基于共振隧穿器件RTD的二值和三值电路研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着集成电路的发展以及器件特征尺寸的不断减小,传统的工艺尺寸已经逐渐不能满足跟器件尺寸密切相关的超大规模集成电路VLSI的发展要求,硅片技术迅速发展的势头有可能在十年内(甚至更短的时间)放慢甚至完全停顿下来。为了更大程度提高电路的集成度,使它继续按照摩尔定律和等比例缩小规律发展下去,就必须在器件工艺方面取得更大的突破。共振隧穿器件RTD (Resonant Tunneling Diode)是目前研究得最为充分及热门的量子器件之一,其微分负阻NDR (Negative differential Resistance)的特性使得RTD天生具有超高速、超高频、超高集成度、高效低功耗等优点,不仅在数字电路中具有广泛的应用范围,在射频RF电路中也得到了高度的重视,在未来VLSI领域有着良好的应用前景。本研究课题将以共振隧穿二极管RTD为核心器件,在二值逻辑和多值逻辑领域对具有各种功能的共振隧穿电路进行研究、设计、分析和实现。
     文章首先构建了二值共振隧穿电路中的基本逻辑运算单元。在传统数字电路开关-信号代数理论基础上提出了适用于共振隧穿电路的翻转-传输理论,建立了翻转-传输代数系统,用单稳双稳转换逻辑单元MOBILE (Monostable Bistabel Transition Logic Element)实现了两种联结运算的基本电路结构,结合3-level卡诺图,就可以像传统数字电路这样把简单方法运用到共振隧穿基本逻辑运算单元的设计中。运用翻转-传输理论,不仅使得共振隧穿电路的设计更简单灵活,而且提出了共振隧穿电路设计的理论基础和系统的方法。
     触发器是存储电路的核心,文章提出了二值RTD触发器的两种设计方法,可分别用MOBILE单元和共振隧穿RS锁存单元来设计JK触发器和D触发器,丰富了共振隧穿触发器的种类,弥补了只能用MOBILE来设计RTD触发器的单一性。
     文章还分析了共振隧穿电路中的开关序列工作原理,提出基于RTD电路的开关模型,以该模型和开关序列工作原理为基础,实现了三值逻辑运算单元的设计,并对现有的三值RTD电路进行了改进。
     在三值触发器电路中,文章以文字运算为核心,提出了基于文字电路的三值触发器设计方法,实现了具有三轨输出结构的D触发器并具有同步预先置位复位功能。
     此外,文章对共振隧穿电路的可测试性设计也进行了初步的探讨。以电路故障中最常见的短路故障和开路故障为主,分析了共振隧穿电路中的各种物理故障并建立了故障模型,设计了测试网络,根据不同的测试向量,可分别用于测试二值和三值共振隧穿电路故障。
     最后,在总结全文的基础上,提出了本学位论文尚未完成和有待进一步研究和探索的一些问题。
With the development of integrated circuit manufacturing techniques, the characteristic dimension (CD) of devices has been decreased to nanometer scale, the CD of traditional technologies could not satisfy the requirements of VLSI gradually, which is related to the CD of the devices closely. So the development of silicon technology will slow down even stop in the next ten years or much shorter time if these problems could not be solved. In order to enhance the integration greatly, make it continue to follow Moore's Law and scaling rule, it must achieve greater breakthrough in devices. Resonant Tunneling Diode (RTD) is one of the most popular quantum devices in recent researches with the characteristics of ultra-high-speed, ultra-high-frequency, ultra-high-integration density, high efficiency and low power loss. Its negative differential resistance (NDR) feature makes it have broad application area in digital circuits and RF circuits, and reveals a very important application prospect in VLSI in the future. It will study, design, analyze and realize several kinds of resonant tunneling circuits in binary logic and multiple-valued logic region based on RTD in this paper.
     Firstly, it realizes the binary RTD logic operation units, In binary RTD circuits, it does not have a systematic design method like the traditional digital circuits, especially in the basic logic units design, it cannot use simple design methods such as Karnaugh map or truth table. So, a switch-transmission algebra theory applied to resonant tunneling circuits is proposed based on both the conventional digital switch-signal theory and the characteristic of resonant tunneling devices. An algebra system describing the switch-transmission logic of resonant tunneling is established by adding two types of resonant tunneling correlation operations to the algebra system for the conventional digital ICs. The corresponding basic circuit structures of the correlation operations can be realized by MOBILE units. Then the method to design resonant tunneling circuits by using 3-level Karnaugh map and its applications are discussed in details. It makes the circuit design more flexible and offers an improved fundamental theory and systemic design way for resonant tunneling circuits based on logic unit design.
     Flip-flop is the key part of memory circuits. It has two ways for binary RTD flip-flops by using MOBILE and RS flip-flop to design JK flip-flop and D flip-flop. It not only riches the types of resonant tunneling flip-flops, but also makes up the monotone by only using MOBILE to design RTD flip-flop.
     It also analyzes the theory of switching sequence, proposes the switching model of RTD circuit, based on the model and the switching sequence theory, the ternary RTD logic operation units are designed and improved.
     In ternary RTD flip-flop, it proposes the way to design ternary flip-flop and realizes the RTD D flip-flop with three-output track based on the literal operation. The ternary D flip-flop circuit has the functions with synchronous pre-set and pre-reset.
     The physical faults are analyzed and the testability design methods are proposed for RTD circuits based on the stuck faults analysis and stuck faults model, which take MOBILE and ternary RTD quantizer as examples. By setting different input and testing signals, it generates different testing vectors, and can detect all the open circuit faults and short circuit faults in RTD circuits.
     Finally, this dissertation concludes with a perspective of further research on low power, multiple-threshold neural network and the process based on the InGaAs/AlAs/InP RTD.
引文
[1]Zeitzoff P M. Circuit, MOSFET, and front end process integration trends and challenges for the 180 nm and below technology generations:an International Technology Roadmap for Semiconductors perspective[C]. Proceedings of 6th International Conference Solid-State and Integrated-Circuit Technology. Piscataway: Institute of Electrical and Electronics Engineers Computer Society, 2001 (1):23-28.
    [2]王国彪.纳米制造前沿综述[M].北京:科学出版社,2009.
    [3]程开富.纳米电子/光电子器件概述[J].飞通光电子技术,2003,3(1):19-22.
    [4]王占国.纳米半导体材料及其纳米器件研究进展[J].半导体技术,2001,26(3): 13-16.
    [5]王占国.纳米半导体材料及其纳米器件研究进展(续)[J].半导体技术,2001,26(4):18-21.
    [6]王占国.纳米半导体材料及其纳米器件研究进展.半导体技术,2001,27(5):17-19.
    [7]盛柏桢,程文芳.纳米技术与器件的应用[J].电子元器件应用,2002,4(3):1-4.
    [8]盛柏桢,程文芳.纳米技术与器件的应用(2)[J].电子元器件应用,2002,4(4): 1-4.
    [9]盛柏桢,程文芳.纳米技术与器件的应用(3)[J].电子元器件应用,2002,4(5): 7-10.
    [10]National Nanotechnology Initiative 2004 overview [EB/OL]. (2003-10) [2004-10-15]. http://www.nano.gov/html/res/fy04-pdf/fy04-main.html.
    [11]Zhang Wei-qiang, Li Lin-feng, Hu Jian-ping. Design techniques of P-Type CMOS circuits for gate-leakage reduction in deep sub-micron ICs[C].52nd IEEE International Midwest Symposium on Circuits and Systems. Piscataway: Institute of Electrical and Electronics Engineers,2009:551-554
    [12]李志坚.纳时代的信息电子学[M]//周兆英,王中林, 林立伟.《微系统和纳米技术》.北京:科学出版社,2007.
    [13]Osburn C M, Bellur K R. Low parasitic resistance contacts for scaled ULSI devices[J]. Thin Solid Films,1998,332 (1-2):428-436.
    [14]Seth C G The Challenges and Opportunities of Nanoelectronics[EB/OL]. (2004-03-01)[2004-10-15].http://repository.cmu.edu/cgi/viewcontent.cgi?article =1770&context=compsci.
    [15]Compano R, Molenkamp L, Paul D J. Technology Roadmap for Nanoelectronics. European Commission IST programme Future and Emerging Technologies (EB/OL).2009. http://www.nanotruck.de/fileadmin/nanoTruck/redaktion/download/Nanoelectro nics_Roadmap_EU.pdf.
    [16]郭维廉,梁惠来,张世林,等.共振隧穿二极管[J].微纳电子技术.2002,39(5):11-15,36.
    [17]Lippens D, Barbier E, Mounaix P. Fabrication of high-performance AlxGal-x As/In yGal-yAs/GaAs resonant tunneling diodes using a microwave-compatible technology [J]. Electron Device Letters,1991,12 (3): 114-116.
    [18]Potter R C, Lakhani A, Hier H. Three and six logic states by the vertical integration of InAlAs/InGaAs resonant tunneling structures [J]. Journal of Applied Physics,1988,64:3735-3736.
    [19]Lin H C. Resonant Tunneling diodes for multi-valued digital applications[C]. Proceedings of Twenty-Fourth International Symposium on Multiple-Valued Logic. Los Alamitos:IEEE,1994:188-195.
    [20]Bhattacharya M, Kulkarni S, Gonzalez A, et al. A Prototyping Technique for Large-scale RTD-CMOS circuits[C]. Proceedings of IEEE international symposium on Circuits and Systems. Piscataway: IEEE,2000:635-638.
    [21]Sen S, Capasso F, Cho A, et al. Rsonant Tunneling Device with Multiple Negative Differential Resistance:Digital and Signal Processing Applications with Reduced Circuits Complexity[J]. IEEE Trans of Electron Devices,1987, ED-34 (10):2185-2191.
    [22]Akeyoshi T, Shimizu N, Osaka J, et al. Optoelectronic logic gate monolithically integrating resonant tunneling diodes and uni-traveling-carrier photo diode[C]. International Conference on Indium Phosphide and Related Materials. Piscataway:IEEE,1998:423-426.
    [23]Akeyoshi T, Matsuzaki H, Itoh T, et al. Applications of resonant-tunneling diodes to high-speed digital ICs[C]. International Conference on Indium Phosphide and Related Materials. Piscataway:IEEE,1999:405-410.
    [24]Waho T, Chen K J, Yamamoto M. Resonant-tunneling diode and HEMT logic circuits with multiple thresholds and multilevel output[J]. IEEE Journal of Solid-State Circuits,1998,33 (2):268-274.
    [25]谢嘉奎,金宝琴,谢洪膘.电子线路[M].北京:高等教育出版社,1998.
    [26]Brown E R, Soderstorm J R, Parker C D, et al. Oscillations up to 712GHz in InAs/AlSb resonant-tunneling diodes[J]. Applied Physics Letters,1991,58(20): 2291-2293.
    [27]Shimizu N, Nagatsuma T, Waho T, et al. Ino.53Gao.47As/AlAs resonant tunnelling diodes with switching time of 1.5 ps[J]. Electronics Letters,1995,31 (19): 1695-1697.
    [28]Woolard D L, Brown E R, Buot F A, et al.Intrinsic oscillations in resonant tunneling structures[C]. Digest of 53rd Annual Device Research Conference. Piscataway: IEEE,1995:54-55.
    [29]Woolard D L, Buot F A, Rhodes D L, et al. An assessment of potential nonlinear circuit models for the characterization of resonant tunneling diodes[J]. IEEE Transactions on Electron Devices,1996,43(2):332-341.
    [30]Maezawa K. Resonant tunneling diodes and their application to high-speed circuits. IEEE Compound Semiconductor Integrated Circuit[C]. United States: Institute of Electrical and Electronics Engineers,2005:97-100.
    [31]Li Sing-rong, Mazumder P, Chua Leon-o. On the implementation of RTD based CNNS[C]. Proceedings of the 2004 International Symposium of Circuits and Systems. USA: IEEE,2004:III25-III28.
    [32]Avedillo M J, Quitana J M, Pettenghi H. Self-latching operation of MOBILE circuits using series-connection of RTDs and transistors[J]. IEEE Transactions on Circuits and Systems II:Express Briefs,2006,53(5):334-338.
    [33]Choi S, Lee B, Kim T, et al. CML-type Monostable Bistable logic Element (MOBILE) using InP-based monolithic RTD/HBT technology[J]. Electronics Letters,2004,40 (13):792-793.
    [34]Broekaert T P E, Brar B, Van derWagt J P A, et al. A monolithic 4-bit 2-Gsps resonant tunneling analog-to-digital converter[J]. IEEE Journal of Solid-State Circuits,1998,33 (9):1342-1349.
    [35]Van der Wagt J PA, Tang H, Broekaert T P E, et al. Vertical multi-bit resonant tunneling diode memory cell[C]. Annual Device Research Conference Digest. Piscataway: IEEE,1996:168-169.
    [36]Muramatsu N, Okazaki H, Waho T. A novel oscillation circuit using a resonant-tunneling diode[C]. IEEE International Symposium on Circuits and Systems. Piscataway: IEEE,2005:2341-2344.
    [37]Asada M, Orihashi N, Hattori S, et al. Voltage controlled harmonic oscillation around 1THz resonant tunneling diodes integrated with slot antenna[C]. International Conference on Indium Phosphide and Related Materials. Piscataway: IEEE,2006:321-324.
    [38]Suzuki S, Hinata K, Shiraishi M et al. RTD oscillators at 430-460GHz with high output power (-200uW) using integrated offset slot antennas[C].2010 International Conference on Indium Phosphide and Related Materials. Piscataway: IEEE,2010:152-155.
    [39]Suzuki S, Sawada K, Teranishi A et al. Fundamental oscillations at □900GHz with low bias voltages in RTDs with spike-doped structures[J]. Electronics Letters,2010,46(14):1006-1007.
    [40]Suzuki S, Teranishi A, Hinata K et al. Fundamental oscillation of up to 831 GHz in GalnAs/AlAs resonant tunneling diode[J]. Applied Physics Express,2009,2 (5):192-195.
    [41]Hinata K, Shiraishi M, Suzuki S, et al. High power THz oscillators with offset-fed slot antenna and high current density resonant tunneling diodes[C]. 34th International Conference on Infrared, Millimeter, and Terahertz Waves, Piscataway: IEEE Computer Society,2009:1-2.
    [42]Jeong Y, Choi S, Yang K, et al. Novel antiphase-coupled RTD microwave oscillator operating at extremely low DC-power consumption[J]. IEEE Transactions on Nanotechnology,2010,9(3):338-341.
    [43]Urayama K, Suzuki S, Asada M. Sub-THz RTD oscillators integrated with planar horn antennas for horizontal radiation[C].2008 Int. Nano-Optoelectronics Workshop, iNOW 2008 in Cooperation With Int. Global-COE Summer School (Photonics Integration-Core Electronics: PICE) and 31st Int. Symposium on Optical Communications, Piscataway: IEEE,2008:323-324.
    [44]Kawano Y, Ohno Y, Kishimoto S, et al.50GHz frequency divider using resonant tunneling chaos circuit[J]. Electronics Letters,2002,38(7):305-306.
    [45]Maezawa K, Kawano Y, Ohno Y, et al. Chaos generator MMIC's using resonant tunneling diodes[C]. Annual Device Research Conference Digest.USA:IEEE, 2001:55-56.
    [46]Kawano Y, Kishimoto S, Maezawa K, et al. Resonant tunneling chaos generator for high-speed/low-power frequency divider[J]. Japanese Journal of Applied Physics, Part 2:Letters,1999,38(11B): 1321-1322.
    [47]Kawano Y, Kishimoto S, Maezawa K, et al. Robust operation of a novel frequency divider using resonant tunneling chaos circuit[J]. Japanese Journal of Applied Physics, Part 1:Regular Papers and Short Notes and Review Papers, 1999,39 (6A):3334-3338.
    [48]Kawano Y, Ohno Y, Kishimoto S, et al. High-speed operation of a novel frequency divider using resonant tunneling chaos circuits[C]. International Conference on Indium Phosphide and Related Materials. USA:IEEE,2001: 236-239.
    [49]Quintana Jose M, Avedillo Maria J. Analysis of Frequency Divider RTD circuits[J]. IEEE Transactions on CIRCUITS and SYSTEMS,2005,52 (10): 2234-2247.
    [50]Mutamba K, Sigurdardottir A, Vogt A et al. Micromachined Pressure Sensors with AlxGal-xAs/GaAa and InAs/AlSb/GaSb Resonant Tunneling Diodes[J]. Annual Device Research Conference Digest,1999:64-65.
    [51]Mutamba K, Flath M, Sigurdardottir A, et al. A GaAs Pressure Sensor with Frequency output Based on Resonant Tunneling Diodes[J]. IEEE Transactions on Instrumentation and Measurement,1999,48 (6):1333-1338.
    [52]Mutamba K, Flath M, Sigurdardottir A, et al. A GaAs pressure sensor with frequency output based on resonant tunneling diodes[J]. IEEE Transactions on Instrumentation and Measurement,1996,48(6):1333-1337.
    [53]Hartnagel H L, Pfeiffer J, Mutamba K, et al. III-V Membrane Structures for Tunable Fabry-perot Filters and sensor Applications[J]. Conference on Optoelectronic and Microelectronic Materials and Devices,1999:49-56.
    [54]Jian Ping Sun, Haddad GI, Mazumder P, et al. Resonant tunneling diodes: models and properties[J]. Proceedings of the IEEE,1998,86 (4):641-660.
    [55]De Los Santos Hector J, Chui Kelvin K, Chow David H, et al. An efficient HBT/RTD oscillator for wireless applications[J]. IEEE Microwave and wireless components letter,2001,11 (5):193-195.
    [56]Sunkyu Choi, Yongsik Jeong, Kyounghoon Yang. Low DC-power ku-band differential VCO based on an RTD/HBT MMCI technology [J]. IEEE Microwave and Wireless components letter,2005,15(11):742-744.
    [57]Choi Sunkyu, Jeong Yongsik, Yang Kyounghoon. A Ku-band InP-based RTD MMIC VCO with very low DC power consumption[C]. International Conference on Indium Phosphide and Related Materials.USA:IEEE,2005:263-266.
    [58]Choi Sunkyu, Jeong Yongsik, Yang Kyounghoon.14 GHz InP-based RTD MMIC VCOs with ultra low DC power consumption[C]. International Conference on Indium Phosphide and Related Materials. Piscataway: IEEE, 2006:439-441.
    [59]Sunkyu Choi, Yongsik Jeong, Kyounghoon Yang. Low DC-power Ku-band RTD VCO based on a InP monolithic RTD/HBT technology[C]. IEEE MTT-S International Microwave Symposium Digest.USA:IEEE,2005:1361-1364.
    [60]Munstermann B, Blekker K, Tchegho A, et al. Design of low-power RTD-based-VCOs for Ka-band applications[C]. German Microwave Conference Digest of Papers. Piscataway: IEEE Computer Society,2010:39-42.
    [61]Jeong Y, Choi S, Yang K. A sub-100uW Ku-band RTD VCO for extremely low power applications[J]. IEEE Microwave and Wireless Components Letters, 2009,19 (9):569-571.
    [62]Romeira B, Figueiredo J M L, Ironside C N, et al. Chaotic dynamics in resonant tunneling optoelectronic Voltage controlled oscillators[J]. IEEE Photonics Technology Letters,2009, 21 (24):1819-1821.
    [63]钟国群.蔡氏电路混沌同步保密通讯[J].电路与系统学报,1996,1(1):19-29.
    [64]冉立新,陈抗生.蔡氏电路混沌信号频谱分布特征及其在电路设计中的应用[J].电路与系统学报,1998,3(1):8-13.
    [65]刘秉正.非线性动力学与混沌基础[M].长春:东北师范大学出版社,1994.
    [66]陈关荣,吕金虎.Lorenz系统族的动力学分析、控制与同步[M].北京:科学出版社,2003.
    [67]Pecora L M. Overview of Chaos and Communications Research[J]. Chaos in Communications,1993:2-25.
    [68]Abdomerovic I, Lozowski A G, Aronhime P B. High-frequency Chua's circuit[C].The 43rd IEEE Midwest Symposium on Circuits and Systems. USA: IEEE,2000:1026-1028.
    [69]蒋国平,王锁萍.蔡氏混沌电路的单向耦合同步研究[J].电子学报,2000,28(1): 67-69.
    [70]Lorenz N E. Deterministic Nonperiodic Flow[J]. Journal of the Atmospheric Sciences,1963,20: 130-141.
    [71]Shi Z G, Ran L X. Tunnel diode based Chua's circuit[C]. Proceedings of the IEEE 6th Circuits and Systems Symposium on Emerging Technologies: Frontiers of Mobile and Wireless Communication. USA:IEEE,2004:217-220.
    [72]Kennedy M P. Three steps to chaos II. A Chua's circuit primer[J]. IEEE Transactions on Circuits and Systems,1993,40(10):657-674.
    [73]Kennedy M P. Robust op-amp realization of Chua's circuit[J]. Frequenz,1992, 46:66-80.
    [74]Matsumoto T. A chaotic attractor from Chua's circuits[J]. IEEE Trans on Circuits and System I,1984,31:1055-1058.
    [75]Maezawa K, Kawano Y, Ohno Y, et al. Chaos Generator MMIC's Using Resonant Tunneling Diodes[C]. Annual Device Research Conference Digest. USA:IEEE,2001:55-56.
    [76]Maezawa K, Kawano Y, Komoto Y, et al. Control and Observation of High-Frequency Chaos in the Resonant Tunneling Chaos Generator IC[C]. International Conference on Indium Phosphide and Related Materials. Piscataway: IEEE,2004:627-630.
    [77]Maezawa K, Takashi I, Yutaka O, et al. Metamorphic Resonant Tunneling Diodes and Its Application to Chaos Generator ICs[J]. Japanese Journal of Applied Physics, Part 1:Regular Papers and Short Notes and Review Papers, 2005,44 (7A):4790-4794.
    [78]Kawano Y, Ohno Y, Kishimoto S, et al.50 GHz frequency divider using resonant tunneling chaos circuit[J]. Electronics Letters,2002,38(7):305-306.
    [79]Kawano Y, Ohno Y, Kishimoto S, et al.88 GHz dynamic 2:1 frequency divider using resonant tunneling chaos circuit[J]. Electronics Letters,2003,39 (21): 1546-1548.
    [80]Kawano Y, Ohno Y, Kishimoto S, et al. High-speed Operation of a Novel Frequency Divider Using Resonant Tunneling Chaos Circuit[J]. Japanese Journal of Applied Physics, Part 1:Regular Papers and Short Notes and Review Papers, 2002,41 (2B):1150-1153.
    [81]Gan K J, Su Y K, Wang R L. Modeling of three-peak current-voltage characteristics with two resonant tunneling diodes connected in series[J] J.Appl.Phys,1997,81 (10):6825-6829.
    [82]Gan K J, Su Y K. Novel multipeak current-voltage characteristics of series-connected negative differential resistance devices[J].IEEE Electron Device Letters,1998,19 (4):109-111.
    [83]史治国,冉立新,陈抗生.基于隧道二极管的射频蔡氏电路研究[C].全国微波毫米波会议.上海:中国电子学会,2003:585-588.
    [84]乔闪,齐恒.交流耦合蔡氏电路的计算机仿真研究[J].计算机仿真,2006,23(5):107-109,275.
    [85]ESilva C. A survey of chaos and its application[J]. Proc of the IEEE MIT-S inter. Symp.1996,1(3):1871-1874.
    [86]Chua L O, Motomasa K, Takashi M. Double Scroll Family[J]. IEEE transactions on circuits and systems,1986, CAS-33 (11):1072-1118.
    [87]Talashi M, Chua L O, Motomasa K. Double scroll[J]. IEEE transactions on circuits and systems,1985, CAS-32 (8):797-818.
    [88]Waho T, Okuyama H, Ebata T. An ultrahigh-speed full adder using resonant-tunneling logic gates[C]. IEEE Asia-Pacific Conference on Circuits and Systems. Piscataway: IEEE,2008:1724-1727.
    [89]Mazumder P, Li Sing-Rong, Ebong I E. tunneling-based cellular nonlinear network architectures for processing[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,2009,17(4):487-495.
    [90]Pacha C, Goser K, Brennemann A, et al. A Threshold Logic Full Adder Based on Resonant Tunneling Transistors[C]. Proceedings of the 24th European Solid-State Circuits Conference. Piscataway: IEEE,1998:428-431.
    [91]王建林,刘忠立.RTD高频等效电路的研究及应用现状[J].电子器件,2003,26(1): 29-33.
    [92]Brown E R, Parker C D, Sollner T C L G Effect of quasibound-state lifetime on the oscillation power of resonant tunneling diodes[J]. Applied Physics Letters, 1989,54 (10):934-936.
    [93]Michael N, Feiginov. Displacement currents and the real part of high-frequency conductance of the resonant-tunneling diode[J]. Applied Physics Letters,2001, 78 (21):3301-3303.
    [94]Mattia J P, Mcwhorter A L, Aggarwal R J, et al. Comparison of a rate-equation model eith experiment for the resonant tunneling diode in the scattering-dominated regime[J]. Journal of Applied Physics,1998,84 (2): 1140-1148.
    [95]Kesan Vijay P, Neikirk Dean P, Blakey Peter A, et al. The influence of transit-time effects on the optimum design and maximum oscillation frequency of quantum well oscillators[J]. IEEE Transactions on Electron Devices,1988, 35 (4):405-412.
    [96]陈乃金.化合物半导体负阻器件模拟、设计及其应用的研究[D][硕士学位论文].天津:天津工业大学,2005:55-64.
    [97]Gonzalez A F, Bhattacharya M, Kulkarni S, et al. CMOS Implementation of a Multiple-Valued Logic Signed-Digit Full Adder Based on Negative-Differential-Resistance Devices[J]. IEEE Journal of Solid-state Circuits,36(6):924-932.
    [98]Bhattacharya M, Kulkarni S, Gonzalez A, et al. Prototyping technique for large-scale RTD-CMOS circuits[C]. Proceedings of IEEE international symposium on Circuits and Systems. Piscataway: IEEE,2000:635-638.
    [99]Mazumder P, Kulkarni S, Bhattacharya M, et al. Digital circuit applications of resonant tunneling devices[J]. Proceedings of IEEE,1998,86(4):664-686.
    [100]郭维廉.共振隧穿三极管(RTT)—共振隧穿器件讲座(10)[J].微纳电子技术.2007,44(10):923-932,968.
    [101]Pacha C, Glosekjtter P, Goser K, et al. Resonant tunneling transistors for threshold logic circuit applications[C]. Proceedings of the IEEE Great Lakes Symposium on VLSI. Los Alamitos:IEEE,1999:344-345.
    [102]Deng X, Hanyu T, Kameyama M. Design and evaluation of a current-mode multiple-valued PLA based on a resonant tunneling transistor model [J]. IEE Proceedings:Circuits, Devices and Systems,1994,141 (6):445-450.
    [103]李效白.谐振隧穿晶体管数字单片集成电路[J].微纳电子技术,2009,46(1):1-9.
    [104]Dellow M W, Beton P H, Henini M, et al. Gated resonant tunneling devices[J]. Electronics Letters,1991,27 (2):134-136.
    [105]Peatman W C B, Brown E R, Rook M J, et al. Novel resonant tunneling transistor with high transconductance at room temperature[J]. IEEE Electron Device Letters,1994,15 (7):236-238.
    [106]Stock J, Malindretos J, Indlekofer K M, et al. A vertical resonant tunneling transistor for application in digital logic circuits[J]. IEEE Transaction on Electron Devices,2001,48 (6):1028-1032.
    [107]Maezawa K, Akeyoshi T, Mizutani T. Function and applications of monostable-bistable transition logic elements (MOBILE'S) having multiple-input terminals[J]. IEEE Transaction on Electron Devices,1994,41 (2):148-154.
    [108]Lee J, Choi S, Yang K. A new low-power RTD-based 4:1 Multiplexer IC using RTD/HBT MMIC technology[C]. International Conference on Indium Phosphide and Related Materials. Piscataway: IEEE,2010:352-354.
    [109]Choi S, Jeong Y, Lee J. A novel high-speed multiplexing IC based on resonant tunneling diodes[J]. IEEE Transactions on Nanotechnology,2009,8 (4): 482-486.
    [110]Miura A, Yakihara T, Kobayashi S, et al. Hybrid RBT with resonant-tunneling-diode and hetero-bipolar-transistor on InP substrate[C]. Technical Digest of International Electron Devices Meetinga. Piscataway: IEEE,1992:483-486.
    [111]Fathimulla A, Hier H, Abrahams J, et al. Monolithic integration of InGaAs/InAlAs MODFETs and RTDs on InP-bonded-to Si substrate[C]. International Conference on Indium Phosphide and Related Materials.USA: IEEE,1992:167-170.
    [112]Yamamoto M, Matsuzaki H, Itoh T, et al. Ultrahigh-speed Circuits Using Resonant Tunneling Devices. Proceedings Ninth Great Lakes Symposium on VLSI[C]. Ypsilanti:IEEE Computer Society Press,1999:150-153.
    [113]Watanabe Y, Nakasha Y, Imanishi K, et al. Monolithic integration of InGaAs/InAlAs resonant tunneling diode and HEMT for single-transistor cell SRAM application[C]. International Technical Digest of Electron Devices Meeting. Piscataway: IEEE,1992:475-478.
    [114]Waho T, Itoh T, Yamamoto M. Ultrahigh-speed resonant tunneling circuits[C]. Proceedings on Second International Workshop on Physics and Modeling of Devices Based on Low-Dimensional Structures. Los Alamitos:IEEE,1998: 73-77.
    [115]Chen K J, Akeyoshi T, Maezawa K. Monolithic integration of resonant tunneling diodes and FET's for monostable-bistable transition logic elements (MOBILE's)[J]. IEEE Electron Device Letters,1995,16(2):70-73.
    [116]Mazumder P. Ultrafast circuits and systems using quantum devices[C]. Advanced Workshop on Frontiers in Electronics. Piscataway:IEEE,1997: 145-150.
    [117]Mohan S, Mazumder P, Haddad G I. Ultrafast pipelined arithmetic using quantum electronic devices[J]. IEE Proceedings:Computers and Digital Techniques,1994,141 (2):104-110.
    [118]Mohan S, Mazumder P, Mains R K, et al. Ultrafast pipelined adders using RTTs[J]. Electronics Letters,1991,27(10):830-831.
    [119]Kulkarni S, Mazumder P, Haddad G I. High-speed 32-bit parallel correlator for spread spectrum communication[C]. Proceedings of the IEEE International Conference on VLSI Design. Los Alamitos:IEEE,1996:313-315.
    [120]Kulkarni S, Bhattacharya Mayukh, Gonzalez A, et al. A 250-MHz,32-bit quantum MOS correlator prototype[C]. Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems. Piscataway:IEEE,2001: 1501-1504.
    [121]郭维廉,牛娟萍,苗长云.共振隧穿器件及其集成技术发展趋势和最新进展[J].微纳电子技术,2005,42(7):298-304.
    [122]郭维廉.共振隧穿器件应用电路概述-共振隧穿器件讲座(2)[J].纳米器件与技术,2005,10:446-454.
    [123]何小艇.数字电路[M].杭州:浙江大学出版社,2000:3-25.
    [124]林弥,孙浙永,沈继忠.基于RTD的与非门和或非门设计[J].科技通报,2004,20(5):434-437.
    [125]Chen K, Akeyoshi, Maezawa K. Monostable-bistable transition logic elements (MOBILEs) based on monolithic integration of resonant tunneling diodes and FETs [J]. Japanese Journal of Applied Physics, Part 1:Regular Papers & Short Notes & Review Papers,1995,34 (2B):1199-1203.
    [126]Matsuzaki H, Itoh T, Yamamoto M. A Novel High-Speed Flip-Flop Circuit Using RTDs and HEMTs. Proceedings Ninth Great Lakes Symposium on VLSI[C]. Ypsilanti:IEEE Computer Society Press,1999:154-157.
    [127]Avedillo M J, Quintana J M, Pettenghi H. Logic Models Supporting the Design of MOBILE-based RTD Circuits[C]. Proceedings of the International Conference on Application-Specific Systems, Architectures and Processors. USA: IEEE,2005:254-259.
    [128]Maezawa K, Mizutani T. A new resonant tunneling logic gate employing monostable bistable transition[J]. Japanese Journal of Applied Physics, Part 2: Letters,1993,32 (1A-B):42-44.
    [129]Li Sing Rong, Mazumder P, Yang K. On the Functional Failure and Switching Time Analysis of the MOBILE Circuit[C]. Proceedings of IEEE International Symposium on Circuits and Systems. Piscataway: IEEE,2005:2531-2534.
    [130]Li Ding, Mazumder P. A novel application of resonant tunneling devices in high performance digital circuits[J].2003 Third IEEE Conference on Nanotechnology,2003,2:520-523.
    [131]Matsuzaki H, Fukuyama H, Enoki K. Analysis of Transient Response and Operating Speed of MOBILE[J]. IEEE Transactions on electron devices,2004, 51 (4):616-622.
    [132]宋瑞良.共振隧穿三极管模拟及研制的研究[D][硕士学位论文],天津:天津大学,2006:7-38.
    [133]林弥.基于RT量子器件的数字电路设计[D][硕士学位论文].杭州:浙江大学,2004:21-22.
    [134]Zheng Y X, Huang C. Reconfigurable RTD-based circuit elements of complete logic functionality[C]. Proceedings of the Asia and South Pacific Design Automation Conference. Piscataway: IEEE,2008:71-76.
    [135]Choi S, Lee B, Kim T, et al.20 Gbps operation of RTD/HBT MOBILE (monostable bistable logic element) IC based on an InP technology[C]. Proceedings of the 31st International Symposium of Compound Semiconductors. USA:Institute of Physics Publishing,2005,184:209-212.
    [136]Chen K J, Akeyoshi T, Maezawa K. Reset-set flipflop based on a novel approach of modulating resonant-tunneling current with FET gates[J]. Electronics Letters,1994,30(21):1805-1806.
    [137]Maezawa K, Matsuzaki H, Arai K, et al. High-speed operation of a resonant tunneling flip-flop circuit employing a MOBILE (monostable-bistable transistion logic element)[C]. Annual Device Research Conference Digest. Piscataway: IEEE,1997:94-95.
    [138]沈继忠,林弥,王林.基于MOBILE的JK触发器设计[J].半导体学报,2004,25(11):1469-1473.
    [139]Williamson W, Enquist S, Chow D, et al.12 GHz clocked operation of ultralow power interband resonant tunneling diode pipelined logic gates[J]. IEEE Solid-State Circuits,1997,32 (2):222-231.
    [140]吴训威.多值逻辑电路设计原理[M].杭州:杭州大学出版社,1994:25-27,233-267.
    [141]Kim T, Jeong Y, Yang K. New RTD-based set/reset latch IC for high-speed mobile D-flip flops[C].International Conference on Indium Phosphide and Related Materials.USA:IEEE,2005:311-314.
    [142]林弥,张海鹏,吕伟锋,孙玲玲.基于RT器件的数据选择器和D锁存器设计[J].科技通报,2009,25(1):89-92.
    [143]林弥,张海鹏,孙玲玲,吕伟锋.基于1-of-2共振隧穿数据选择器的可置位复位D触发器设计[J].电子器件,2009,32(3):694-652.
    [144]林弥,张海鹏,吕伟锋,孙玲玲.共振隧穿电路中翻转-传输代数系统的建立[J].电子器件,2009,32(2):281-284.
    [145]Pettenghi Hector, Avedillo Maria J, Quintana Jose M. A novel contribution to the RTD-based threshold logic family[C]. IEEE International Symposium on Circuits and Systems. Piscataway:IEEE,2008:2350-2353.
    [146]Quintana J M, Avedillo M J, Nunez J, et al. Operation Limits for RTD-Based MOBILE Circuits[J]. IEEE Transactions on Circuits and Systems I:Regular Papers,2009,52 (2):350-363.
    [147]杨士元.数字系统的故障诊断与可靠性设计[M].北京:清华大学出版社,1989:6-7.
    [148]陆思安.可复用IP核以及系统芯片SOC的测试结构研究[D][博士学位论文].杭州:浙江大学,2003:17-19.
    [149]Alfred L, Crouch. Design-for-Test for digital IC's and Embedded Core Systems[M]. USA:Prentici Hall PTR,1999.
    [150]闵应骅.逻辑电路测试[M].北京:中国铁道出版社,1986.
    [151]Rochit Rajsuman. System-on-a-chip Design and Test[M]. USA:Advantest America R&D Center Inc.2000.
    [152]Courjon H. Scan design in the Philips ASIC test environment[J]. Euro ASIC'90,1990:370-375.
    [153]Lin C C, Marek S M, Cheng K T, et al. Scan paths through functional logic[C]. Proceedings of the IEEE Custom Integraed Circuits Conference. Piscataway: IEEE,1996:487-490.
    [154]Levitt M E, Abraham Jacob A. Economics of scan design[C]. Proceedings of international of Meeting the tests of time test conference. Piscataway: IEEE, 1996:869-874.
    [155]Salam A E, Elmasry M I.Fault characterization, testing considerations, and design for testability of BiCMOS circuits[J]. IEEE Journal of Solid-State Circuits,1992,27 (6):944-947.
    [156]骆健,林弥,徐丽燕,等.RTD电路的可测试性设计.浙江大学学报:工学版,2004,38(11):1436-1440.
    [157]陈偕雄,沈继忠.近代数字理论[M].杭州:浙江大学出版社,2001.
    [158]毛法尧,欧阳星明,任宏萍.数字逻辑[M].武汉:华中理工大学出版社,1996.
    [159]Kameyama M. Toward the age of beyond-binary electronics and systems[C]. Proceedings of The International Symposium on Multiple-Valued Logic. Piscataway: IEEE,1990:162-166.
    [160]Hurst S L. Multiple-valued logic-its status and its future[J]. IEEE Transactions on Computers,1984, C-33(12):1160-1179.
    [161]Hanyu T, Kameyama M, Higuchi T. Beyond-binary circuits for signal processing[C]. Digest of Technical Papers of 40th IEEE International Solid-State Circuits Conference. Piscataway: IEEE,1993:134-135,276-277.
    [162]Hurst S L. Two decades of multiple-valued logic-an invited tutorial[C]. Proceedings of the Eighteenth International Symposium on Multiple-Valued Logic. Piscataway: IEEE,1988:164-175.
    [163]姚从军.三值逻辑的思想和方法[J].北京理工大学学报:社会科学版,2010,12(1):127-131.
    [164]全零三,全恺,钱博森.多值可编程逻辑阵列的优化设计技术[J]微电子学,2000,30(6):406-409,429.
    [165]胡谋.多值逻辑与电子科学技术(综述)[J].电子学报,1986,14(5):104-110.
    [166]Etiemble D, Israel M. Comparison of binary and multivalued ICs according to VLSI criteria[J]. Computer,1988,21(4):28-42.
    [167]Berezowski K S, Vrudhula S B K. Automatic design of binary and multiple-valued logic gates on RTD series[C]. Proceedings of 8th Euromicro Conference on Digital System Design.USA:IEEE Computer Society,2005: 139-142.
    [168]Berezowski K S, Vrudhula, S B K. Multiple-Valued Logic Circuits Design Using Negative Differential Resistance Devices[C]. The 37th International Symposium on Multiple-Valued Logic. Piscataway: IEEE Computer Society, 2007:24-31.
    [169]Nunez J, Quintana J M, Avedillo M J. Design of RTD-Based NMIN/NMAX Gates[C].2008 8th IEEE Conference on NanotechnologyP. Multiple-Valued Logic. Piscataway: IEEE Computer Society,2008:518-521.
    [170]Ding L, Mazumder P. Noise-tolerant quantum MOS circuits using resonant tunneling devices[J]. IEEE Transactions on Nanotechnology,2004,3(1 SPEC. ISS.):134-146.
    [171]Uemura T, Yamamoto M. Proposal of four-valued mram based on MTJ/RTD structure[C]. Proceedings of The International Symposium on Multiple-Valued Logic, USA: Computer Society,2003:273-278.
    [172]Pacha C, Auer U, Burwick C, et al. Threshold logic circuit design of parallel adders using resonant tunneling devices[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,2000,8(5):558-572.
    [173]Waho T, Yamamoto M. Application of resonant-tunneling quaternary quantizer to ultrahigh-speed A/D converter.Proceedings of The International Symposium on Multiple-Valued Logic, Los Alamitos: IEEE,1997:35-40.
    [174]Waho T, Itoh T, Maezawa K, et al. Multi-GHz A/D converter using resonant-tunneling multiple-valued logic circuits[C]. Digest of Technical Papers-IEEE International Solid-State Circuits Conference, Piscataway:IEEE, 1998:258-259,445.
    [175]Itoh T, Waho T, Osaka J, et al. Ultrafast analog-to-digital converter using resonant-tunneling ternary quantizers[C]. IEEE MTT-S International Microwave Symposium Digest, Piscataway: IEEE,1998:197-200.
    [176]Eguchi K, Chibashi M, Waho T. A design of 10-GHz delta-sigma modulator using a 4-level differential resonant-tunneling quantizer[C]. Proceedings of The International Symposium on Multiple-Valued Logic, USA:IEEE Computer Society,2005:43-47.
    [177]Tsuji Y, Waho T. Multiple-input resonant-tunneling logic gates for flash A/D converter applications[C]. Proceedings of The International Symposium on Multiple-Valued Logic, USA:IEEE Computer Society,2004:8-13.
    [178]Nunez J, Quintana J M, Avedillo M J. Holding preserving in RTD-based multiple-valued quantizers[C].2007 7th IEEE International Conference on Nanotechnology, USA:IEEE Computer Society,2007:611-615.
    [179]Waho T, Hattori K, Takamatsu Y. Flash analog-to-digital converter using resonant-tunneling multiple-valued circuits[C]. Proceedings of The International Symposium on Multiple-Valued Logic, USA:IEEE Computer Society,2001:94-99.
    [180]Liang Dong-Shong, Gan Kwang-Jow, Lu Jenq-Jong, et al. Multiple-valued memory design by standard BiCMOS technique[C].2009 WRI World Congress on Computer Science and Information Engineering, USA:IEEE Computer Society,2009:596-599.
    [181]Prost W, Auer U, Tegude F J. Tunnelling diode technology[C]. Proceedings of The International Symposium on Multiple-Valued Logic, USA:IEEE Computer Society,2001:49-58.
    [182]Waho T, Hattori K, Honda K. Novel resonant-tunneling multiple-threshold logic circuit based on switching sequence detection[C]. Proceedings of 30th IEEE International Symposium on Multiple-Valued Logic. Los Alamitos: IEEE,2000:317-322.
    [183]Wei S J, Lin H C. A multi-state memory using resonant tunneling diode pair[C]. IEEE International Sympoisum on Circuits and Systems. Piscataway: IEEE, 1991,5:2924-2927.
    [184]Micheel L J, Taddiken A H, Seabaugh A C. Multiple-valued logic computation circuits using micro-and nanoelectronic devices[C]. Proceedings of the Twenty-Third International Symposium on Multiple-Valued Logic. Piscataway: IEEE,1993:164-169.
    [185]Van der Wagt J P A, Tang H, Broekaert T P E, et al. Multibit resonant tunneling diode SRAM cell based on slew-rate addressing[J]. IEEE Transactions on Electron Devices,1999,46(1):55-62.
    [186]Wei S J, Lin H C. Multivalued SRAM cell using resonant tunneling diodes[J]. IEEE Journal of Solid-State Circuits,1992,27 (2):212-216.
    [187]Nunez J, Quintana J M, Avedillo M J. Correct DC Operation in RTD-based Ternary Inverters[C]. NEMS '07.2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems. Piscataway: IEEE Computer Society,2007:860-865.
    [188]Nunez J, Quintana J M, Avedillo M J. Limits to a Correct Evaluation in RTD-Based Quaternary Inverters[C]. Proceeding of 37th International Symposium on Multiple-Valued Logic. Piscataway:IEEE Computer Society, 2007:51-56.
    [189]林弥,沈继忠,王林.基于开关序列的RTD多值反相器设计[J].浙江大学学报:理学版,2004,31(1):38-42.
    [190]Waho T, Chen K J, Yamamoto M. A literal gate using resonant-tunneling devices[C]. Proceedings of 26th International Symposium on Multiple-Valued Logic. Los Alamitos:IEEE,1996:68-73.
    [191]杭国强.低功耗CMOS三值动态双传输管逻辑电路[J].浙江大学学报:工学版,2005,39(6):882-886.
    [192]杭国强,任洪波.应用于多值逻辑的双传输管逻辑网络综合[J].浙江大学学报:工学版,2007,41(8):1307-1311.
    [193]邱建林,王波,管致锦,等.用二值逻辑对多值逻辑进行优化.计算机辅助设计与图形学学报,2004,16(5):682-686.
    [194]Zeng X P, Wang P J. Design of Low-Power Complementary PassTransistor and Ternary Adder Based on Multi-valued Switch-signal Theory[C]. IEEE 8th International Conference on ASIC. Piscataway: IEEE,2009:851-854.
    [195]Zhang W C, Wu N J. Compact voltage-mode multi-valued literal gate using nanoscale ballistic MOSFETs[J]. ELECTRONICS LETTERS,2008,44 (16): 968-969.
    [196]Drechsler R. Verification of Multi-Valued Logic Networks[C]. Proceedings of The International Symposium on Multiple-Valued Logic. Los Alamitos:IEEE, 1996: 10-15.
    [197]Quintana J M, Avedillo M J, Nunez J. DC Correct Operation in MOBILE Inverters[C]. Forty-ninth Midwest Symposium on Circuits and Systems. Piscataway: IEEE,2006:479-483.
    [198]Toshio B, Tetsuya U. Development of InGaAs-Based Multiple-Junction Surface Tunnel Transistors for Multiple-Valued Logic Circuits[C]. Proceedings of The International Symposium on Multiple-Valued Logic. Los Alamitos:IEEE, 1998:7-12.
    [199]Uemura T, Baba T. Demonstration of a Novel Multiple-valued T-gate using Multiple-Junction Surface Tunnel Transistors and Its Application to Three-valued Data Flip-Flop[C]. International Symposium on Multiple-Valued Logic. Los Alamitos:IEEE,2000:305-310.
    [200]Uemura T, Baba T. A Three-Valued D-Flip-Flop and Shift Register Using Multiple-Junction Surface Tunnel Transistors[C]. Thirty-first International Symposium on Multiple-Valued Logic.USA:IEEE Computer Society 2001: 89-93.
    [201]Uemura T, Baba T. A Three-Valued D-Flip-Flop and Shift Register Using Multiple-Junction Surface Tunnel Transistors[J]. IEEE Transactions on Electron Devices,2002,49 (8):1336-1340.
    [202]郭维廉,牛娟萍,苗长云等.RTD/HEMT单片集成中RTD直流参数与材料结构的关系[J].固体电子学研究与进展,2008,28(2):167-171.
    [203]宋瑞良.共振隧穿器件的研制与模拟研究[D][博士学位论文].天津:天津大学,2008:1-27.
    [204]郭维廉.共振隧穿器件及其应用[M].北京:科学出版社,2008.
    [205]郭维廉.RTD交流小信号等效电路模型-共振隧穿器件讲座(7)[J].纳米器件与技术,2006,12:558-563.
    [206]郭维廉.RTD器件参数和测量方法-共振隧穿器件讲座(8)[J].纳米器件与 技术,2006,12:564-571,581.
    [207]吕伟锋,林弥.基于阈值逻辑门的任意布尔函数综合[J].杭州电子科技大学学报2006,26(2):12-14.
    [208]吕伟锋,林弥,华柏兴.基于复数权值神经元的数字逻辑最稳健设计[J].电路与系统,2008,13(4):77-80.
    [209]吕伟锋,林弥.基于复数权神经元的多值整形器稳健设计[J].杭州电子科技大学学报,2008,28(1):20-23.
    [210]Lu Wei-Feng, Lin Mi, Sun Ling-Ling. The most robust design for digital logics of multiple variables based on neurons with complex-valued weights[J]. Journal of Zhejiang University: Science A,2009,10(2):184-188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700