垃圾焚烧中镉、铅迁移转化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用实验研究和热力学平衡计算对中国垃圾焚烧中Cd、Pb的迁移和转化特性进行了研究。在自行设计和搭建的管式焚烧炉中分别就氯、硫、水分、吸附剂和焚烧温度、停留时间对Cd、Pb迁移和转化特性的影响进行了实验研究。使用吉布斯自由能最小法对垃圾焚烧中Cd、Pb的平衡形态分布进行计算,并与实验数据进行对比分析,取得以下研究成果。
     氯能有效增强Cd、Pb的挥发特性。有机氯(PVC)和无机氯(NaCl)均能使97%以上的Cd和90%的Pb分布于飞灰中。两种氯对Cd、Pb的迁移和转化特性的影响机理不同。NaCl易与Pb形成PbCl_2,与Cd除易形成CdCl_2外还能直接与其反应生成CdCl_2(NaCl)_6和Na_2CdCl_4。PVC除与Cd、Pb形成氯化物外还易形成相应的氯酸盐Na[Cd(ClO_4)_3]、Pb(ClO4)_2、PbCl_2O_4。
     不同形态的硫对Cd、Pb迁移和转化特性的影响机理不同。S和Na2S易与Cd形成难挥发性物质CdS,使Cd在底渣中分布分别增加4.2%和20.1%,Na_2SO_4(Na_2SO_3)易与Cd生成CdSO_4,使Cd更多地分布在飞灰中。所有形态的硫均使Pb在底渣中的分布减少25%以上,飞灰中Pb主要以PbSO_4形式存在。
     烟气中水分对重金属迁移和转化特性的影响主要是对重金属反应化学平衡移动的影响,垃圾中水分的影响则是对燃烧状况的影响。实验表明,吸附剂对Cd吸附能力的大小顺序依次为Al_2O_3>SiO_2>CaO,吸附剂除化学吸附外还具有一定的物理吸附能力。硫、氯能缩短吸附剂对Cd、Pb的有效吸附温度段,但有效吸附温度段内吸附率不受影响,氯能使Al_2O_3对Cd的化学吸附能力丧失。
     温度主要影响Cd、Pb化合物的蒸气压和垃圾焚烧状况,温度的升高能显著增强重金属的挥发性。当温度低于850℃时,Cd、Pb均不在烟气中分布,当温度为1000℃时,Cd在烟气中的分布为8.49%,Pb在烟气中始终没有分布。焚烧中,重金属的挥发主要集中在初始阶段。在初始阶段3min~6min,停留时间对Cd、Pb迁移特性影响显著,超过6min影响甚微。
     本文的研究成果对进一步深入认识我国垃圾焚烧中重金属的迁移和转化特性、焚烧炉的设计改进及发展焚烧中和焚烧后重金属的控制技术提供参考。
This thesis combines experimental study and thermodynamic equilibrium calculations to explore the characteristics of cadmium (Cd) and lead (Pb) partitioning and speciation during municipal solid waste (MSW) incineration. In the tubular furnace designed and commissioned by the author, experiments were conducted to investigate the impact of chlorine, sulfur, moisture, sorbents and operating conditions (including incineration temperature and residence time) on the partitioning and speciation behaviors of Cd and Pb. After comparing the expetimenatal data with the calculated equilibrium form distributions based on Gibbs Free Energy Minimization, hereby are the findings of this study:
     Chlorine can effectively increase the volatility of Cd and Pb. Both the organic chlorine (PVC) and inorganic chlorine (NaCl) retain more than 97% Cd and 90% Pb partition in fly ash. However, the mechanisms that influenced the partitioning and speciation behaviors of Cd and Pb with these two forms of Chlorine are different from each other. Inorganic chlorine tends to react with Pb to form PbCl_2, With Cd, CdCl_2 could be easily fromed. NaCl could even react directly with CdCl_2 to form CdCl_2(NaCl)_6 or Na_2CdCl_4. For orgnic chlorine, however, apart from its tendancy to react with Cd and Pb to form chloride as inorganic chlorine does, it also encourages the formation of various chlorates such as Na[Cd(ClO_4)_3], Pb(ClO_4)_2 and PbCl2O4.
     Different types of sulfur have different impacts on the partitioning and speciation of Cd and Pb. With Cd, S and Na_2S tends to form CdS which is hardly volatile, and increased the retention of Cd in bottom ash by 4.2% and 20.1% respectively. In contrast, Na_2SO_4 (Na_2SO_3) tends to form CdSO_4, which also increases the chance for Cd to remain in fly ash. All forms of sulfur tend to decrease the Pb retention in bottom ash by more than 25%. PbSO4 is the main form of Pb compounds in fly ash
     The moisture in flue gas mainly affects the chemical equilibrium shift of heavy metal reactions, whilst the moisture in MSW affects the MSW incineration characteristic. The experimental results indicate that adsorptive capacity order of three sorbents towards Cd is as follows: Al_2O_3>SiO_2>CaO. Besides chemical adsorption, sorbents also process certain physics adsorption capacity. Sulfur and chlorine can narrow the effectiveness temperature range of adsorption. The effective adsorptive capacity is not affected by the presence of sulfur and chlorine, although chlorine might deactivate Al_2O_3 in Cd adsorption.
     Temperature affects both the vapor pressure of Cd and Pb compounds and MSW incineration characteristic. Temperature increase can significantly enhance the volatility of heavy metals. Cd and Pb do not exist in flue gas if temperature below 850°C. 8.49% Cd partitioned in flue gas when temperature was 950°C. Pb did not transfer into flue gas during the whole experimental temperature range. Cd and Pb were more likely to evaporate at the initial stage. During the initial 3min–6min, residence time had a significantly impact on the migration of Cd and Pb, however, this impact almost completely diminished after 6min.
     The findings of this study should enhance the understanding of heavy metals behaviors during MSW incineration in China and provide valuable information to the improvement of incineration furnace design and the development of heavy metals control technologyies.
引文
蔡惟瑾. 2001.我国城市生活垃圾污染与处理现状及其对策探讨.铁道劳动安全卫生与环保, 28(1):8~14
    蔡正千. 1993.热分析.北京:高等教育出版社
    陈宏芳,杜建华,高等工程热力学. 2003,北京:清华大学出版社
    陈雷. 2006.典型燃煤电站汞排放现场实验和模拟研究[硕士学位论文].清华大学
    陈尚兵,金保升. 1998.城市垃圾焚烧处理中重金属和有机氯化物的二次污染与防治.环境导报, 6:7~10
    陈新坤. 1987.电感耦合等离子体光谱法原理和应用.天津:南开大学出版社
    杜吴鹏,高庆先,张恩琛,等. 2006.中国城市生活垃圾排放现状及成分分析.环境科学研究, 19(5):85~90
    顾捷,陈蕾,夏顺阳. 2006.论生活垃圾处理与污染防治技术.污染防治技术, 19(1):34~37
    国家环境保护总局,HJ/T64.3-2001.中华人民共和国环境保护行业标准-大气污染源Cd的测定
    国家环境保护总局. 2006.环境服务业发展报告
    郝晖. 2004.城市生活垃圾低温热解试验设备和实验方法的研究[硕士论文].天津大学环境科学与工程学院
    黄建华. 2000.垃圾处理欠费九千万[N/OL].北京青年报, 2000-08-30(3)
    黄生琪,周菊华. 2007.谈城市生活垃圾焚烧发电技术现状及发展.应用能源技术, 3:42~45
    李红,高平. 2005.城市生活垃圾污染危害防治与利用.黑龙江环境通报, 29(2):81~82
    李建新,严建华,池涌,等. 2003.垃圾焚烧氯对重金属迁移特性的影响.燃料化学学报, 31(6):579~583
    李建新,严建华,池涌,等. 2004.垃圾焚烧过程中重金属迁移特性及控制.电站系统工程, 20(1):9~12
    李建新. 2004.垃圾焚烧过程中重金属污染物迁移机理及稳定化处理研究.[博士学位论文].浙江大学
    李树棠. 1990.晶体X射线衍射学基础.北京:冶金工业出版社
    李晓东,陆胜勇,徐旭,等. 2001.中国部分城市生活垃圾热值的分析.中国环境科学, 21(2):156~160
    刘晶,郑楚光. 2003.固体吸附剂控制燃煤重金属排放的实验研究.环境科学, 24(5):23~27
    刘克鑫. 2000.国内外城市生活垃圾处理概况及发展趋势.软科学, (1):30~32
    刘渊源. 2004.城市污水污泥在流化床中的燃烧特性及重金属排放特性研究.浙江大学硕士学位论文
    龙世刚,郭艳玲,孟庆民,等. 2002.废弃聚氯乙烯热解脱氯的研究.钢铁研究学报, 14(5):1~5
    卢欢亮,王伟. 2004.垃圾焚烧严防二次污染.建设科技,(13):44~45
    卢欢亮,王伟. 2005.改性钙基吸附剂对垃圾焚烧模拟烟气中镉的吸附研究.环境科学学报, 25(8):999~1003
    鲁玺,李金惠,聂永丰. 2003.城市垃圾焚烧中PVC环境影响研究.城市环境与城市生态, 16(2):22~24
    陆胜勇,池涌,严建华,等. 2003.垃圾焚烧中重金属污染物的迁移和分布规律.热力发电, (3):24~28
    吕国强. 2002.城市生活垃圾焚烧过程中硫和氯的行为研究[硕士学位论文].昆明理工大学
    罗宇. 2004.垃圾焚烧系统中重金属的分配及处理研究[博士学位论文].北京.重庆大学资源与环境学学院
    贾金岩. 2007.垃圾焚烧中水分对重金属迁移转化影响研究[硕士学位论文].清华大学
    马文杰,黄子铮译.聚氯乙烯的降解和稳定.北京:轻工业出版社, 1985.
    煤的工业分析方法. 2001. GB/T 212-2001
    逄磊,倪桂才,闫光绪. 2004.城市生活垃圾的危害及污染综合防治对策.环境科学动态, (2):15~16
    尚谦,袁兴中. 2001.城市生活垃圾的危害及特性分析.黑龙江环境通报, 25(2):27~31
    孙海东. 2000.本市力争5年实现垃圾零增长[N].北京晚报, 11-30(1)
    孙路石,陆继东,李敏,等. 2004.垃圾焚烧中Cd、Pb、Zn挥发行为的研究.中国电机工程学报, 24(8):157~161
    王华. 2001.城市生活垃圾焚烧技术二恶英零排放化.冶金工业出版社
    徐嘉. 2004.城市生活垃圾典型组分的流化床气化特性实验研究[硕士学位论文].浙江大学
    徐淼. 2007.生活垃圾焚烧发电.节能与环保, (5):27~29
    张金成,姚强,吕子安. 2004垃圾焚烧二次污染物的形成与控制技术.环境保护, (5):17~18
    张景欣,霍寅龙. 2007.城市生活垃圾的焚烧发电处理技术.黑龙江环境通报,31(1):89~90
    张俊姣,董长青,刘启旺. 2001.城市生活垃圾焚烧过程中汞污染防治研究.环境保护, (6):17~19
    张若冰. 2002.垃圾焚烧过程中典型重金属污染物的分布特性研究[硕士论文].浙江大学
    张晓峰,姚强. 2006.吸附剂与铅反应的热力学平衡分析.工程热物理学报, 27(6):1054~1056
    张岩,池涌,李建新,等. 2005.污泥焚烧过程中重金属排放特性试验研究.电站系统工程, 21(3):27~29
    张衍国,李清海,康建斌. 2004.垃圾清洁焚烧发电技术.北京:中国水利水电出版社.
    张衍国,武俊,李清海,等. 2005.垃圾焚烧重金属迁移特性及其影响因素.环境污染治理技术与设备, 6(12):6~12
    张益. 2000.我国生活垃圾处理技术的现状和展望.环境卫生工程,8(2):81~84
    张小峰. 2007.燃烧中铅、铬的排放特性及其吸附剂控制的实验研究[博士学位论文].清华大学
    张小峰,姚强. 2006.吸附剂与铅反应的热力学平衡分析.工程热物理学报, 27(6):1054~1056
    郑楚光. 1996.洁净煤技术.武汉:华中理工大学出版社
    中国环境年鉴编辑委员会主编. 2000.中国环境年鉴2000.北京:中国环境年鉴社
    中国环境年鉴编辑委员会主编. 2001.中国环境年鉴2001.北京:中国环境年鉴社
    中国环境年鉴编辑委员会主编. 2002.中国环境年鉴2002.北京:中国环境年鉴社
    中国环境年鉴编辑委员会主编. 2003.中国环境年鉴2003.北京:中国环境年鉴社
    中国环境年鉴编辑委员会主编. 2004.中国环境年鉴2004.北京:中国环境年鉴社
    中国环境年鉴编辑委员会主编. 2005.中国环境年鉴2005.北京:中国环境年鉴社
    周清.1995.电子能谱学.天津:南开大学出版社
    朱兰保,盛蒂. 2006.我国城市生活垃圾处理现状及其对策.环境卫生工程, 14(3):35~37
    祝建中,胡志华. 2004.垃圾焚烧过程中影响重金属分布因素的研究.环境污染治理技术与设备, 5(12):48~51
    Abanades S, Flamant G, Gagnepain B, et al. 2002. Fate of heavy metals during municipal solid waste incineration, Waste Management & research, 20(1):55~68
    Abanades S, Flamant G, Gauthier D. 2002. Kinetics of heavy metal vaporization from model wastes in a fluidized bed. Environmental Science & Technology, 36(17):3879~3884
    Belevi H, Moench H. 2000. Factors determining the element behavior in municipal solid waste incinerators. 1. Field Studies. Environ. Sci. Technol., 34(12):2501~2506
    Belevi H, Moench H. 2000. Factors determining the element behavior in municipal solid waste incinerators. 2. Laboratory Experiments. Environ. Sci. Technol., 34(12):2507~2512
    Biswas P, Wu C Y. 1998. Control of toxic metal emissions from combustors using sorbents: a review. Journal of the Air & Waste Management Association, 48(2):113~127
    Biswas P, Zachariah M R. 1997. In situ immobilization of lead species in combustion environments by injection of gas phase silica sorbent precursors. Environ Sci technol, 31(9):2455~2463
    Bool L E, Helble J J. 1995. A laboratory study of the partitioning of trace elements during pulverized coal combustion. Energy & Fuels, 9(5):880~887
    Buchholz B A, Landsberger S. 1993. Trace Metal Analysis of Size-Fractioned Municipal Solid Waste Incineration Fly Ash and Its Leachates. J. Environ. Sci. Health, A28(2):423~443
    Cahill C.A, Newland L W. 1982. Comparative efficiencies of trace metal extraction from municipal incinerator ashes. J. Environ. Anal. Chem, 11:227~239
    Chang M B, Huang C K, Wu H T, et al. 2000. Characteristics of heavy metals on particles with different size from municipal solid waste incineration. Journal of hazardous materials, A79(3):229~239
    Chen J C, Wey M Y, Lin Y C. 1998. The adsorption of heavy metals by different sorbents under various incineration conditions. Chemosphere, 37(13):2617~2625
    Chen J C, Wey M Y, Liu Z S. 2001. Adsorption mechanism of heavy metals on sorbents during incineration. Journal of environmental engineering, 127(1):63~69
    Chen J C, Wey M Y, Yan M H. 1997. Theoretical and experimental study of metal capture during incineration process. Journal of Environmental Engineering, 123(11):1100~1106
    Chiang K Y, Wang K S, Lin F L, et al. 1997. Chloride effects on the speciation and partitioning of heavy metal during the municipal solid waste incineration process. The science of total environment, 203:129~140
    Chiang K Y, Wang K S, Tsai C C, et al. 2001. Formation of heavy metal species during PVC-containing simulated MSW incineration. J. Environ. SCI. Health, A36(5):833~844
    Clarke L B, Sloss L L. 1992. Trace elements emissions from coal combustion and gasification. London: IEA Coal Research Report, 356~367.
    Cordon S, Mcbride B J. 1994. Computer program for calculation of complex chemical equilibrium compositions and applications. NAST Reference Publication.1311
    Corella J, Toledo J M. 2000. Incineration of doped sludges in fluidized bed. Fate and partitioning of six targeted heavy metals. I. Pilot plant used and results. Journal of hazardous materials, B80(1-3):81~105
    Davison R L, Natusch D F S, Wallace J R, et al. 1974. Trace elements in fly ash. Dependence of concentration on particle size. Environmental Science and Technology, 8(13):1107~1113
    Diaz-Somoano M, Martinez-Tarazona M R. 2003. Trace element evaporation during coal gasification based on a thermodynamic equilibrium calculation approach. Fuel, 82(2):137~145
    Dong S C, Kurt W. T, Wu Y P. 2001. Municipal solid waste management in China: using commercial management to solve a growing problem. Utilities policy, 10(1):7~11
    Durlak S K, Biswas P, Shi J C. 1997. Equilibrium analysis of the effect of temperature, moisture and sodium content on heavy metal emissions from municipal solid waste incinerators. Journal of hazardous materials, 56(1-2):1~20
    EPA, U.S., Acid digestion of aqueous samples and extracts for total metals for analysis by FLAA or ICP spectroscopy, In Method 3010A
    EPA, U.S., Acid digestion of sediments, sludges and soils, In Method 3050B EPA, U.S., Acid digestion of waters for total recoverable or dissolved metals for analysis by FLAA or ICP spectroscopy, In Method 3005A
    EPA, U.S., Determination of metals emissions from stationary sources, In Method 29
    EPA, U.S., Determination of particulate matter emissions from stationary sources, In Method 5
    Evans J, Williams P T. 2000. Heavy metal adsorption onto fly ash in waste incineration flue gases. Process Safety and Environmental Protection: Transactions of the Institution of Chemical Engineers, B78(1):40~46
    Fernandez M A, Martinez L, Segarra M, et al. 1992. Behavior of heavy metals in the combustion gases of urban waste incinerators. Environ. Sci. Technol., 26(5):1040~1047
    Floyd Hasseliriis, Anthony Licata. 1996. Analysis of heavy metal emission data from municipal waste combustion. Journal of Hazardous Materials, 47(1-3):77~102
    Frandsen F, Dam-Johansen K, Rasmussen P 1994. Trace elements from combuston and gasfication of coal-an equilibrium approach. Process in Energy and Combustion, 20(2):115~138
    Ho T C, Chen C, Hopper J R, et al. 1992. Metal capture during fluidized bed incineration of wastes contaminated with lead chloride. Combustion Science and Technolopy, 85(1-6):101~116
    Klein D H, Andren A W, Carter J A, et al. 1975. Pathways of thirty-seven trace elements through coal-fired power plant. Environment Science Technology, 9(10):973~979
    Law S L, Gordon G E. 1979. Sources of metals in municipal incinerator emissions. Environ. Sci. Technol, 13(4):432~437
    Lee C C. 1988. A model analysis of metal partitioning. Waste Management, 38(7):941~945
    Lee S H D, Johnson I J. 1980. Removal of gaseous alkali metal compounds from hot flue gas by particulate sorbents. Journal of Engineering for Power, 102(1-4):397~402
    Leena A A, Flemming J F, Erkkik K H. 1998. Trace metal emissions from the Estonian Oil shale fired power plant. Fuel Processing Technology, 57(1):1~24
    Lin W Y, Sethi V, Biswas P. 1992. Multicomponent aerosol dynamics of the Pb-O2 system in a bench scale flame incinerator. Aerosol Science and Technology, 17(2):119~133
    Linak W P, Wendt J O L. 1993. Toxic metal emissions from incineration: mechanisms and control. Prog. Energy Combust. Sci., 19:145~185
    Lisk D J. Environmental implications of incineration of municipal solid waste and ash disposal. Science of the total environment. 1988, 74(1):39~66
    Lockwood F C, Yousif S. 2000. A model for the particulate matter enrichment with toxic metals in solid fuel flames. Fuel Processing Technology, 65:439~457
    Masseron R, Gadiou R, Delfosse L. 1999. Study of adsorption of CdCl2 vapor on various minerals using a drop tube furnace. Environ. Sci. Technol, 33(20):3634~3640
    Masseron R, Gadiou R, Delfosse L. 1999. Study of adsorption of CdCl2 vapor on various minerals using a drop tube furnace. Environ. Sci. Technol, 33(20):3634~3640
    Meyer B, Starke A. 1998. DGMK Tagungsber, 9802 Beitraege Zur DGMK-Fachbereichstagung Energetische und Stoffliche Nutzung von A bfaellen und Nachwachsenden Rohstoffen Erdgs und Kohle:Deutsche Wissenschaftliche Gesellschaftfuer Erdoel:75~82
    Morf L S, Brunner P H, Spaun S. 2000. Effect of operating conditions and input variations on the partitioning of metals in a municipal solid waste incinerator. Waste management, 18(1):4~15
    Owens T M, Wu C Y, Biswas P. 1995. An equilibrium analysis for reaction of metal compounds with sorbents in high temperature systems. Chem. Engrg. Comm, 133:31~52
    Shim Y S, Kim Y K, Kong S H, et al. 2003. The adsorption characteristics of heavy metals by various particle sizes of MSWI bottom ash. Waste management, 23(9):851~857
    Shpirt M Y, Pertsikov I Z, Samuilova L N, et al. 1988. Thermodynamic investigation of the behavior of lead in the high temperature oxidation of coals. Solid Fuel Chemistry, 22(1):121~124
    Sorum L, Frandsen F J, Hustad J E. 2003. On the fate of heavy metals in municipal solid waste combustion Part I: Devolatilisation of heavy metals on the grate. Fuel, 82(18):2273~2283
    Sorum L, Frandsen F J, Hustad J E. 2004. On the fate of heavy metals in municipal solid waste combustion Part II: From furnace to filter. Fuel, 83(11-12):1703~1710
    Thompson D, Argent B B. 2002. Thermodynamic equilibrium study of trace element mobilization under Pulverized fuel combustion conditions. Fuel, 81(3):345~361
    Uberoi M, Punjak W A, Shadman F. 1990. The kinetics and mechanism of alkali removal from flue gases by solid sorbents. Prog Energy Combust Sci, 16:205~211
    Uberol M, Shadman F. 1991. High temperature removal of cadmium compounds using solid sorbents. Environ. Sci. Technol, 25(7):1285~1289
    Verhulst D, Buekens A, Spencer P J, et al. 1996.Thermodynamic behavior of metal chlorides and sulfates under the conditions of incinerations furnaces. Environ. Sci. Tehchnol. 30:50~56
    Vogg H, Braun H, Metzger M, et al. 1986. The species role of cadmium and mercury in municipal solid waste incineration. Waste management & research, 4(1):65~74
    Wang K S, Chiang K Y, Chu W T. 1997. Fate and Partitioning of Heavy Metals Affected by Organic Chloride Content During A Simulated Municipal Solid Waste Incineration Process, J .Environ. Sci. Health, A32(7) ,1877~1893
    Wang K S, Chiang K Y, Lin S M, et al. 1999. Effects of chlorides on emissions of hydrogen chloride formation in waste incineration. Chemosphere, 38(7):1571~1582
    Wang K S, Chiang K Y, Lin S M, et al. 1999. Effects of chlorides on emissions of toxic compounds in waste incineration: Study on partitioning characteristics of heavy metal. Chemosphere, 38(8):1833~1849
    Wang K S, Chiang K Y, Tsai C C, et al. 2001. The effects of FeCl3 on the distribution of the heavy metal Cd, Cu, Cr and Zn in a simulatedmultimetal incineration system. Environment international, 26(4):257~263
    Watanabe N, Yamamoto O, Sakai M, et al. 2004. Combustible and incombustible speciation of Cl and S in various components of municipal solid waste. Waste Management, 24(6):623~632
    Wei M C, Wey M Y, Hwang J H, et al. 1998. Stability of heavy metals in bottom ash and fly ash under various incinerating conditions. Journal of hazardous materials, 57(1-3):145~154
    Wei M C, Wey M Y, Lin C L. 2003. The competitive adsorption of heavy metals under various incineration conditions. Journal of chemical engineering of Japan, 36(3):243~249
    Wey M Y, Hwang J H, Chen J C. 1996. The behavior of heavy metal Cr, Pb and Cd during waste incineration in fluidized bed under various chlorine additives. Journal of chemical engineering of Japan, 29(3):494~500
    Wey M Y, Hwang J H, Chen J C. 1998. Mass and elemental size distribution of chromium, lead and cadmium under various incineration conditions. Journal of chemical engineering of Japan, 31(4):506~517
    Wey M Y, Ou W Y, Liu Z S, et al. 2001. Pollutants in incineration flue gas. Journal of hazardous materials, B82(3):247~262
    Wey M Y, Su J L, Yan M H, et al. 1998. The concentration distribution of heavy metals under different incineration operation conditions. The science of the total environment, 212:183~193
    Wey M Y, Wu H Y. Tseng H H, et al. 2003. Experimental testing of spray dryer for control of incineration emissions. Journal of environmental science and health Part A-Toxic/hazardous substances & environmental engineering, 38(5):975~989
    Wey M Y, Yang J T, Peng C Y, et al. 1999. Size distribution of heavy metal aerosols in cooling and spray dryer system. Journal of environmental engineering, 125(11):1082~1089
    Wochele J, Stucki S. 1999. Similarity laws for the tubular furnace as a model of a fixed-bed waste incinerator. Chem. Eng. Technol. 22(3):209~212
    Wu C, Biswas P. 1993. An equilibrium analysis to determine the speciation of metals in an incinerator. Combustion and Flame,39(2):31~40
    Yousif S, Lockwood F C, Abbas T. 1998. Modeling of toxic metal emissions from solid fuel combustors[A]. Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute,1647~1654
    Zhao Y C, Stucki S, Ludwig C, et al. 2004. Impact of moisture on volatility of heavy metals in municipal solid waste incinerated in a laboratory scale simulated incinerator. Waste management, 24(6):581~587

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700