机器人辅助血管吻合手术的质量评价与优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
医疗机器人的出现为血管吻合手术带来了新的发展。与传统血管吻合手术相比,机器人辅助血管吻合手术具有精度高、操作稳定等优点,但也存在手眼配合不协调和触感信息缺失等缺点。本文针对血管端端吻合手术,分析其物理过程和操作规程,构建了适合机器人辅助血管吻合手术的质量评价方法,建立了质量参数和手术参数之间的手术优化数学模型,通过数理统计工具,得到了蕴涵在质量参量与缝合参量之间的影响规律。论文主要工作进展与成果如下:
     (一)、给出了血管端端吻合手术中缝线许用张紧力范围的计算方法。在常规血管吻合手术质量评价体系的基础上,确立了基于机器人操作模式的手术质量评价参数与影响因素,给出了血管端端吻合手术中的力学模型;运用有限元方法,得出了在缝线张紧力变化过程中,血管组织变形状态和组织应力的分布,给出了保证血管吻合手术成功的缝线许用张紧力范围。
     (二)、分析了缝合变量对血管吻合手术质量的影响规律。建立了以缝点个数、缝合边距、缝线张紧力为设计变量,以增加缝线许用张紧力范围和减小血管轴向组织应力分布差值为优化目标的多目标优化设计模型。以试验设计方法,建立了目标函数与优化变量之间的响应关系,给出优化手术质量的Pareto优化设计结果,并对医生的手术操作提出了相应的建议。
     (三)、进一步分析了噪声变量对血管吻合手术质量的影响规律,在手术优化设计的基础上,建立了以血管材料特征函数、血管壁厚为噪声变量的稳健设计模型。以试验设计方法,得到了质量特性与变量之间的响应关系。根据稳健设计的数据,分析了设计变量对质量特性均值、标准偏差的影响规律,以及设计变量与噪声变量对质量特性的相关非线性效应,给出了以信噪比为质量功能性评价的Pareto稳健设计结果,并比较了两种设计方法得到的各设计方案的不同。
The robot-assisted anastomosis holds great promise for the future in many surgical procedures involving blood vessels. Compared with traditional surgery, high precision and accuracy can be obtained in robot-assisted surgery, especially in microvascular reconstruction. A robotic system can provide quantitative information of tissue dimensions, supply force feedback, and enhance the surgeon’s vision and kinematic capabilities. However, robot-assisted surgery also has some limitations, i.e., the lack of haptic feedback and high eye-hand coordination required of the surgeon. Because of the difference in the operations between traditional surgery and robot assisted surgery, there is a new challenge in ensuring the sucessful completion and quality of surgical procedures. This dissertation develops new quality evaluation criteria based on the physical process and clinical requirements of end-to-end vessel anastomosis. Mathematical models are developed for the optimization of the end-to-end vessel anastomosis. The relationships between surgery quality and process factors are obtained using statistical methods. The contributions of the disseration are as follows:
     (1). A new method is developed to obtain the allowable limit of the suture tension in order to avoid blood osmosis and keep the tissue free from injury. Based on the classical surgery evaluation system, the new quality evaluation criteria and process factors are presented for the robot-assisted anastomosis. A three-dimensional finite element model of anastomosis is presented to establish the mechanical relationship between the vessel and sutures. The stress distribution of the vessel loaded by the suture is calculated using finite-element simulations and the limit of the suture tension is given to allow successful surgical tasks.
     (2). A mathematical model, including optimization variables, multi-objective functions and constraint conditions, is established to describe the optimization problem in robot-assisted vessel anastomosis. Simulation experiments are arranged by design of experiment to obtain the allowable tension range of suture and distribution of tissue stress based on finite element model of surgery process. The relationship between the objective functions and process variables is extracted from experimental data. A Pareto optimal solution is presented which aids surgeons in process parameter selection according to applications.
     (3). A robust design is carried out to consider the influence of the noise variables on the relationship between surgery quality and design variables. The noise variables investigated include the wall thickness of blood vessel and vessel property described using material constitutive equation. Based on such robust design, the effects of design variables on the mean value and standard deviation of the objective function are analyzed, and the influence of noise variables is also discussed. Furthermore, a Pareto optimal solution is also provided with the objective of increasing the S/N ratio, which is defined as the ratio of mean response over standard deviation. Finally, results from traditional optimal design are compared with those obtained by robust design.
引文
1. Liapis CD, Balzer K, Benedetti-Valentini F, et al. Vascular surgery. Berlin Heidelberg: Springer–Verlag, 2007.
    2. Ascher E, Hollier LH, Strandness DE Jr, et al. Haimovici's vascular surgery. Chichester: Wiley-Blackwell, 2003.
    3. Rutherford RB, Cronenwett JL, Gloviczki P, et al. Vascular Surgery. Saunders: Elsevier, 2005.
    4. Zeebregts CJ, Heijmen RH, Van Den Dungen JJ, et al. Non-suture methods of vascular anastomosis. The British Journal of Surgery 2003; 90(3): 261-271.
    5. Zamorano L, Li Q, Jain S, et al. Robotics in neurosurgery: state of the art and future technological challenges. Int J Med Robot Comp 2004; 1(1):7-22.
    6. Belsley SJ, Byer A, Ballantyne GH. 1st International Congress of the Minimally Invasive Robotic Association (MIRA), 7-10 December 2006, Innsbruck, Austria. Congress summary: MIRA and the future of surgical robotics (www.teleroboticsurgeons.com). Int J Med Robot Comp 2006; 2(1): 98-103.
    7. Cleary K, Nguyen C. State of the art in surgical robotics: Clinical applications and technology challenges. Computer Aided Surgery 2001; 6 (6):312–328.
    8. Howe RD, Matsuoka Y. Robotics for surgery. Annu Rev Biomed Eng 1999; 1:211-240.
    9. Puangmali P, Althoefer K, Seneviratne LD, et al. State-of-the-art in force and tactile sensing for minimally invasive surgery. IEEE Sens J 2008; 8(3-4):371-381.
    10. Nagy I, Mayer H, Knoll A, et al. The Endo(PA)R system for minimally invasive robotic surgery, Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2004 September 28-October 2; Sendal, Japan: p.3637- 3642.
    11. Kirk RM. Basic Surgical techniques. Edinburgh: Churchill Livingstone, 2002.
    12.谭基明,程海涛,余之刚等,基本外科技术,北京:科学技术文献出版社,2000.
    13.朱维继,吴汝舟,实用外科手术学,北京:人民卫生出版社,1996.
    14.花锦福,刘学明,晁明等,血管外科临床基础,杭州:浙江大学出版社, 1997.
    15.景在平,包俊敏,冯翔等,现代血管外科手术学,上海:第二军医大学出版社, 2004.
    16.潭鸿雁,于克东,张静菊等,现代周围血管外科手术学,北京:人民军医出版社, 2003.
    17.汪忠镐,张福先,安田庆秀等,血管外科手术并发症的预防与处理,北京:科学技术文献出版社,2005.
    18. Malek S, Phillips R, Mohsen A. Computer assisted orthopaedic surgical system for insertion of distal locking screws in intra-medullary nails: a valid and reliable navigation system. Int J Med Robot Comp 2005; 1(4):34–44.
    19. Shoham M, Burman M, Zehavi E, et al. Bone-mounted miniature robot for surgical procedures: concept and clinical applications. Transactions on robotics and automation 2003; 19(5): 893-901.
    20. Smith N, Betemps M, Jutard A, et al. Penetrating keratoplasty: A robotised cut of cornea. Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, Kyongju,South Korea, October 1999,2: 740-745
    21. Wang S, Ding J, Yun J, et al. A Robotic system with force feedback for micro-surgery. Proceedings of the 2005 IEEE International Conference on Robotics and Automation; 2005 April; Barcelona Spain.p.199-204.
    22. Speich JE, Rosen J. Medical Robotics. In: Encyclopedia of Biomaterials and Biomedical Engineering, Bowlin GL, Wnek G(eds). New York: Marcel Dekker, 2004.
    23. Wang S, Li Q, Ding J, et al. Kinematic design for robot-assisted laryngeal surgery systems, 2006 IROS IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, October 2006: 2864-2869.
    24. Kunkler K. The role of medical simulation: an overview. Int J Med Robotics Comput Assist Surg 2006; 2(3): 203–210.
    25. Jourdan IC, Dutson E, Garcia A, et al. Stereoscopic vision provides a significant advantage for precision robotic laparoscopy. British Journal of Surgery 2004; 91(7): 879-885.
    26. Basdogan C, Ho CH, Srinivasan MA. Virtual environments for medical training: Graphical and haptic simulation of laparoscopic common bile duct exploration. Ieee-Asme T Mech 2001; 6(3): 269-285.
    27. Preusche C, Hirzinger G. Haptics in telerobotics - Current and future research and applications. Visual Comput 2007; 23(4):273-284.
    28. Tavakoli M, Patel RV, Moallem M. A haptic interface for computer-integrated endoscopic surgery and training. Virtual Reality 2006; 9(2-3): 160–176
    29. Kim K, Chung WK, Nam SY. Accurate force reflection method for a multi-d.o.f. haptic interface using instantaneous restriction space without a force sensor in an unstructured environment. Adv Robotics 2007; 21(1-2):87-104.
    30. Shimachi S, Hirunyanitiwatna S, Fujiwara Y, et al. Adapter for contact force sensing of the da Vinci (R) robot. Int J Med Robot Comp 2008; 4(2):121-130.
    31. Her MG, Hsu KS, Lan TS, et al. Haptic direct-drive robot control scheme in virtual reality. J Intell Robot Syst 2002; 35(3):247-264.
    32. Katsura S, Iida W, Ohnishi K. Medical mechatronics - an application to haptic forceps. Annual Reviews in Control 2005; 29(2): 237–245.
    33.王树新,李群智,丁杰男等,具有夹持力感觉的主操作手,国家发明专利,受理号:CN 200510013004.5.
    34. Samur E, Sedef M, Basdogan C, et al. A robotic indenter for minimally invasive characterization of soft tissues. International Congress Series 2005; 1281: 713–718.
    35. Menciassi A, Eisinberg A, Carrozza MC, et al. Force sensing microinstrument for measuring tissue properties and pulse in microsurgery. Ieee-ASME T Mech 2003; 8(1):10-17.
    36. Noonan DP, Liu H, Zweiri YH, et al. A dual-function wheeled probe for tissue viscoelastic property identification during minimally invasive surgery, 2007 IEEE International Conference on Robotics and Automation; 2007 April 10-14; Roma, Italy. p. 2629–2634.
    37. Stallkamp J, Schraft RD. A technical challenge for robot-assisted minimally invasive surgery: precision surgery on soft tissue. Int J Med Robot Comp 2005; 1(2):48-52.
    38. Bicchi A, Scilingo EP, Rossi DD. Haptic discrimination of softness in teleoperation: The role of the contact area spread rate. Ieee T Robotic Autom 2000; 16(5):496-504.
    39. Frisoli A, Borelli L F, Stasi C, et al. Simulation of real-time deformable soft tissues for computer assisted surgery. Int J Med Robot Comp 2004; 1(1):107–113.
    40. Christopher R. Wagner and Robert D. Howe. Force feedback benefit depends on experience in multiple degree of freedom robotic surgery task. Transactions on robotics 2007; 23(6):1235-1240.
    41. Gerovichev O, Marayong P, Okamura AM. The effect of visual and haptic feedback on manual and teleoperated needle insertion. Proceedings of the Fifth International Conference on Medical Image Computing and Computer Assisted Intervention -- MICCAI 2002, Lecture Notes in Computer Science, Dohi T, Kikinis R(Eds). 2002, 2488:pp. 147-154.
    42. Suzuki S, Suzuki N, Hattori A, et al. Tele-surgery simulation with a patient organ model for robotic surgery training. Int J Med Robot Comp 2005; 1(4):80–88.
    43. Tavakoli M, Patel RV, Moallem M. Haptic interaction in robot-assisted endoscopic surgery: a sensorized end-effector. Int J Med Robot Comp 2005; 1(2):53–63.
    44. Tavakoli M, Aziminejad A, Patel RV. Methods and mechanisms for contactfeedback in a robot-assisted minimally invasive environment. Surg Endosc 2006; 20(10): 1570–1579.
    45. Wilasrusmee C, Phromsopha N, Lertsitichai P, et al. A new vascular anastomosis model: Relation between outcome and experience. Eur J Vasc Endovasc 2007; 33(2): 208-213.
    46. Pugh CM, Youngblood P. Development and validation of assessment measures for a newly developed physical examination simulator. Journal of the American Medical Informatics Association. 2002; 9(5): 448-459.
    47. Gallagher AG, Satava RM. Virtual reality as a metric for the assessment of laparoscopic psychomotor skills Learning curves and reliability measures. Surg Endosc 2002; 16(12): 1746–1752.
    48. Richards C, Rosen J, Hannaford B, et al. Skills evaluation in minimally invasive surgery using force/torque signatures. Surg Endosc 2000; 14(9): 791–798
    49. Krapohl BD, Reichert B, Machens HG, et al. Computer-guided microsurgery: Surgical evaluation of a telerobotic arm. Microsurg 2001; 21(1): 22-29.
    50. Beard JD, Jolly BC, Newble DI, et al. Assessing the technical skills of surgical trainees. British Journal of Surgery 2005; 92(7): 778–782.
    51. Ilie V, Ilie V, Ghetu N, et al. Assessment of the microsurgical skills: 30 Minutes versus 2 weeks patency. Microsurg 2007; 27(5): 451-454.
    52. Lai F, Howe RD. Evaluating control modes for constrained robotic surgery. Proceedings of 2000 IEEE International conference on robotics and automation San Francisco, CA, USA. April 2000, 1:603-609.
    53. Chan WY, Matteucci P, Southern SJ. Validation of microsurgical models in microsurgery training and competence: A review. Microsurg 2007 ;27(5): 494-499.
    54. Paisley AM, Baldwin PJ, Paterson-Brown S. Validity of surgical simulation for the assessment of operative skill. Brit J Surg 2001; 88(11): 1525-1532.
    55. Krapohl BD, Reichert B, Machens HG, et al. Impact of poor microsurgical suture technique on tissue perfusion in a rat model. Microsurg 2003; 23(2): 141-146.
    56. Chua LP, Zhang JM, Zhou TM. Numerical study of a complete anastomosis model for the coronary artery bypass. Int Commun Heat Mass 2005; 32(3-4): 473-482.
    57. Gasser TC, Schulze-Bauer CAJ, Holzapfel GA. A three-dimensional finite element model for arterial clamping. J Biomech Eng-T ASME 2002; 124(4):355-363.
    58. Ye D, Mozaffari-Naeini H, Busart C, et al. MEMSurgery: An integrated test-bed for vascular surgery. Int J Med Robot Comp 2005; 1(3):21-30.
    59. Wagner CR, Stylopoulos N, Howe RD. The role of force feedback in surgery:analysis of blunt dissection. The Tenth Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems; 2002 March 24-25; Orlando.p.68-74.
    60. Caro CG, Fitz-Gerald JM, Schroter RC. Atheroma and arterial wall shear: observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc. R. Sot. Lord. B. 1971; 177(1046): 109-159.
    61. Liu SQ, Zhong L, Goldman J. Control of the shape of a thrombus-neointima-like structure by blood shear stress. J Biomech Eng-T ASME 2002; 124(1): 30-36.
    62. Dobrin PB, Littooy FN, Endean ED. Mechanical factors predisposing to intimal hyperplasia and medial thickening in autogenous vein grafts. Surgery 1989; 105(3):393-400.
    63. Rachev A, Manoach E, Berry J, et al. Model of stress-induced geometrical remodeling of vessel segments adjacent to stents and artery/graft anastomoses. J Theor Biol 2000; 206(3): 429-443.
    64. Dobrin PB, Littooy FN, Endean ED. Mechanical factors predisposing to intimal hyperplasia and medial thickening in autogenous vein grafts. Surgery 1989; 105(3):393-400.
    65. Clowes AW, Reidy MA. Mechanisms of arterial graft failure: The role of cellular proliferation. Ann NY Acad. Sci. 1987; 516:673-678.
    66. Okadome K, Miyazaki T, Onohara T, et al. Hemodynamics and the development of anastomotic intimal hyperplasia of the polytetrafluoroethylene graft in dogs. Int. AngioL 1991; 10(4):238-243.
    67. Kute SH, Vorp DA. The effect of proximal artery flow on the hemodynamics at the distal anastomosis of a vascular bypass graft: Computational study. J Biomech Eng-T ASME 2001; 123(3): 277-283.
    68. Rhee K, Tarbell JM. A study of the wall shear rate distribution near the end-to-end anastomosis of a rigid graft and a compliant artery. J Biomech 1994; 27(3): 329-338.
    69. Hofer M, Rappitsch G, Perktold K, et al. Numerical study of wall mechanics and fluid dynamics in end-to-side aanstomoses and correlation to intimal hyperplasia. J Biomech 1996; 29(10): 1297- 1308.
    70. Gleason RL, Taber LA, Humphrey JD. A 2-D model of flow-induced alterations in the geometry, structure, and properties of carotid arteries. J Biomech Eng-T ASME 2004; 126 (3): 371-381.
    71. Schajer GS, Green SI, Davis AP, et al. Influence of elastic nonlinearity on arterial anastomotic compliance. J Biomech Eng-T ASME 1996; 118(4):445-451.
    72. Al-Sukhun J, Lindqvist C, Ashammakhi N, et al. Microvascular stress analysis - Part I: Simulation of microvascular anastomoses using finite element analysis.Brit J Oral Max Surg 2007; 45(2):130-137.
    73. Moore JA, Steinman DA, Prakash S. A numerical study of blood flow patterns in anatomically ealistic and simplified end-to-Side anastomoses. J Biomech Eng-T ASME 1999; 121(2): 348-354.
    74. Binns RL, Ku DN, Stewart MT, et al. Optimal graft diameter: effect of wall shear stress on vascular healing. J Vasc Surg 1989; 10(3): 326-337.
    75. Keynton RS, Evancho MM, Sims RL, et al. The effect of graft caliber upon wall shear within in vivo distal vascular anastomoses. J Biomech Eng-T ASME 1999; 121(1):79-88.
    76. Weston MW, Rhee K, Tarbell JM. Compliance and diameter mismatch affect the wall shear rate distribution near an end-to-end anastomosis. J Biomech 1996; 29(20):187- 198.
    77. Zidi M, Cheref M. Mechanical analysis of a prototype of small diameter vascular prosthesis: numerical simulations. Comput Biol Med 2003; 33(1):65-75.
    78. Longest PW, Kleinstreuer C, Deanda A. Numerical simulation of wall shear stress and particle-based hemodynamic parameters in pre-cuffed and streamlined end-to-side anastomoses. Ann Biomed Eng 2005; 33(12):1752-1766.
    79. Gua H, Chua A, Tan BK, et al. Nonlinear finite element simulation to elucidate the efficacy of slit arteriotomy for end-to-side arterial anastomosis in microsurgery. J Biomech 2006; 39(3): 435-443.
    80. Finol EA, Amon CH. Blood flow in abdominal aortic aneurysms: Pulsatile flow hemodynamics. J Biomech Eng-T ASME 2001; 123(5): 474-484.
    81. Nakamura M, Wada S, Yamaguchi T. Computational analysis of blood flow in an integrated model of the left ventricle and the aorta. J Biomech Eng-T ASME 2006; 128(6):837-843.
    82. Kang H, Wen JT. Robotic knot tying in minimally invasive surgery. Proceeding of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2002 October; Lausanne, Switzerland.p.1421-1426.
    83. Kitagawa M, Okamura AM, Bethea BT, et al. Analysis of suture manipulation forces for teleoperation with force feedback. Proceedings of the Fifth International Conference on Medical Image Computing and Computer Assisted Intervention -- MICCAI 2002; Lecture Notes in Computer Science; 2002; 2488:155-162.
    84. Yue L, Wang S, Zeng Y, et al. Analysis of virtual vessel suture based on multi-body theory. Journal of Tianjin University 2006; 39(1):89-95.
    85.宋国强,包瑞石,王佐田等,外科打结和缝合技术,呼和浩特:内蒙古教育出版社,1998.
    86.郭玮,许敏,尹等平等,外科手术基本操作,北京:科学技术文献出版社,1993.
    87.张福奎,袁福祥,张彬宇等,外科基本操作处置技术,北京:人民卫生出版社,1998.
    88. Cao CGL, MacKenzie CL, Payandeh S. Task and motion analyses in endoscopic surgery.1996 ASME IMECE Conference Proceedings: 5th Annual Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Atlanta, Georgia. p. 583-590.
    89. Fung YC. Biomechanics: motion, flow, stress, and growth. New York: Springer-Verlag; 1990.
    90. Taber LA. A model for aortic growth based on fluid shear and fiber stresses. J Biomech Eng-T ASME 1998; 120(3): 348-354.
    91. Fung YC. Biomechanics: mechanical properties of living tissues. Berlin: Springer-Verlag; 1983.
    92. http://ccfd.jp/meeting/8ccfd.pdf.
    93.刘贤钊,罗朝东,郑德明等,组织学和胚胎学,北京:人民卫生出版社,1994.
    94.高英茂,宋天保,谢富康等,组织学与胚胎学,北京:高等教育出版社,2004.
    95. Brouwer I, Ustin J, Bentley L, et al. Measuring in vivo animal soft tissue properties for haptic modeling in surgical simulation. Medicine Meets Virtual Reality 2001; 81:69-74
    96. Zhong Y, Shirinzadeh B, Alici G. Soft tissue modelling through autowaves for surgery simulation. Med Bio Eng Comput 2006 44(9):805–821.
    97. Caner FC, Carol I. Microplane constitutive model and computational framework for blood vessel tissue. J Biomech Eng-T ASME 128; (3): 419-427.
    98. Monson KL, Goldsmith W, Barbaro NM, et al. Axial mechanical properties of fresh human cerebral blood vessels. J Biomech Eng-T ASME 2003; 125(2): 288-294.
    99. Patel DJ, Vaishnav RN. Basic hemodynamics and its role in disease processes. Baltimore: University Park Press; 1980.
    100. ABAQUS Theory Manual. Hibbitt, Karlsson & Sorensen, Inc. Available from: http://www.simulia.com/support/documentation.html.
    101. Logan DL著,伍义生等译,有限元方法基础教程,北京:电子工业出版社,2003.
    102. Gallagher RH, Simon BR, Johnson PC, et al. finite elements in biomechanics. New York: John Wiley & Sons, 1982.
    103.袁志发,试验设计与分析.北京:高等教育出版社,2000.
    104.吴贵生,试验设计与数据处理,北京:冶金工业出版社,1997.
    105.胡运权,张宗浩,试验设计基础,哈尔滨:哈尔滨工业大学出版社,1997.
    106. Simpson TW, Lin DKJ, Chen W. Sampling strategies for computer experiments: design and analysis. International Journal of Reliability and Applications 2001; 2(3): 209–240.
    107. Sacks J., Welch W.J., Mitchell T.J., et al., Design and analysis of computer experiment, Statistical Science, 1989, 4(4):409-435
    108. Booker AJ. Design and analysis of computer experiments. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis & Optimization, St. Louis, MO, AIAA, September 2-4, 1998, 1: 118-128.
    109.黄平,孟永刚,最优化理论与方法,北京:清华大学出版社,2009.
    110.汪定伟,智能优化方法,北京:高等教育出版社,2007.
    111. Holzapfel GA, Gasser TC. Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J Biomech Eng-T ASME 2005; 127(?):166-180.
    112. DeVor RE, Chang TH, Sutherland JW. Statistical quality design and control: contemporary concepts and methods. New York: Macmillan Publishing Company; 1992.
    113.陈力周,稳健设计,北京:机械工业出版社,1999.
    114.曾凤章,稳健性设计,北京:兵器工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700