氯过氧化物酶的固定化及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯过氧化物酶(Chloroperoxidase,CPO)因其独特的活性中心结构而成为过氧化物酶家族中应用最广泛的酶,尤其引人注目的是它对底物具有手性识别功能,因此在不对称有机合成,生物转化,手性药物制备,环境毒物降解等领域具有诱人的应用前景。但游离CPO在高温、强酸强碱等极端条件下易变性失活,严重限制了它的产业化应用。本文基于CPO的固定化研究,提高了酶的热稳定性、催化活性以及对合成环境的适应能力,从而可为固定化酶在工业化生产中的实际应用奠定基础。
     酶固定化技术是实现酶重复连续使用和稳定性改善的有效手段,目前对过氧化物酶家族中其它酶的固定化报道较多,而对CPO的固定化报道较少。本文选用两种新型材料——壳聚糖膜/球和磁性微球作为载体进行CPO的固定化研究。壳聚糖作为一种高分子材料不仅来源丰富,化学性质稳定,易于通过接枝而改性,而且具有生物相容性,是一种十分理想的酶固定化载体;而磁性微球所具有的超顺磁性,使其分离过程可以通过一个钕铁硼永磁材料提供的磁场反复操作而不聚集,十分有利于亲水性的CPO与反应产物的分离及回收循环利用;同时经异硫氰酸根包覆的磁性微球表面易于酶的功能基团自组装,可达到较高的酶载量。
     本文通过MCD氯化活性的测定考察了CPO固定的最适条件,并研究了固定化CPO的结构和表面性质,比较了游离CPO和固定化CPO间酶学性质的差异,并将磁粒固定化CPO应用于有机合成——邻苯三酚的催化聚合反应。主要实验结果如下:
     1.以壳聚糖为载体,戊二醛为交联剂,通过共价交联法制备了壳聚糖膜(球)固定化CPO。固定化反应的最佳条件:戊二醛浓度0.8%,pH 3.5。与游离CPO相比,热稳定性、对化学变性剂尿素和过氧化氢的耐受性均有明显提高。在50℃下,温育1 h后游离CPO仅剩余0.02%的催化活性,而固定化CPO可将催化活性保留40%以上;同时当尿素浓度为1.5M时,固定化CPO基本不丧失活性,而游离CPO的活性损失超过32%;而在300μM H_2O_2中放置20 h后,固定化CPO保留酶活性58%,游离CPO只能保留42%。
     2.以xMag~(TM)异硫氰酸根末端磁性微球为母体,通过共价结合的方法固定CPO。固定化反应的最佳条件:pH 5.5,绑定时间10 min,酶载量可达25.59 mg/g,固定化效率为75.5%。与游离CPO相比,米氏常数Km值增大,固定化CPO与底物亲和力减小,热稳定性、对尿素、过氧化氢及有机溶剂的抗失活能力,以及重复使用次数均有所提高。在300μM的H_2O_2溶液中储存96 h后固定化CPO存留活性仍有50%,而游离CPO仅剩9%。固定化CPO重复使用16次后,其活力仍能保持最初活性的85%以上。
     3.因此本文研究了磁性微球固定化氯过氧化物酶对邻苯三酚的催化聚合反应。结果表明,固定化氯过氧化物酶可高效催化邻苯三酚转化为红棓酚。
Chloroperoxidase(CPO) is recognized as the most versatile enzyme in the group of peroxidases because of its unique active site structure,it is noticeable particularly that it has the function of chiral recognition for substrates,so it has very captivating development and application in asymmetric organic synthesis,biotransformation,chiral pharmaceuticals,detoxication of environmental pollutants and etc.However,due to its inactivation in extreme conditions,including high-temperature,strong acids and base,the industrial application of native CPO has been severely limited.In this paper,immobilized CPO improved thermal stability and catalytic activity of enzyme, and increased the adaptive ability to the synthesis environment.Meanwhile,it will provide a basis for immobilized enzyme ha the practical application.
     Immobilization technology of enzyme is an effective measure to achieve repeatly using of enzyme and improve stability.In the article,two new materials were selected for the carriers of immobilized CPO,including chitosan membranes/beads and magnetic microspheres.Chitosan is a very ideal immobilized carrier because of its rich resource,good biocompatibility and susceptibility to chemical modification.Meanwhile,magnetic microspheres have super paramagnetism,so the immobilized enzyme by magnetic microspheres is easer to be separate and recycle than other carriers, and it can reach a higher-load.The results of optimized conditions of immobilization of CPO, differences between native CPO and immobilized CPO had be investigated by MCD assay,and application of immobilized CPO in catalytic polymerization of pyrogaUol had be showed as follows:
     1.CPO was covalently immobilized on chitosan membranes(beads) under mild condition with glutararldehyde as a crosslinking agent.The results indicated that the optimum concentration of glutaraldehyde and pH were determined to be 0.8%and 3.5,respectively.Compared with the native CPO,immobilized CPO has excellent thermal stability,and the stability of immobilized CPO against urea and hydrogen peroxide exposure was improved.The immobilized CPO can retain about 40%of its activity after 1h incubation at 50℃,whereas native CPO could maintain only about 0.02%of its activity under the same conditions.Furthermore,immobilized CPO had unchanged residual activity (about 100%),but the 32%loss of activity for native CPO in the presence of 1.5 M urea.When incubated with 300μM H_2O_2,the immobilized CPO retained 58%after 20 h whereas the residual activity of native CPO only retained 42%.
     2.Thiocyanate groups containing magnetic micropheres were used in covalent immobilization of the enzyme "CPO".The results showed the optimal conditions of immobilization:the optimal pH was 5.5,and the optimal reaction time was 10 min.The maximum amount of immobilization CPO on the magnetic micropheres was 25.59 mg/g support.Compared with the native CPO,the affinity of immobilized CPO decreased toward substrate and its stability was considerably improved. Immobilized CPO is incubated in the presence of 300μM H_2O_2 in different times,the immobilized CPO still remain about 50%of its activity after 96 h,whereas native CPO only remained around 9%. This result suggested that the covalently immobilized CPO was considerably stable on the magnetic micropheres surface and the immobilized CPO retained more than 85%of its initial activity after 16 cycles of usage.
     3.So the catalyzed polymerization of pyrogallol using immobilized CPO was investigated.The result indicates that the immobilized enzyme was used for transforming pyrogallol into purpurogallin in aqueous phase.
引文
[1]G.H.Fang,P.Kenigsberg,M.J.Axley,et al.Cloning and sequencing of chloroperoxidase cDNA[J].Ncleic Acids Research,1986,14:8061-8071.
    [2]P.D.Shaw,L.P.Hager.Biological Chlorination.VI Chloroperoxidase:A component of the β-Ketoadipate chlorinase system[J].J.Biol.Chem.,1961,236:1626-1630.
    [3]M.P.J.Van Deurzen,E Van Rantwijk,R.A.Sheldon.Selective oxidations catalyzed by peroxidases[J].Tetrahedron,1997,53:13183-13220.
    [4]S.Colonna,N.Gaggero,C.Richelmi,P.Pasta.Recent biotechnological developments in the use of peroxidases[J].Trends.Biotechnol.,1999,17:163-168.
    [5]W.Adam,M.Lazarus,C.R.Saha-M611er,O.Weichold,U.Hoch,D.Hairing,P.Schreier.Biotransformations with peroxidases[J].Adv.Biochem.Eng.Biotechnol.,1999,63:73-108.
    [6]F.Van Rantwijk,R.A.Sheldon.Selective oxygen transfer catalysed by heme peroxidases:synthetic and mechanistic aspects[J].Curr.Opin.Biotechnol.,2000,11:554-564.
    [7]D.R.Morris,L.P.Hager.Chloroperoxidase I.Isolation and properties of the crystalline glycoprotein[J].J.Biol.Chem.,1966,241:1763-1768.
    [8]M.A.Pickard,A Hashimoto.Stability and carbohydrate composition of chloroperoxidase from caldariomyces fumago grown in a fructose-salts medium[J].Canadian Journal of Microbiology.1988,34:998-1002.
    [9]M.Sundaramoorthy,J.Terner,T.L.Poulos.Stereochemistry of the chloroperoxidase active site:crystallographic and molecular-modeling studies[J].Chemical & Biology,1998,5:461-473.
    [10]曹树煜,刘均洪.过氧化物酶应用的生物技术进展[J].化学工业与工程技术,2003,24(5):28-33.
    [11]R.L.Osborne,G.M.Raner,L.P.Hager,et al.C.fumago Chloroperoxidase is also a dehaloperoxidase:oxidative dehalogenation of halophenols[J].J.Am.Chem.Soc.,2006,128:1036-1037.
    [12]智丽飞,蒋育澄,胡满成,李淑妮.氯过氧化物酶的手性催化活性在有机合成 中的应用[J].化学进展,2006,18(09): 1150-1156.
    [13] X. W. Yi, A. Conesa, P. J. Punt, L. P. Hager. Examining the role of glutamic acid 183 in chloroperoxidase catalysis[J]. J. Biol. Chem., 2003,278(16): 13855-13859.
    [14] M. Sundaramoorthy, J. Terner, T. L. Poulos. The crystal structure of chloroperoxidase: a heme peroxidase-cytochrome P450 funtional hybrid[J].Structure, 1995,3:1367-1377.
    [15] P. Keningsberg, G. H. Fang, L. P. Hager. Post-translational modifications of chloroperoxidase from caldariomyces fumago[J]. Arch. Biochem. Biophys., 1987,254: 409-415.
    [16] E. Kiljunen, L. T. Kanerva. Chloroperoxidase catalysed oxidation of alcohols to aldehydes[J]. J. Mol. Cata. B: Enzym., 2000, 9:163-172.
    [17] M. P. J. Van Deurzen, F. Van Rantwijk, R. A. Sheldon. Synthesis of substituted oxindoles by chloroperoxidase catalyzed oxidation of indoles[J]. J. Mol. Catal. B:Enzym., 1996, 2: 33-42.
    [18] J. A. Thomas, D. R. Morris, L. P. Hager. Chloroperoxidase. VIII. Formation of peroxide and halide compelexes and their relation to the mechanism of the halogenation reaction[J]. J. Bio. Chem., 1970, 245: 3135-3142.
    [19] L. P. Hager, D. R. Morris, F. S. Brown, H. Eberwein. Chloroperoxidase II.utilization of halogen anions[J]. J. Biol. Chem., 1966, 241:1769-1777.
    [20] E. J. Allain, L. P. Hager, L. Deng, E. N. Jacobsen. Highly enantioselective epoxidation of disubstituted alkenes with hydrogen peroxide catalyzed by chloroperoxidase[J]. J. Am. Chem. Soc, 1993,115: 4415-4416.
    [21] J. A. Morgan, Z. Lu, D. S. Clark. Toward the development of a biocatalytic system for oxidation of p-xylene to terephthalic acid: oxidation of l,4-benzenedimethanol[J]. J. Mol. Catal. B: Enzym., 2002,18:147-154.
    [22] D. R. Doerge, M. D. Corbett. Peroxygenation mechanism for chloroperoxidase-catalyzed N-oxidation of arylamines[J]. Chem. Res. Toxicol., 1991,4: 556-560.
    [23] S. Colonna, N. Gaggero, L. Casella, G. Carrea, P. Pasta. Chloroperoxidase and Hydrogen Peroxide: an Efficient System for Enzymatic Enantioselective Sulfoxidations[J]. Tetrahedron: Asymmetry, 1992, 3: 95-106.
    [24] H. Fu, H. Kondo, Y. Ichikana. Chloroperoxidase-catalyzed asymmetric synthesis:enantioselective reactions of chiral hydroperoxides with sulfides and bromohydration of glycals[J]. J. Org. Chem., 1992, 57: 7265-7270.
    [25]S.G.Allenmark,M.A.Andersson.Chloroperoxidase-catalyzed asymmetric synthesis of a series of aromatic cyclic sulfoxides[J].Tetrahedron:Asymmetry,1996,7:1089-1094.
    [26]S.Colonna,N.Gaggero,G.Carrea,P.Pasta.A new enzymatic enantioselective synthesis of dialkyl sulfoxides catalysed by monooxygenases[J].Chemical Communications,1997,5:439-440.
    [27]L.P.Hager,F.P.Lakner,A Basarapathruin.Chiral synthons via chloroperoxidase catalysis[J].J.Mol.Cata.B:Enzym.,1998,5:95-101.
    [28]S.Hu,L.P.Hager.Asymmetirc Epoxidation of Functionalized cis-Olefins Catalyzed by Chloroperoxidase[J].Tetrahedron.Lett.,1999,40:1641-1644.
    [29]K.M.Manoj,F.J.Lakner,L.P.Hager.Epoxidation of Indene by chloroperoxidase[J].J.Mol.Cata.B:Enzym.,2000,9:107-111.
    [30]A.Zaks,D.R.Dodds.Chloroperoxidase-Catalyzed Asymmetric Oxidations:Substruate Specificity and Mechanistic Study[J].J.Am.Chem.Soc.,1995,117:10419-10424.
    [31]S.Hu,L.P.Hager.Highly enantioselective propargylic hydroxylations catalyzed by chloroperoxidase[J].J.Am.Chem.Soc.,1999,121:872-873.
    [32]V.P.Miller,R.A.Tschirret-guth,P.R.Ortiz De Montellano.Chloroperoxidasecatalyzed benzylic hydroxylation[J].Arch.Biochem.and Biophys.,1995,319:333-340.
    [33]M.P.J.Van Deurzen,I.J.Remkes,F.Van Rantwijk,R.A.Sheldon..Chloroperoxidase catalyzed oxidations in t-butyl alcohol/water mixtures[J].J.Mol.Catal.A:Chem.,1997b,117:329-337.
    [34]禹邦超,刘德立.应用酶学导论[M]-华中师范大学出版社,1995:244.
    [35]赵永芳.生物化学技术原理及其应用[M].武汉大学出版社,1994.
    [36]禹邦超,刘德立.应用酶学导论[M].华中师范大学出版社,1995:248.
    [37]G.E.Schulz,et al.Principles of Protein Structure[M],Springer-Verlag,Berlin and New York,1979,Chap.3.
    [38]A.M.Klibanov.Advances In Applation Microbiol[M],Academic Press,New York.1983,29.
    [39]B.Allal,F.Jacques,L.Jacques,et al.Adsorption of succinylated lysozyme on hyroxyapatite[J].J.Colloid Interface Science,1997,189:37-42.
    [40]P.N.Barett,J.M.Cooper..Applications of electroactive polymers in bioelectrochemistry and bioelectronics[J].Electroact.Polym.Electrochem.,1994,363(2):233-267.
    [41]E.A.Markvicheva.Immobilized enzyme and cells in poly(N-vinyl caprolactam)based-hydrogels[J].Appl.Biochemical.Bitechnol.,2000,88(1-3):145-157.
    [42]Y.C.Liu,J.H.Qian.Immobilization of horseradish peroxidase onto a composite membrane of regenerated silk fibroin and polyvinyl alcohol and its application to a new methylene blue-mediating sensor for hydrogen peroxide[J].Enzy.Microb.Technol.,1997,21:154-159.
    [43]Y.Yesim.Utilization of bentonite as a support material for immobilization of candica rugosa lipase[J].Pro.Biochem.,2005,40:2155-2159o
    [44]A.Fishman,I.levy,U.Cogan,et al.Stabilization of horseradish peroxidase in aquepous-organic media by immobilization onto cellulose using a cellulose-binding-domain[J].J.Mol.Cata.B:Enzym.,2002,18:121-131.
    [45]Z.Quinn,K.Zhou,X.D.Chen.Immobilization of β-galactosidase on graphite surface by glutaraldehyde[J].J.Food.Engin.,2001,48(1):69-74.
    [46]张延红.固定酪氨酸酶的制备及部分性质研究[D].成都:四川大学,2005.
    [47]T.M.S.Chang.Biomedical Application of Immobilized Enzymeis and Proteins[M].Plenum.Press.New York,1997.
    [48]L.Irina,D.Ekaterina,U.Natalya.Recombinant firefly luciferase in Escherichia coli:Properties and immobilization[J].Appl.Biochem.Biotechnol.,2000,88(1-3):127-136.
    [49]Y.C.Liu,X.Chen,et al.Drug injection of Lanwei acupoint to prevent pull response during appendectomy[J].Appl.Blochem.Blotechnol,1997,62:105.
    [50]G.B.Alejandro,V.G.Alexander,et al.Immobilization of ?-galactosidase on fibrous matrix by polyethyleneimine for production of galacto-oligosaccharides from lactose[J].Appl.Biochem.Biotechnol.,2000,88:345.
    [51]R.S.Freire,N.Duran,L.T.Kubota.Electrochemical Biosensor-Based Devices for Continuous Phenols Monitoring in Environmental Matrices[J].Appl.Biochem.Biotechnol.,2002,13(4):456-262.
    [52]S.M.Cramer,G.Subramanian.Recent advances in the theory and practice of displacement chromatography[J].Sep.Purif.Methods,1990,19(1):31-91.
    [53]I.Marie,A.Karlsson,C.Pettersson.Separation of enantiomers using a-chymotrypsin-silica as a chiral stationary phase[J].J.Chromatogr.A,1992,604: 185-196.
    [54] M. Hartmann, C. Streb. Selective oxidation of indole by chloroperoxidase immobilized on the mesoporous molecular sieve SBA-15[J]. J. Porous. Mater.,2006,13: 347-352.
    [55] J. Aburto, M. Ayala, I. Bustos-Jaimes. Stability and catalytic properties of chloroperoxidase immobilized on SBA-16 mesoporous materials[J]. Micro.Mesop. Mater., 2005, 83:193-200.
    [56] V. Trevisan, M. Signoretto, S. Colonna. Microencapsulated chloroperoxidase as a recyclable catalyst for the enantioselective oxidation of sulfides with hydrogen peroxide[J]. Angew. Chem. Int. Ed., 2004, 43: 4097-4099.
    [57] C. E. La Rotta Hernandez, S. Lutz, A. Liese. Activity and stability of caldariomyces fumago chloroperoxidase modified by reductive alkylation amidation and cross-linking[J], Enzy. Microb. Technol., 2005, 37: 582-588.
    
    [58] 罗贯民,曹淑桂,张今.酶工程[M].北京:化学工业出版社, 2002:39-46.
    
    [59] G Y. Zhu, P. Wang. Novel interface-binding chloroperoxidase for interfacial epoxidation of styrene[J]. J. Biotech., 2005,117: 195-202.
    [60] J-B. Park, D. S. Clark. New reaction system for hydrocarbon oxidation by chloroperoxidase[J]. Biotech. Bioeng., 2006, 94:189-192.
    [61] F. Van De Velde, M. Bakker, F. Van Rantwijk. Engineering chloroperoxidase for activity and stability[J]. J. Mol. Catal. B: Enzym., 2001a, 11: 765-769.
    [62] G P. Rai, Q. Zong, L. P. Hager. Isolation of directed evolution mutants of chloroperoxidase resistant to suicide inactivation by primary olefins[J]. Israel. J.Chem., 2000,40: 63-70.
    [63] A. F. Dexter, L. P. Hager. Transient heme N-Alkylation of chloroperoxidase by terminal alkenes and alkynes[J]. J. Am. Chem. Soc, 1995,117: 817-818.
    [64] P. Wasserscheid, W. Keim. Ionic Liquids-New "Solutions" for Transition Metal Catalysis[J]. Angew. Chem. Int. Ed. Eng., 2000, 39: 3772-3789.
    [65] T. Welton. Room-temperature ionic liquids solvents for synthesis and catalysis[J].Chem. Rev., 1999, 99: 2071-2083.
    [66] K. R. Seddon. Ionic Liquids for Clean TechnoIogy[J]. J. Chem. Technol.Biotechnol., 1997, 68: 351-356.
    [67] C. Sanfilippo, N. D'antona, G Nicolosi. Chloroperoxidase from caldariomyces fumago is active in the presence of an ionic liquid as co-solvent[J]. Biotechn. Lett., 2004.26:1815-1819.
    [68]黄雅钦,黄智明.壳聚糖及其衍生物作为固定化蛋白酶的载体[J].现代化工,2001,21(2):20-23.
    [69]蒋挺大.壳聚糖[M].北京:化学工业出版社.2001:44-47.
    [70]王小红,马建标,何炳林.甲壳素、壳聚糖及其衍生物的应用[J].功能高分子学报,1999,12(2):197-202.
    [71]鲁从华,罗传秋,曹维孝.壳聚糖的改性及其应用[J].高分子通报,2001,(6):46-53
    [72]D.K.Boadi,R.J.Neufeld.Encapsulation of tannase for hydrolysis of tea tannins[J].Enzy.Microb.Technol.,2001,28(7-8):590.595.
    [73]F-C.Wu,R-L.Tseng,R-S.Juang.Enhanced abilities of highly swollen chitosan micropheres for color removal and tyrosinase immobilization[J].J.Hazard.Mater.,2001,B81:167-177.
    [74]G.Wang,J-J.Xu,L-H.Ye,et al.Highly sensitive sensors based on the immobilization of tyrosinase in chitosan[J].Bioelectrochemistry,2002,57:33-38.
    [75]S.B.Seema,H.N.Steven.Immobilization of iipase using hydrophilic polymers in the form of hydrogel micropheres[J].Biomaterials,2002,23:(3) 627-636:
    [76]J-P.Chen,J-Y.Chen.Preparation and characterization of immobilized phosphorlipase A2 on chitosan micropheres for lowering serum cholesterol concentration[J].J.Mol.Catal.B:Enzym.,1998,5:483-490.
    [77]A.F.Abdel-Fattah,M.Y.Osman,M.A.Abdel-Naby.Production and immobilization of cellobiase from aspergillus niger A20[J].Chemical Engineering Journal,1997,68:189-196.
    [78]A.Martino,P.G.Pifferi,G.Spagna.Immobilization of β-Glucosidase from a Commercial Preparation.Part 2.Optimization of the Immobilization Process on Chitosan[J].Process Biochemistry,1996,31(3):287-293.
    [79]罗付生,李凤生.超微料子设计技术及应用[J].材料科学与工程,2001,19(2):115-118.
    [80]魏衍超,杨连生.生物高分子磁性微球的制备、结构、性质和应用[J].磁性材料及器件,1999,6(30):18-21.
    [81]A.Givalrdan,A.Effosse,D.Faure,et al.Polyphenoloxidase in Azospirillum lipoferum isolated from rice rhizosphere:evidence for lacease activity in non-motile strains of Azosporillum lipoferum[J].FEMS microbial Lett,1993,108: 205-210.
    [82]E.I.Solomon,U.M.Sundaran,T.E.Machonkin.Multicopper oxidase and oxygenases[J].Chem.Rev.,1996,96:563-605.
    [83]A.I.Yaropolov,O.V.Skorobogko,S.S.Vartanov,et al.Laccase:properties,catalytic mechanism,and applicability[J].Appl.Biochem.Biotechnol.,994,49:257-280.
    [84]L.Kaichang,X.Feng,L.Karl-Erik.et al.Comparison of Fugal Laccases and Redox Mediatorss in Oxidation of a Nonphenolic Lignin Model Compound[J].Appl.Environ.Microbiol.,1999,65:2654-2660.
    [85]王习文,詹怀宇.漆酶/介体系统生物漂白技术[J].西南造纸,2002,31(3):7-10.
    [86]康从宝,李清心,刘瑞田.一株白腐菌产生的漆酶对RB宙蓝的脱色作用[J].应用与环境生物学报.2002,8(3):298-301.
    [87]赵春芳,胡道伟,周蓬蓬.白腐菌降解偶氮金属络合染料的研究[J].华中科技大学学报:自然科学版,2001,29(8):108-110.
    [88]D.G.Stefano,P.Piacquadio,V.Sciancalepore.Metalchelate regenerable carriers in food processing[J].Biotechnol.Techniques,1996,10:857-860.
    [89]A.Lante,A.Crapisi,G.Pasini,et al.Characteristics of laccase immobilized ondifferent supports for wine - making technology[J].Advances in Molecular Cell Biology,1996,15A:229-236.
    [90]R.Vazquez-Duhalt,E.Torres,B.Valderrama.Will biochemical catalysis impact the petroleum refining industry[J]? Energ.Fuel.,2002,16:1239-1250.
    [91]F.Van de Velde,M.Baker,F.Van Rantwijk,R.A.Sheldon.Chloroperoxidase-catalysed enantioselectivity in hydrophobic organic media[J].Biotechnol Bioengineering.2001,71:523-529.
    [92]R.Vazquez-duhalt,M.Ayala,F.J.Marquez-rocha.Biocatalytic chlorination of aromatic hydrocarbons by chloroperoxidase of Caldariomyces fumago[J].Phytochemistry,2001,58(6):929-933.
    [93]C.E.La Rotta,E.P.S.Bon.4-Chlorophenol degradation by chloroperoxidase from C.fumago-formation of insoluble products[J].Appl.Biochem.Biotechnol.,2002,(98-100):191-203.
    [94]A.Liese,K.Seelbach,C.Wandrey.Industrial Biotransformations[M].Weinheim:VCH,2000.
    [95]S.Lüz,E.Steckhan,A.Liese.First asymmetric electroenzymatic oxidation catalyzed by a peroxidase[J].Electrochem.Comm.,2004,6:583-587.
    [96]T.E.Liu,T.M'Timkulu,J.Geigert,B.Wolf,S.L.Niedleman,D.Silva and J.C.Hunter-Cervera.Isolation and characterization of a novel nonheme chloroperoxidase[J].Biochem Biophys Res Commun.,1987,142:329-333.
    [97]张丽华,智丽飞,蒋育澄,胡满成,李淑妮.氯过氧化物酶稳定化技术的研究进展及其应用[J].生命的化学.2007,27(4):349-351.
    [98]S.Hertzberg,L.Kvittingen,T.Anthonsen,et al.Alginate as immobilization matrix and stabilizing agent in a two-phase liquid system:application in lipase catalysed reactions[J].Enzyme.Microb.Technol.,1992,14:42-47.
    [99]A.Tlefoncu,E.Dinckaya,K.D.Vorlop.Preparation and characterization of pancreatic lipase immobilized in eudragitmatrix[J].Appl.Biochem.Biotechnol.,1990,26:311-317.
    [100]G.Pencreac'H,M.Leullier,J.C.Baratti.Properties of free and immobilized lipase from Pseu-domonas cepacia[J].Biotechnol.Bioeng.,1997,56:181-189.
    [101]朱启忠.壳聚糖固定化半纤维素的研究[J].生物化学和生物物理进展,2000,3:274-277.
    [102]姜炜,李凤生,杨毅.磁性壳聚糖复合微球的制备和性能研究[J].材料科学与工程学报,2004,22(5):660-662.
    [103]E.B.Denkbas,E.Kilicay,C.Birlikseven,E.0ztiirk.Magnetic chitosan microspheres:preparation and characterization[J].Reactive & Functional Polymers,2002,50(3):225-232.
    [104]陈盛,罗志敏,马秀玲.磁性壳聚糖微球[J].化学通报,2003,66(26):126.
    [105]马秀玲,黄丽酶,等.磁性微球的制备及研究进展[J].广州化学,2003,28(3):58-64.
    [106]M.Inoue,R.Suzuki,N.Sakaguchi,Z.Li,T.Takeda,Y.Ogihara,B.Y.Jiang,Y.Chen.Selective induction of cell death in cancer cells by gallic acid[J].Biol.Pharm.Bull.,1995,18:1526-1530.
    [107]M.Liu,S.Koya,H.Furuta,S.Matsuzaki.Growth-inhibiting activity of anthraquinones and benzoanthraquinones against methicillin-resistant Staphylococcus aureus(MRSA)[J].Dokkyo J.Med.Sci.,1996,23(2),85-93.
    [108]郁建平,郭刚军,肖云鹏,刘新宽,古练权.海藻酸钠固定化多酚氧化酶及红棓酚的合成研究[J].有机化学,2003,23(1):57-61.
    [109]许申鸿,杭瑚,李运平.超氧化物歧化酶邻苯三酚测活法的研究及改进[J].化学通报,2001,516-519.
    [110]S.Marklund,C.Marklund.Involvement of the superoxide anion redical in the autoxidation of pyrogallol and a convenient assay of superoxide dismutase[J].Eur.J.Biochem.,1974,47:469-474.
    [111]X.T.Wang,H.M.Goff.A nuclear paramagnetic relaxation study of the interaction of the cyclopentandeione substrate with chloroperoxidase[J].Biochimica.Biophysica.Acta,1997,1339:88-96.
    [112]R.L.Maute,M.L.Owens.Rapid determination of carbonyl content in acrylonitrile[J].Anal.Chem.,1956,28:1312-1314.
    [113]Y.Y.Zhang,X.Hu,K.Tang,G.L.Zou.Immobilization of hemoglobin on chitosan membranes as mimetic peroxidase[J].Process Biochemistry,2006,41:2410-2416.
    [114]K.Seelbach,M.P.J.van Deurzen,F.van Rantwijk,R.A.Sheldon,U.Kragl.Improvement of the total turnover number and space-time yield for chloroperoxidase catalyzed oxidation[J].Biotechnol.Bioeng.,1997,55:283-288.
    [115]张伟,杨秀山.酶的固定化技术及其应用[J].自然杂志,2000,22(5):282-286.
    [116]李临生.戊二醛与蛋白质反应的特点[J].中国皮革,1997,26(5):12-14.
    [117]银涛.戊二醛消毒及的研究进展[J].预防医学情报杂志,2005,21(3):297-300.
    [118]余艺华,薛博,孙彦等.壳聚糖亲和磁性毫微粒的制备及其对蛋白质的吸附性能研究[J].高分子学报,2000,3:340-344.
    [119]曹佐英,张启修,魏琦峰.微波辐射下交联壳聚糖树脂固载化B.环糊精[J].高分子材料科学与工程,2003,3:204-207.
    [120]丁明,孙虹,康玲,等.壳聚糖微球的制备研究[J].化学世界,1998:636-640.
    [121]王虹,袁直,刘晓航,等.尿毒症中分子毒物吸附剂的研究-交联剂链长对壳聚糖树脂吸附性能的影响[J].中国科学(B辑),2001,31:298-304.
    [122]于桉.磁性复合微粒在mRNA纯化中的应用[D].西安:西北大学,2007..
    [123]P.Cresswell,A.R.Sanderson.Preparation,properties and substrate exclusion effects of an insoluble pronase derivative[J].Biochem J.,1970,119:447-451.
    [124]彭立风.有机溶剂对酶催化活性和选择性的影响[J].化学进展,2000,12(3):296-304.
    [125]B.Chance,A.C.Maehly.Assay of catalases and peroxidases.Methods.Enzymol.,1955,2:764-775.
    [126]K.M.Manoj,L.P.Hager.Chloroperoxidase,a Janus Enzyme.Biochemistry.2008,47:2997-3003.
    [127]胡龙兴,张仲燕.酶催化氧化处理废水的研究.环境科学,1992,13(4):40-45.
    [128]Y.G.Sun,H.Cui,X.Q.Lin,Y.H.Li,H.Z.Zhao.Flow injection analysis of pyrogallol with enhance electrochemiluminescent detection[J].Anal.Chim.Acta.,2000,423:247-253.
    [129]袁倬斌,高若梅.邻苯三酚自氧化反应的动力学研究[J].高等学校化学学报,1997,18(9),1438-1441.
    [130]R.M.Gao,Z.B.Yuan,Z.Q.Zhao,X.R.Gao.Mechanism of pyrogallol autoxidation and determination of superoxide dismutase enzyme activity[J].Bioelectrochem.Bioenerg.,1998,45:41-45.
    [131]W.D.Crow,et al.Constitution of purpurogallin carboxylic acid[J].J.Chem.Soc.,1951,1:32.
    [132]罗永明,李诒光,谢一辉.茶色素中两个苯骈棹酚酮类化合物的分离和鉴定[J].中药材,2004,6:22-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700