of the signal in the array signal processing have been exploited. They can well worked without knowing the steering vector of interested signal, thus they all belong to the blind algorithms. In the presence of cycle frequency error, a mathematical analysis of gradient decent-based algorithm is provided. It points out that due to the effect of the sinc function, the above approach have periodic zeros point as the number of snapshot increasing. Hence, a novel robust cyclostationary beamformer based on conjugate gradient algorithm, which can be used to extract signals with cy-clostationarity in the presence of cycle frequency error, is proposed. Because of its fast convergence, periodic nulls can be circumvented, and the steering vector of interested signal is estimated. Then we use traditional beamformer to avoid the influence of cycle frequency error. Simulations show that our new algorithm performs well under cycle frequency mismatches.
     3. On the other hand, many researchers are also trying to research the linear receiver based on multiple-input multiple-output system. The key idea of it is similar to adaptive beamforming algorithms. Both of them are trying to extract the information of interested user, while rejecting the interference and noise component. However, the performance of linear receiver highly depends on the channel state information. Hence, based on probability-constrained optimization, a robust linear receiver with worst-case probability guarantee is proposed in this paper. Using the multivariate Chebyshev inequality, the deterministic expressions of the worst-case probabilistic constraints are derived in the presence of statistical property of channel state information. Then an iterative convex programming algorithm is developed to obtain the robust solutions, and the mathematical convergence analysis is also provided. Compared to the existing receivers, our proposed receiver improves the performance by allowing small outage probability and more general uncertainty model, and some significant conclusions are also obtained.
引文
[1] A. Farina. Antenna-based signal processing techniques for radar systems. Artech House, Norwood, 1992.
    [2] R.Monzingo and T. Miller. Introduction to adaptive arrays. Wiley and Sons, New York, 1980.
    [3] J. E. Hudson. Adaptive array principles. Peter Peregrinus, London, 1981.
    [4] Harry L. Van Trees. Optimum array processing. John Wiley and sons Ltd, 2002.
    [5] Simon Haykin. Adaptive Filter Theory -Fourth Edition. Publishing House of Electronics industry, 2002.
    [6] H. Steyskal. Digital beamforming antennas:an introduction. Microwave J, 30(1): 107-124, Jan 1987.
    [7] H. Steyskal and J. F. Rose. Digital beamforming for radar systems. Microwave J, 32(1):121-136, Jan 1989.
    [8] C. D. Seligson. Comments on high resolution frequency-wavenumber spectrum analysis. Proc. IEEE, 58:947-949,1970.
    [9] H. Cox. Resolving power and sensitivity to mismatch of optimum array processors. J. Acoust. Soc. Amer., 54(3):771-785,1973.
    [10] H. Cox, R. Zeskind, and M. Owen. Robust adaptive beamforming. J. Acoust. Soc. Amer., 35(10): 1365-1376, Oct 1987.
    [11] A. B. Gershman. Robust adaptive beamforming. Int. J. Electron. Commun, 53:305-314,1999.
    [12] B. D. van Veen and K. M. Buckleye. Beamforming: A versatile approach to spatial filtering. IEEE Acoust., Speech, Signal Processing Mag., pages 5-15, Apr 1988.
    [13] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
    [14] D. D. Feldman and L. J. Griffiths. A constraint projection approach for robust adaptive beamforming. In International Conference on Acoustics, Speech, and Signal Processing, 1991. ICASSP-91., pages 1381-1384. IEEE, 1991.
    [15] J. L. Yu and C. C. Yeh. Generalized eigenspace-based beamformers. IEEE Transactions on Signal Processing, 43:2453-2461, Nov. 1995.
    [16] L. Chang and C. C. Yeh. Performance of dmi and eigenspace-based beam-formers. IEEE Transactions on Antennas and Propagation, 40:1336-1347, Nov. 1992.
    [17] D. D. Feldman and L. J. Griffiths. A projection approach for robust adaptive beamforming. IEEE Transactions on Signal Processing, 42:867-876, Apr. 1994.
    [18] D. D. Feldman. An analysis of projection method for robust adaptive beamforming. IEEE Transactions on Antennas and Propagation, 44:1023-1030, July 1996.
    [19] C. C. Lee and J. H. Lee. An efficient technique for eigenspace-based adaptive interferencecancellation. IEEE Transactions on Antennas and Propagation, 46:694-699, May 1998.
    [20] C. C. Lee and J. H. Lee. Eigenspace-based adaptive array-beamfonning with robust capabilities. IEEE Transactions on Antennas and Propagation, 45:1711— 1716, Feb. 1997.
    [21] C. C. Lee and J. H. Lee. Analysis of the performance and sensitivity of an eigenspace-based interference canceller. IEEE Transactions on Antennas and Propagation, 48:826-835, May 2000.
    [22] H. Subbaram and K. Abend. Interference suppression via orthogonal projections: a performance analysis. IEEE Transactions on Antennas and Propagation, 41:1187-1194,Sep.1993.
    [23] H. Subbaram and K. Abend. A signal subspace method for adaptive interference cancellation. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36:1835-1845, Dec. 1988.
    [24] A. B. Gershman, U. Nickel, and J. F. Bohme. Adaptive beamforming algorithms with robustness against jammer motion. IEEE Transactions on Signal Process-ing, 45:1878-1885, July 1997.
    [25] B. D. Carlson. Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Transactions on Aerospace and Electronic Systems, 24:397— 401, Apr. 1988.
    [26] J. Li, P. Stoica, and Z. Wang. On robust capon beamforming and diagonal loading. IEEE Transactions on Signal Processing, 51:1702-1715, July 2003.
    [27] B. G. Agee, S. V. Schell, and W. A. Gardner. Spectral self-coherence restoral: a new approach to blind adaptive signal extraction using antenna arrays. Proc.IEEE, 78:753-767, Apr. 1990.
    [28] J. H. Lee and Y. T. Lee. Robust adaptive array beamforming for cyclostation-ary signals under cycle frequency error. IEEE Transactions on Antennas and Propagation, 47:233-241, Feb. 1999.
    [29] Y. T. Lee and J. H. Lee. Robust adaptive array beamforming with random error in cycle frequency. IEE Proc. -Radar, Sonar Navig., 148:193-199, Aug. 2001.
    [30] A. Wiesel, Y. C. Eldar, and S. Shamai (Shitz). Linear precoding via conic programming for fixed mimo receivers. IEEE Transactions Signal Processing, 54:161-176, Jan. 2006.
    [31] M. Schubert and H. Boche. Solution of the multiuser downlink beamforming problem with individual sinr constraints. IEEE Transactions Vehicular Technology, 53:18-27, Jan. 2004.
    [32] D. Samuelsson, M. Bengtsson, and B. Ottersten. An efficient algorithm for solving the downlink beamforming problem with indefinite constraints. In Proceedings of International Conference on Acoustics, Speech, and Signal Processing, 2005. ICASSP-05., volume 4, pages 18-23. IEEE, Mar. 2005.
    [33] Y. Wei and L. Tian. Transmitter optimization for the multi-antenna downlink with per-antenna power constraints. IEEE Transactions on Signal Processing, 55:2646-2660, June 2007.
    [34]Y.Rong,S.Shahbazpanahi,and A.B.Gershman.Robust linearreceiver for space-time block coded multi-access mimo systems with imperfect channel state information.IEEE Transactions on Signal Processing,53:3081-3090,Aug.2005.
    [35]Y.Rong,S.A.Vorobyov,and A.B.Gershman.Robust linear receiver for mutiaccess space-time block coded mimo systems:A probabilistically constrained approach.IEEE Journal on Selected Areas in Communications;24:1560-1570,Aug.2006.
    [36]F.Alizadeh,J.-E A.Haeberly,and M.L.Overton.Primal-dual interior point methods for semi-definite~ programming:Convergence rates,stabilityand numerical results.SlAM Journal on Optimization,8:746-768,May 1998.
    [37]F.Alizadeh and D.Goldfarb.Second-order cone programming.Mathematical Programming Series B,95:3-51,2003.
    [38]H.G.Eggleston.Convexity.Cambridge University Press,1958.
    [39]S.Boyd and C.Barratt.Linear Controller Design:Limits of Performance.Prentice-Hall,1991.
    [40]I.S.Du.The solution of augmented systems.In Proceedings of the 15th Dundee Conference,pages 40-55.Longman Scientic and Technical,1993.
    [41]A.Ben-Tal and A.Nemirovski.Robust convex optimization.Mathematics of Operations Research,23:769-805,1998.
    [42]A.Ben-Tal and A.Nemirovski.Robust solutions of uncertain linear programs.Operations Research Letters,25:1-13,Jan.1999.
    [43]A.Ben-Tal and A.Nemirovski.Lectures on modern convex optimization.Analysis,Algorithms,and Engineering Applications.Society for Industrial and Applied Mathematics,2001.
    [44]L.G.Godara.Error analysis of the optimal antenna array processors.IEEE Transactions on Aerospace and Electronic Systems,22:395-409,July 1986.
    [45]刘宏清,廖桂生,张杰.稳健的capon波束形成.系统工程与电子技术,27:1669-1672,Oct.2005.
    [46] I. S. Reed, J. D. Mallett, and L. E. Brennan. Rapid convergence rate in adaptive arrays. IEEE Transactions on Aerospace and Electronic Systems, 10:853-863, Nov. 1974.
    [47] K. L. Bell, Y. Ephraim, and H. L. Van Trees. A bayesian approach to robust adaptive beamforming. IEEE Transactions Signal Processing, 48:386-398, Feb. 2000.
    [48] L.C.Godara. Application of antenna arrays to mobile communica-tions.ii.beamforming and direction of arrival considerations. Proceeding of IEEE, 85:1195 - 1245, Aug. 1997.
    [49] A. B. Gershman. High-Resolution and Robust Signal Processing. Marcel Dekker, 2003.
    [50] J. Riba, J. Goldberg, and G. Vazquez. Robust beamforming for interference rejection in mobile communications. IEEE Transactions on Signal Processing, 45:271-275, Jan. 1997.
    [51] J. R. Guerci. Theory and application of covariance matrix tapers to robust adaptive beamforming. IEEE Transactions on Signal Processing, 47:977 - 985, Apr. 2000.
    [52] M. A. Zatman. Comment on theory and application of covariance matrix tapers for robust adaptive beamforming,.
    [53] J. Ward, H. Cox, and S. Kogon. A comparison of robust adaptive beamforming algorithms. In Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers, volume 2, page 1340 - 1344, Nov. 2003.
    [54] N.Ma and J.T.Goh. Efficient method to determine diagonal loading value. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, volume 5, pages 341-344,2003.
    [55] A.B. Gershman. Robust adaptive beamforming: an overview of recent trends and advances in the field. In Proceedings of the IEEE International Conference on Antenna Theory and Techniques, volume 2, pages 30-35, Sep. 2003.
    [56] A. Elnashar, S. M. Elnoubi, and H. A. El-Mikati. Further study on robust adaptive beamforming with optimum diagonal loading. IEEE Transactions on Antennas and Propagation, 3647-3658:54, Dec. 2006.
    [57] J. Gu and P. J. Wolfe. Robust adaptive beamforming using variable loading. In Proceedings of Fourth IEEE Workshop on Sensor Array and Multichannel Processing, volume 1, pages 1-5, May 2006.
    [58] P. Stoica Jian Li, editor. Robust Adaptive Beamforming. John Wiely and Sons, Inc., 2005.
    [59] A.B. Gershman. Robust adaptive beamforming: when the worst case is the best we can do. In Proceedings of the International Conference on Digital Signal Processing, pages 13-13,2007.
    [60] S. A. Vorobyov, A. B. Gershman, and Zhi-Quan Luo. Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem. IEEE Transactions on Signal Processing, 51:313-324, Feb. 2003.
    [61] S. Shahbazpanahi, A.B. Gershman, Zhi-Quan Luo, and Kon Max Wong. Robust adaptive beamforming for general-rank signal models. IEEE Transactions on Signal Processing, 51:2257-2269, Sep. 2003.
    [62] P. Stoica, Jian Li, and Zhisong Wang. Robust capon beamforming. IEEE Signal Processing Letters, 10:172-175, June 2003.
    [63] O. Besson and F. Vincent. Performance analysis of beamformers using generalized loading of the covariance matrix in the presence of random steering vector errors. IEEE Transactions on Signal Processing, 53:452-459, Feb. 2005.
    [64] R. G. Lorenz and S. P. Boyd. Robust minimum variance beamforming. IEEE Transactions on Signal Processing, 53:1684-1696, May 2005.
    [65] J. R. Guerci. Adaptive beamforming with joint robustness against mismatched signal steering vector and interference nonstationarity. IEEE Signal Processing Letters, 11:108 -111, Feb. 2004.
    [66] A. El-Keyi, T. Kirubarajan, and A. B. Gershman. Robust adaptive beamform-ing based on the kalman filter. IEEE Transactions on Signal Processing, 3032-3041:53, Aug. 2005.
    [67] B. T. Polyak and P. S. Shecherbakov. Random spherical uncertainty in estimation and robustness.
    [68] J. F. Sturm. Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones,.
    [69] Michael Grant, Stephen Boyd, and Yinyu Ye. Cvx: Matlab software for disciplined convex programming. Available at http://www.stanford.edu/boyd/cvx/, 2006.
    [70] Y.C. Eldar and A. Nehorai. Competitive mean-squared error beamforming. In Proceedings of 12th Annul. Adaptive Sensor Array Processing Workshop. Lincoln Laboratory, MIT, Mar. 2004.
    [71] O. Besson and P. Stoica. Decoupled estimation of doa and angular spread for a spatially distributed source. IEEE Transactions on Signal Processing, 48:1872-1882, July 2000.
    [72] O. Besson, A.A. Monakov, and C. Chalus. Signal waveform estimation in the presence of uncertainties about the steering vector. IEEE Transactions on Signal Processing, 2432-2440:52, Sep. 2004.
    [73] A. Prekopa. Stochastic Programming. Dordrecht, Netherlands: Kluwer Academic Publishers, 1995.
    [74] S. A. Vorobyov, Y. Rong, and A. B. Gershman. Robust adaptive beamforming using probability-constrained optimization. In Proceedings of IEEE Workshop on Statistical Signal Processing, pages 934-939, July 2005.
    [75] S. A. Vorobyov, Y.C. Eldar, A. Nemirovski, and A.B. Gershman. Probability-constrained approach to estimation of random gaussian parameters. In Proceedings of First IEEE Inter. Workshop on Computational Advances in Multi-Sensor Adaptive Processing, pages 101-104, Dec. 2005.
    [76]S.A.Vorobyov,Y.C.Eldar,A.Nemirovski,and A.B.Gershman.Probabilistically-constrained estimation random parameters with unknown distribution.In Proceedings of 4th IEEE Sensor Array and Mult-channel Signal Processing Workshop,SAM' 06,pages 54-57,July 2006.
    [77]D.P.Bertsekas.Nonlinear Programming.Belmont,Athena Scientific,1995.
    [78]Y.Nesterov and A.Nemirovski.Interior point polynomial algorithms in convex programming.Philadelphia,PA:SIAM,1994.
    [79]A.Papoulis.Probability,Random Variables,and Stochastic Processes.McGraw-Hill Inc.,3rd Edition,1991.
    [80]G.Fuks,J.Goldberg,and H.Messer.Bearing estimation in a ricean channel.part i:Inherent accuracy limitations.IEEE Transactions on Signal Processing,925-937:49,May 2001.
    [81]W.A.Gardner and L.Franks.Characterization of cyclostationary random signal processes.IEEE Transactions on Information Theory,21:4-14,Jan.1975.
    [82]W.A.Gardner.The spectral corre!ation theory of cyclostationary time-series.Signal Processing,11:13-36,Jan.1986.
    [83]W.A.Gardner.Exploitation of spectral redundancy in cyclostationary signals.IEEE Signal Processing Magazine,8:14-36,Feb.1991.
    [84]W.A.Gardner and C.M.Spooner.The cumulant theory of cyclostationary timeseries.i.foundation.IEEE IEEE Transactions on Signal Processing,42:3387-3408,Dec.1994.
    [85]C.M.Spooner and W.A.Gardner.The cumulant theory of cyclostationary time-series,ii.developmentand applications.IEEE Transactions on Signal Processing,42:3409-3429,Dec.i994.
    [86]S.V.Schell.Performance analysis of the cyclic music method,of directionestimation for cycl0stationary signals.IEEE Transactions on Signal Processing,42:3043-3050,Nov.1994.
    [87] S. V. Schell and W. A. Gardner. Maximum likelihood and common factor analysis-based blind adaptive spatial filtering for cyclostationary signals. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP, volume 4, pages 292-295, Apr. 1993.
    [88] L. Castedo, C. Y. Tseng, and L. J. Griffiths. A new cost function for adaptive beamforming using cyclostationary signal properties. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing,ICASSP, volume 4, pages 284-287, Apr. 1993.
    [89] L. Castedo and A. R. Figueiras-Vidal. An adaptive beamforming technique based on cyclostationary signal properties. IEEE Transactions on Signal Processing, 43:1637-1650,July 1995.
    [90] Q. Wu and K. M. Wong. Blind adaptive beamforming for cyclostationary signals. IEEE Transactions on Signal Processing, 44:2757-2767, Nov. 1996.
    [91] H. Y. Tang, K. M. Wong, A.B. Gershman, and S. A. Vorobyov. Blind adaptive beamforming for cyclostationary signals with robustness against cycle frequency mismatch. In Proceedings of Sensor Array and Multichannel Signal Processing Workshop Proceedings, pages 18-22, July 2002.
    [92] Q. Wu, K. M. Wong, and R. Ho. A fast algorithm for adaptive beamforming of cyclic signals. In Proceedings of Fifth International Conference on Wireless Communication, pages 225-334, July 1993.
    [93] Q. Wu and K. M. Wong. Adaptive beamforming of cyclic signal and fast implementation. In Proceedings of Fifth International Conference on Acoustics, Speech, and Signal ProcessingJCASSP, pages 157-160, Apr. 1994.
    [94] K.L.Du and M. N. S. Swamy. An iterative blind cyclostationary beamforming algorithm. In Proceedings of IEEE International Conference on Communica-tions,ICC, volume 1, pages 145-148, Sep. 2002.
    [95] K.L.Du and M. N. S. Swamy. Simple and practical cyclostationary beamforming algorithms. IEE Proc.-Vis. Image Signal Process, 151:175-179, May 2004.
    [96] J. H. Lee, Y. T. Lee, and W. H. Shih. Efficient robust adaptive beamforming for cyclostationary signals. IEEE Transactions on Signal Processing, 48:1893-1901, July 2000.
    [97] H. Liu, G. Liao, J. Zhang, and J. Hu. Robust blind adaptive beamforming for cyclostationary signals. In Proceedings of IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, MAPE, pages 8-12, Aug. 2005.
    [98] S. J. Yu and J. H. Lee. Adaptive array beamforming for cyclostationary signals. IEEE Transactions on Antennas and Propagation, 44:943-953, July 1996.
    [99] Y. X. Chen, Z. Y. He, T. S. Ng, and P. C. K. Kwok. Fast adaptive blind beamforming technique for cyclostationary signals. In Proceedings of IEEE Reigion 10 Conference, TENCON, pages 530-533, July 1999.
    [100] Y. X. Chen, Z. Y. He, T. S. Ng, and P. C. K. Kwok. Rls adaptive blind beamforming algorithm for cyclostationary signals. Electronics Letters, 35:1136-1138, July 1999.
    [101] J. Xin, H. Tsuji, Y. Hase, and A. Sano. Array beamforming based on cyclic signal detection. In Proceedings of IEEE Vehicular Technology Conference, VTC, volume 2, pages 890-894, May 1998.
    [102] L. Castedo, C. Y. Tseng, A. R. Figueiras-Vidal and L. J. Griffiths. Linearly-constrained adaptive beamforming using cyclostationary signal properties. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing,ICASSP, volume 4, pages 249-252, Apr 1994.
    [103] S. Y. Park and K. M. Kim. An adaptive array beamforming technique using cyclostationarity. In Proceedings of IEEE Reigion 10 Conference, TENCON, pages 1319-1322, July 1999.
    [104] P. Charge, Y. Wang, and J. Saillard. Adaptive beamforming for cyclostationary signals. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing,ICASSP, pages 349-352, Apr. 2003.
    [105] H. Li, Y. He, and R. Yang. A neural blind beamformer for cyclostationary signals. In Proceedings of IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, pages 345-348, Apr. 2005.
    [106] J. Zhang, G. Liao, and J. Yang. A novel robust adaptive beamforming for cydostationary signals. In Proceedings of International Conference on Signal Processing, ICSP, volume 1, pages 339-342, Sept. 2004.
    [107] P. Chevalier and A. Maurice. Constrained beamforming for cydostationary signals. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP, pages 3789-3792, Apr. 1997.
    [108] I. E. Telatar. Capacity of multi-antenna gaussian channels. European Transaction Telecommunication, 10:585-596, Nov.-Dec. 1999.
    [109] A. J. Paulraj, D. Gesbert and C. Papadias. Smart Antennas for Mobile Communications. John Wiley, New York, 2000.
    [110] B. Vucetic, J. Yuan. Space-Time Coding. Wiley, Chichester, U.K., 2003.
    [111] M. Gharavi-Alkhansari, A. B. Gershman. Constellation space invariance of orthogonal space-time block codes. IEEE Transactions on Information Theory, 51:331-334, Jan. 2005.
    [112] V. Tarokh, N. Seshadri, and A. R. Calderbank. Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory, 44:744-765, Mar. 1998.
    [113] A. Nordio and G. Taricco. Linear receiver for multiple-input multiple-output multiple-access channel. IEEE Transactions on Communications, 54:1446— 1456, Aug. 2006.
    [114] G. V. V. Sharma and A. Chockalingam. Performance analysis of maximum-likelihood multiuser detection in space-time-coded cdma with imperfect channel estimation. IEEE Transactions on Vehicular Technique, 55:1824-1837, Nov. 2006.
    [115]S.Shahbazpanahi,M.Beheshti,A.B.Gershman,M.Gharavi-Alkhansari,and K.M.Wong.Minimum variance linear receivers for multi-access mimo wireless systems with space-time block coding.IEEE Transactions on Signal Processing,52:3306-3313,Dec.2004.
    [116]B.Lu and X.D.Wang.Iterative receivers for multiuser space-time block-coding systems.IEEE Journal on Selected Areas in Communications,18:2322-2335,Nov.2000.
    [117]E L.Katie and A.B.Sesay.Iterative semiblind multiuser receivers for a spacetime block-coded mc-cdma uplink system.IEEE Transactions on Vehicular Technique,53:601-610,May 2004.
    [118]J.-L.Yu.A low-complexity two-stage receiver for space-time coded cdma mino systems.Elsevier Signal Processing,87:1626-1641,July 2007.
    [119]A.W.Marshall and I.Olkin.Multivariate chebyshev inequality.Annals of mathematical Statistics,31:1001-1014,Dec.1960.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700