水分子对乳清酸核苷单磷酸盐催化脱羧的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳清酸核苷-5′-单磷酸盐脱羧酶(ODCase)催化乳清酸核苷-5'-单磷酸盐(OMP)脱羧生成尿苷-5'-单磷酸盐(UMP)是核酸生物合成的一个关键步骤,ODCase是目前已知催化效率较高的酶之一,它可以使自发脱羧反应的催化效率提高17个数量级还多。ODCase是一种蛋白质单成分酶,不包含任何的金属离子和辅基,且有结果显示其高效的催化能力只是来源于非共价作用。这一特性是脱羧酶所不常见的。这为我们更深入地理解酶的催化机理提供了一个理想的研究模型。
     1995年Wolfenden和Radzicka发现乳清酸核苷-5'-单磷酸盐脱羧酶是一种非常高效的脱羧酶,从此ODCase的催化机理成为人们关注的焦点。经过十几年的研究,ODCase的催化机理仍然没有公认的解释。
     以往的研究主要提出了:过渡态稳定化机理,基态去稳定化机理,C-5位置直接质子化机理,O-2(OMP的2'位氧原子)质子化机理,O-4(OMP的4'位氧原子)质子化的机理,亲电取代机理等几种重要的机理,这些机理大部分只单独研究了OMP的O-2、O-4、C-5等几个特殊的部位,没有综合地研究各部位的作用。而且以前的研究中虽然部分地考虑了水分子的作用,但没有重点和全面的去研究水分子的作用。
     本文在前人研究成果的基础上根据过渡态理论设计了各种模型,用密度泛函B3LYP方法计算了各模型的反应势垒和N-1位置的~(15)N动力学同位素效应及C-6位置羧基碳原子的~(13)C动力学同位素效应。结果显示反应势垒,~(15)N动力学同位素效应和~(13)C动力学同位素效应与实验值基本吻合,表明水分子在ODCase催化OMP生成UMP的过程中起重要作用。
     本文主要研究内容和取得的结果为:
     (一)采用混合泛函B3LYP的方法计算了质子化的水分子与OMP的O-2形成氢键对乳清酸核苷单磷酸盐脱羧酶(ODCase)催化作用的影响,得到OMP脱羧势垒为24.9kcal/mol。无水分子作用时势垒为39.6 kcal/mol,可看出水分子与O-2形成氢键后脱羧反应的势垒减小了。表明水分子在ODCase催化过程中起重要作用
     (二)用密度泛函B3LYP方法计算了OMP的O-2、O-4与水分子同时作用对OMP催化脱羧势垒的影响,并与O-2、O-4和水分子单独作用的情况相比较,同时考虑了过渡态稳定化机理,基态去稳定化机理。结果表明带正电荷的氨基酸残基通过水分子链的桥梁作用与底物OMP的O-2、O-4形成低势垒氢键,能够使OMP的脱羧势垒显著降低,也表明ODCase巨大的催化能力是ODCase的各催化因素协同作用的结果。
     (三)设计并优化了乳清酸核苷单磷酸盐催化脱羧的模型,计算了该模型的反应势垒、N-1位置的~(15)N动力学同位素效应和C-6位置羧基碳原子的~(13)C动力学同位素效应。结果显示~(15)N动力学同位素效应和~(13)C动力学同位素效应与实验值基本吻合,表明了水分子参与反应过程的可能性。
Orotidine 5`-phosphate decarboxylase (ODCase,) catalyzes the decarboxylation of orotidine 5`-phosphate (OMP) to form uridine 5`-phosphate in the crucial step of nucleic acid biosynthesis. ODCase is one of the most efficient enzymes. It can increase the rate of decarboxylation by 17 orders of magnitude. ODCase distinguishes itself from other enzymes by the fact that there is no direct participation of cofactors or metal ions, nor formation of a covalent intermediate with a group on the protein. Analyzing the mechanism of ODCase can therefore be an important step in understanding enzyme catalysis on a more general level.
     In 1995, Wolfenden and Radzicka showed that orotidine 5'-monophosphate decarboxylase(ODCase) was the most proficient enzyme. Since then, the mechanism of catalysis has been widely debated although the study about it has been carrying out for decades.
     During the past decades, some mechanistic proposals with novel features have been forwarded, such as: concerted O-2 protonation mechanism, C-5 protonation mechanism, concerted C-6 protonation/decarboxylation mechanism, electrostatic stabilization of transition state mechanism, electrostatic stress of the ground state mechanism, O-4 protonation mechanism. Most of these mechanisms are only about the partial functional factors such as O-2,O-4 and C-5 . In addition, the influence of water molecules were considered on the superficial level in the past study.
     Based on the previous study, several models were designed. The effect of water molecules on the enzyme-catalyzed decarboxylation of Orotidine 5'–Monophosphate was investigated using density functional theory with the B3LYP functional. Barriers and ~(15)N kinetic isotope effect,~(13)C kinetic isotope effect of different models were calculated. Our results indicates that water molecules play an important role in TS stabilization.
     The main results of this thesis are as follows:
     Firstly, the model in which O-2 of OMP bond to a protonated water molecule were studied used hybrid Density Functional Theory (B3LYP functional) . The barrier of this model is 24.9kcal/mol. Compared with the barrier 39.6kcal/mol of the model just removing the protonated water molecular. The results showed that the indirect interactions between O-2 of the pyrimidine ring and the positive charged residues through chains of water molecules can lower the barrier height for decarboxylation significantly.
     Secondly , the effect of water molecules bonding to the O-2 and O-4 of OMP in the same time on the enzyme-catalyzed decarboxylation of Orotidine 5'–Monophosphate were investigated using density functional theory in the same level. Barriers of different models have been calculated and results were compared with the case of water molecules bonding to O-2/O-4 respectively. Our computation indicates that water molecules play an important role in TS stabilization. Our computation also indicates that it is the collective actions of various catalytic factors that make ODCase such a proficient enzyme.
     Thirdly, several models of the decarboxylation of OMP have been designed and optimized. ~(15)N kinetic isotope effect of N-1 and ~(13)C kinetic isotope effect of C-6 were calculated. The outcome of ~(13)C kinetic isotope effect and ~(15)N kinetic isotope effect consisting with the experimental result show that water molecules playing an important role in the decarboxylation of OMP.
引文
1.聂剑初,吴国利,张翼伸,杨绍钟,刘鸿铭,生物化学,高等教育出版社,1981
    2. Keith Shostak and Mary Ellen Jones Biochemistry,31,(1992)12155-12161
    3. Lieberman I, Kornberg A, Simms ES J Biol Chem (1955) 21: 403–415
    4. Radzicka A, Wolfenden R ,Science, 267 (1995) 90–92.
    5. Beak, P., Siegel, B., J. Am. Chem. Soc., 98 ( 1976) 3601.
    6. Brian G. Miller Top Curr Chem 238 (2004) 43–62
    7. Ehrlich, J. I., Hwang, C., Cook, P. F., and Blanchard, J. S., J. Am. Chem. Soc, 121 (1999) 6966-696
    8. Mark A. Rishavy and W. W. Cleland* , Biochemistry, Vol. 39, No. 16, 2000
    9. Silverman, R. B.; Groziak, M. P. J. Am. Chem. Soc. 1982, 104,6436.
    10. Lee, J. K., Houk, K. N., Science, 276 (1997) 942.
    11. T.C. Appleby, C. Kinsland, T.P. Begley, S.E. Ealick, Proc. Natl. Acad. Sci. USA, 97 (2000) 2005–2010.
    12. P. Harris, J.-C.N. Poulsen, K.F. Jensen, S. Larsen, Biochemistry 39 (2000) 4217–4224.
    13. B.G. Miller, A.M. Hassell, R. Wolfenden, M.V. Milburn, S.A. Short, Proc. Natl. Acad. Sci. USA 97 (2000) 2011–2016.
    14. N. Wu, Y. Mo, J. Gao, E.F. Pai, Proc. Natl. Acad. Sci. USA 97 (2000) 2017–2022.
    15. Appleby, T. C., Kinsland, C., Begley, T. P., Ealick, S. E., Proc.Natl. Acad. Sci. U.S.A., 97 ( 2000) 2005.
    16. Lieberman I, Kornberg A, Simms ES (1955) J Biol Chem 21: 403–415
    17 .Warshel, A.; S?trajbl, M.; Villa`, J.; Floria′n, J. Biochemistry 2000,39, 14728.
    18.K.N.Houk.Dean J.Tantillo.Courtney Stanton.Yunfeng Hu,Top Curr Chem (2003)238:1-22
    1. L. H. Thomas, The Calculation of Atomic Fields, Proc. Camb. Phil. Soc. 1927, 23, 542- 548.
    2. E. Fermi, Un methodo statistico par la determinazione di alcune proprietádell' atoma, Rend. Accad. Lincei 1927, 6, 602-607.
    3. P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. B 1964, 136, 864-871.
    4. W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. A 1965, 140, 1133.
    5. J. P. Perdew, K. Schmidt, in Density Functional Theory and Its Applications to Materials, edited by V. E. van Doren, K. van Alseoy and P. Geerlings, American Institute of Physics, 2001.
    6. D. Becke, A new mixing of Hartree–Fock and local density-functional theories, J. Chem. Phys. 1993, 98, 1372-1377.
    7. D. Becke, Density-functional thermochemistry.Ⅲ. The role of exact exchange, J. Chem. Phys. 1993, 98, 5648-5652.
    8. P. J. Stevens, J. F. Devlin, C. F. Chabalowski and M. J. Frisch, Ab Initio Calculations of Vibrational Absorption and Circular Dichroism Spectra Using SCF, MP2, and Density Functional Theory Force Fields, J. Phys. Chem. 1994, 98, 11623-11627.
    9. D. Becke, Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing, J. Chem. Phys. 1995, 104, 1040-1046.
    10. D. Becke, Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals, J. Chem. Phys. 1997, 107, 8554-8560.
    11. D. Becke, A new inhomogeneity parameter in density-functional theory, J. Chem. Phys. 1998, 109, 2092-2098.
    12. C. Adamo, V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, J. Chem. Phys. 1999, 110, 6158-6170.
    13. Wiendelt, K. Harold, Kinetics Applied to Organic Reactions. New York: Marcel Dekker Inc, 1980.
    14.温敬铨,有机化学反应机理的研究(上册),南京:华东工学院出版社,1986.
    15.魏运洋,李建,化学反应机理导论,北京:科学出版社,2004.
    16.唐有祺,统计力学及其在物理化学中的应用,北京:科学出版社,1979.
    17. H. William, Jr. Saunders, Kinetic Isotope Effects, in Investigation of Rates and Mechanisms of Reactions, New York: John Wiley&Sons, 1986.
    18.张宇,几种交换能密度泛函的数值检验,北京大学2003届博士毕业论文,北京:北京大学出版社,2003.
    19.蒋华良陈凯先嵇汝运,化学通报,1995,4,1
    [1]. Lieberman I, Kornberg A, Simms ES (1955) J Biol Chem 21: 403–415
    [2]. Radzicka A, Wolfenden R (1995) Science 267:90–92
    [3].Lee JK, Houk KN (1997) Science 276:942
    [4]. Lee JK, Houk KN (1997) Science 276:942
    [5]. Harris P, Poulsen J-CN, Jensen KF, Larsen S (2000) Biochemistry 39:4217–4224
    [6]. Smiley JA, Jones ME (1992) Biochemistry 31:12162–12168
    [7]. Warshel A, Florián J, S.trajbl M, VillàJ (2001) ChemBio Chem2:109–111
    [8]. Begley TP, Appleby TC, Ealick SE (2000) Curr Opin Struct Biol 10:711–718
    [9]. Lee JK, Houk KN (1997) Science 276:942–945
    [10]. Singleton DA, Merrigan SR, Kim BJ, Beak P, Phillips LM, Lee JK (2000) J Am Chem Soc 122:3296–3300
    [11].Ning Wu , Emil F. Pai Top Curr Chem (2004) 238:23–42
    [12].DianaL.Shem, ScottGronert, andWeiming WUB ioorganic Chemistry 32(2004):76-81
    [13]. J Mol Model (2002) 8:119-130
    [14]. Marcus Lundberg·Margareta R. A. Blomberg·Per E. M. Siegbahn Top Curr Chem (2004) 238:79–112
    [15]. J. Phys.Chem.B (2007) 111(43):12573-12581
    [16]. K.N.Houk.Dean J.Tantillo.Courtney Stanton.Yunfeng Hu Top Curr Chem (2003)238:1-22
    [17]. Brian G. Miller Top Curr Chem (2004) 238:43–62
    [18]. Houk KN, Lee JK, Tantillo DJ, Bahmnanyar S, Hietbrink BN (2001) ChemBioChem 2:113–118
    [19]. Ning Wu,Yirong Mo,jiali Gao,and Emil F.Pai PNAS (2000) vol.97 no.5 2017-2022
    [20]. (2000) Biochemistry 39:8113
    [21].Miller B G.Trant T W.Wolfenden R (1998) Bioorg Chem 26:238
    [22]. Wu N, Mo Y, Gao J, Pai EF (2000) Proc Natl Acad Sci USA 97:2017–2022
    (1) Jones ME Annu Rev Biochem 49 (1980) 253
    (2) Lee, J. K.; Tantillo, D. J. Computational Studies on the Studies on the Mechanism of Orotidine Monophosphate Decarboxylase. In AdVances in Physical Chemistry; Vol. 38, Richard, J. P., Ed.; Academic Press: New York, 2003;
    (3) Miller, B. G.; Wolfenden, R. Annu. ReV. Biochem., 71 ( 2002) 847.
    (4) Ouchi, A. M. Chem. Eng. News, 78 (2000) 42.
    (5) Chin, G. Science,288 (2000) 401.
    (6) Stubbe, J.; Johnson, L. N. Curr. Opin. Struct. Biol., 10 (2000) 709.
    (7) Radzicka A, Wolfenden R ,Science, 267 (1995) 90–92
    (8) Shostak K, Jones ME Biochemistry, 31 (1992) 12155–12161
    (9)Cui W, DeWitt JG, Miller SM, Wu W Biochem Biophys Res Commun, 259 (1999) 133–135
    (10) Miller BG, Smiley JA, Short SA, Wolfenden R J Biol Chem, 274 (1999) 23841–23843
    (11) K. N. Houk·Dean J. Tantillo·Courtney Stanton·Yunfeng Hu Top Curr Chem, 238 (2003) 1–22
    (12) Beak, P.; Siegel, B. J. Am. Chem. Soc., 98 ( 1976) 3601.
    (13) Lee, T. S.; Chong, L. T.; Chodera, J. D.; Kollman, P. J. Am. Chem.Soc., 123 ( 2001) 12837
    (14) Appleby, T. C.; Kinsland, C.; Begley, T. P.; Ealick, S. E. Proc.Natl. Acad. Sci. U.S.A., 97 ( 2000) 2005.
    (15) Warshel, A.; S?trajbl, M.; Villa`, J.; Floria′n, J. Biochemistry,39 (2000) 14728.
    (16) Wu, N.; Mo, Y.; Gao, J.; Pai, E. F. Proc. Natl. Acad. Sci. U.S.A., 97 (2000 )2017
    (17) Lee, J. K.; Houk, K. N. Science, 276 (1997) 942.
    (18)Beak P, Siegel B J Am Chem Soc, 9 5(1973) 7919
    (19)Houk KN, Lee JK, Tantillo DJ, Bahmanyar S, Hietbrink BN ChemBioChem, 2 (2001) 113
    (20) T.C. Appleby, C. Kinsland, T.P. Begley, S.E. Ealick, Proc. Natl. Acad. Sci. USA, 97 (2000) 2005–2010.
    (21) P. Harris, J.-C.N. Poulsen, K.F. Jensen, S. Larsen, Biochemistry 39 (2000) 4217–4224.
    (22) B.G. Miller, A.M. Hassell, R. Wolfenden, M.V. Milburn, S.A. Short, Proc. Natl. Acad. Sci. USA 97 (2000) 2011–2016.
    (23) N. Wu, Y. Mo, J. Gao, E.F. Pai, Proc. Natl. Acad. Sci. USA 97 (2000) 2017–2022.
    (24)Diana L.Shem,Scott Gronert,and Weiming WU Bioorganic Chemistry 32(2004) 76-81
    (25)Gawley RE, Low E, Zhang Q, Harris R, J Am Chem Soc, 122 (2000) 3344
    (26)Futuko JM, Jensen FR, Acc Chem Res, 16 (1983) 177
    (27) Marcus Lundberg·Margareta R. A. Blomberg·Per E. M. Siegbahn Top Curr Chem, 238 (2004) 79–112
    (28)Ning Wu·Emil F. Pai Top Curr Chem, 238 (2004) 23–42
    (29)Ehrlich, J. I., Hwang, C., Cook, P. F., and Blanchard, J. S. J. Am. Chem. Soc, 121(1999)6966-6967.
    (30) M. W. Wong, M. J. Frisch, and K. B. Wiberg, J. Am. Chem. Soc., 113 (1991) 4776.
    (31) M. W. Wong, K. B. Wiberg, and M. J. Frisch, J. Am. Chem. Soc., 114(1992)523.
    (32) M. W. Wong, K. B. Wiberg, and M. J. Frisch, J. Chem. Phys., 95 (1991) 8991.
    (33) M. W. Wong, K. B. Wiberg, and M. J. Frisch, J. Am. Chem. Soc., 114 (1992) 1645.
    (34)J. G. Kirkwood, J. Chem. Phys., 2 (1934) 351.
    (35) L. Onsager, J. Am. Chem. Soc., 58 (1936) 1486.
    (36)Marcus Lundberg·Margareta R. A. Blomberg Per E. M. Siegbahn J Mol Model, 8 (2002)119-130
    (37)Becke AD, J Chem Phys, 98 (1993)1372–1377
    (38)Becke AD, J Chem Phys, 98 (1993) 5648–5652
    (39) Dunning TH Jr, Hay PJ (1976) Gaussian basis sets for molecular calculations. In: Schaefer HF (ed) Methods of electronic structure theory, modern theoretical chemistry, vol 3, pp 1–28, Plenum Press, New York 1976.
    (40)Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA,Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratman RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M,Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S,Ochterski J, Petersson GA, Ay-ala PY, Cui Q, Morokuma K,Malick DK, Rabuck AD, Raghavachari K, Foresman JB,Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu C,Liashenko A, Piskorz P, Komaromi, I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG,Chen W, Wong MW, Andres JL, Gonzales C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian,Pittsburgh, Pa.
    (41) Klamt A, Schuurmann G, J Chem Soc, Perkin Trans, 25 (1993) 799–805
    (42) Barone V, Cossi M, J Phys Chem A, 102 (1998) 1995–2001
    (43) Shostak, K. & Jones, M. E., Biochemistry, 31 (1992) 12155–12161
    (44)Brian G. Miller Top Curr Chem, 238 (2004) 43–62
    (45)V.Barone, M.Cossi, J.Phys.Chem.Soc.Perkin Trans.25(1993)799-805
    (46)Brian G.Miller, Top Curr.Chem.238(2004)43-62.
    [1] Jones ME, Annu Rev Biochem, 49 (1980) 253.
    [2] Radzicka A, Wolfenden R ,Science, 267 (1995) 90–92.
    [3] Warshel, A., S?trajbl, M., Villa`, J., Floria′n, J., Biochemistry,39 (2000) 14728.
    [4] Wu, N., Mo, Y., Gao, J., Pai, E. F., Proc. Natl. Acad. Sci. U.S.A., 97 (2000 )2017.
    [5] Beak, P., Siegel, B., J. Am. Chem. Soc., 98 ( 1976) 3601.
    [6] Lee, J. K., Houk, K. N., Science, 276 (1997) 942.
    [7] Appleby, T. C., Kinsland, C., Begley, T. P., Ealick, S. E., Proc.Natl. Acad. Sci. U.S.A., 97 ( 2000) 2005.
    [8] T.C. Appleby, C. Kinsland, T.P. Begley, S.E. Ealick, Proc. Natl. Acad. Sci. USA, 97 (2000) 2005–2010.
    [9] P. Harris, J.-C.N. Poulsen, K.F. Jensen, S. Larsen, Biochemistry 39 (2000) 4217–4224.
    [10] B.G. Miller, A.M. Hassell, R. Wolfenden, M.V. Milburn, S.A. Short, Proc. Natl. Acad. Sci. USA 97 (2000) 2011–2016.
    [11] N. Wu, Y. Mo, J. Gao, E.F. Pai, Proc. Natl. Acad. Sci. USA 97 (2000) 2017–2022.
    [12] Diana L.,Shem,Scott Gronert,and Weiming WU, Bioorganic Chemistry 32(2004) 76-81.
    [13] Marcus Lundberg, Margareta R. A., Blomberg, Per E. M., Siegbahn, Top Curr Chem, 238 (2004) 79–112.
    [14] Kendall N. Houk, Jeehiun K. Lee, Dean J. Tantillo, Sogole,Bahmanyar,and Bruce N. Hietbrink, CHEMBIOCHEM, 2,( 2001 )113–118
    [15] Sun Hur and Thomas C. Bruice, PNAS ,99( 2002) , 9668–9673
    [16] Marcus Lundberg, Margareta R. A., Blomberg Per E. M., Siegbahn J Mol Model,8 (2002)119-130.
    [17] Ning Wu, Wanda Gillon, and Emil F. Pai, Biochemistry ,41(2002) 4002 4011
    [18] Ning Wu, Emil F, Pai ,Top Curr Chem, 238 (2004) 23–42.
    [19] Ehrlich, J. I., Hwang, C., Cook, P. F., and Blanchard, J. S., J. Am. Chem. Soc, 121(1999)6966-696
    [20]王永梅,王业柳,田间.大学化学,第19卷,第3期,2004
    [21]王永,柴硕,李冬梅,韩克利,原子与分子物理学报,Vol.25 No.1 2008
    [22] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA,Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratman RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M,Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S,Ochterski J, Petersson GA, Ay-ala PY, Cui Q, Morokuma K,Malick DK, Rabuck AD, Raghavachari K, Foresman JB,Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu C,Liashenko A, Piskorz P, Komaromi, I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG,Chen W, Wong MW, Andres JL, Gonzales C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian,Pittsburgh, Pa.
    [23] Mark A. Rishavy and W. W. Cleland* , Biochemistry, Vol. 39, No. 16, 2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700