Al-Mg-Mn和Al-Mg-Mn-Sc-Zr合金板材应用性能及其相关基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用半连续铸锭冶金方法制备了Al-Mg-Mn、Al-Mg-Mn-Sc-Zr两种合金板材,并且还制备了Al-Mg-Mn-Sc-Zr合金的含Sc、Zr的配用焊丝。以Al-Mg-Mn和Al-Mg-Mn-Sc-Zr合金板材为研究对象,采用比较研究法并利用金相显微镜、透射电子显微镜和扫描电子显微镜探索了合金板材的应用性能及相应的微观机理。为用户全面认识Al-Mg-Mn和Al-Mg-Mn-Sc-Zr合金的应用性能,提供科学的实验和理论依据。主要研究了合金板材力学性能平面各向异性、超塑拉伸特性、疲劳特性、耐蚀特性、电化学阻抗谱、焊接特性及相应的微观机理。得到了以下重要结论:
     (1)Al-Mg-Mn合金冷轧-退火成品板材具有{110)<112>轧制织构和{100)<001>再结晶织构组态,立方再结晶织构的出现降低了Al-Mg-Mn合金的平面各向异性。Al-Mg-Mn-Sc-Zr合金中的弥散析出相Al_3(Sc_(1-x)Zr_x)粒子,抑制了冷轧后退火过程中的再结晶和立方织构{100}<001>的形成,其平面各向异性指标IPA%比Al-Mg-Mn合金大。
     (2)在相同超塑变形温度和初始应变速率下,Al-Mg-Mn-Sc-Zr合金断裂延伸率大于Al-Mg-Mn合金的断裂延伸率。且Al-Mg-Mn-Sc-Zr合金还表现出低温高速超塑特性,微量Sc和Zr的添加降低了合金的超塑形变激活能,改善了合金的超塑特性。
     (3)两种合金超塑形变的主要机制是由动态再结晶、位错运动、晶界扩散、液相、细丝和空洞等协调的晶界滑移和晶粒转动。微量Sc、Zr的添加导致了低流变应力,液相、细丝、空洞更趋均匀分布,有利于晶界滑移和晶粒转动。
     (4)微量Sc和Zr的添加大大提高了Al-Mg-Mn合金的疲劳强度和疲劳寿命。Al-Mg-Mn-Sc-Zr合金和Al-Mg-Mn合金在10~7次循环下的疲劳强度分别是150MPa和123MPa。Al-Mg-Mn-Sc-Zr合金和Al-Mg-Mn合金的疲劳裂纹扩展速率均随应力比R的增加而增加。
     (5)Al-Mg-Mn-Sc-Zr合金比Al-Mg-Mn合金具有较高的疲劳寿命和疲劳强度,但Al-Mg-Mn-Sc-Zr合金的宏观裂纹扩展速率较高。Al-Mg-Mn-Sc-Zr合金的扁平状晶粒组织、大量细小Al_(Sc_(1-x)Zr_x)粒子、高密度的位错和晶界、位错运动的高摩擦阻力能有效地阻止微裂纹的形核和扩展,这是它具有较高的疲劳强度和疲劳寿命的主要原因。而粗晶的Al-Mg-Mn合金的粗糙度诱发和塑变区诱发裂纹闭合效应的共同作用强于Al-Mg-Mn-Sc-Zr合金中的细晶和Al_3(Sc_(1-x)Zr_x)粒子对宏观裂纹扩展的阻碍作用,所以Al-Mg-Mn合金具有较高的抗宏观裂纹扩展特性。
     (6)Al-Mg-Mn-Sc-Zr合金剥落腐蚀敏感性比Al-Mg-Mn合金高。为获得强度、塑性和耐剥蚀性能的理想组合,需要选择合理的退火工艺,减少或消除β相在晶间的网膜分布。
     (7)由动电位极化曲线分析得到的极化电阻、腐蚀电流密度、腐蚀速率可以反映合金耐蚀性能的高低,其结果和剥落腐蚀浸泡试验结果一致。
     (8)Al-Mg-Mn-Sc-Zr和Al-Mg-Mn合金在坑蚀诱导期的奈奎斯特图由一压缩的高中频容抗弧和一低频感抗弧组成,两个容抗弧的出现标志坑蚀的开始。Al-Mg-Mn-Sc-Zr合金阻抗谱上感抗弧的消失和两个时间常数的出现比Al-Mg-Mn合金早些。Al-Mg-Mn-Sc-Zr和Al-Mg-Mn合金坑蚀发展期的奈奎斯特图由两个重叠的容抗弧构成,依据蚀坑结构和电化学原理设计了等效电路图,对坑蚀发展期的电化学阻抗谱进行了拟合,试验结果和拟合数据一致,表明可以采用快速无损的电化学阻抗谱技术研究合金的腐蚀程度。
     (9)在摩擦搅拌焊和氩弧焊条件下,12mm厚Al-Mg-Mn-Sc-Zr合金热轧板焊接接头的抗拉强度、延伸率和焊接系数分别为382MPa、20.3%、96.5%和328MPa、10.7%、82.8%;2mm厚Al-Mg-Mn-Sc-Zr合金冷轧-退火板焊接接头的抗拉强度、延伸率和焊接系数分别为391MPa、10.9%、92.4%和365MPa、10.2%、86.3%。可见摩擦搅拌焊能够显著提高Al-Mg-Mn-Sc-Zr合金板材焊接接头的力学性能。
     (10)摩擦搅拌焊焊接接头中没有发现氩弧焊焊接接头中常见的热裂纹和气孔等焊接缺陷,摩擦搅拌焊焊核区发生了动态再结晶,形成了细小的等轴晶粒组织,晶粒直径大约为1-3μm,热机影响区内仍然可见大量位错亚结构和第二相粒子Al_3(Sc,Zr)。而氩弧焊焊缝为凝固组织,晶粒组织粗大,热影响区内位错亚结构消失,第二相粒子Al_3(Sc,Zr)密度显著降低。显微组织结构的改善是摩擦搅拌焊焊接接头力学性能提高的主要原因。
Al-Mg-Mn and Al-Mg-Mn-Sc-Zr alloy ingots were produced by semi-continuous casting technique.The welding wire containing Sc and Zr were prepared for the Al-Mg-Mn-Sc-Zr alloy. It was investigated that the applied properties of Al-Mg-Mn and Al-Mg-Mn-Sc-Zr alloy sheets and their related micromechanism using comparative study method. Meanwhile optical microscope, transmission electron microscope and scanning electron microscopy were employed. This study provided experimental and theoretic bases for user to understand the Al-Mg-Mn and Al-Mg-Mn-Sc-Zr alloy sheets fully, and it included in-plane anisotropy of tensile mechanical properties, superplasticity, fatigue properties, corrosion resistance, electrochemistry and welding properties of these two alloy sheets, especially their related micromechanism. The following are important results:
     (1)The finished alloy sheets of Al-Mg-Mn produced by cold roll and annealing for stabilization has {110}<112> rolling texture and {100}<001> cubic texture. The indexes of in-plane anisotropy of Al-Mg-Mn alloy sheet reduced by {100}<001> texture. In the Al-Mg-Mn-Sc-Zr alloy sheet, the disperse precipitated phase Al_3(Sc_(1-x)Zr_x) particles inhibit the recrystallization strongly and prevent the formation of {100}<001> cubic texture. The indexes of in-plane anisotropy(IPA%)of the Al-Mg-Mn-Sc-Zr alloy sheet are bigger than those of the Al-Mg-Mn alloy sheet.
     (2)The elongation to failure of Al-Mg-Mn-Sc-Zr alloy sheet is higher than that of Al-Mg-Mn alloy sheet at the same temperature and initial strain rate. In addition, Al-Mg-Mn-Sc-Zr alloy sheets exhibit high -rate and low-temperature superplastic properties. The addition of minor Sc and Zr decrease the activation energy of superplastic deformation and improve superplasticity of Al-Mg-Mn alloy.
     (3)The main mechanism of superplastic deformation of the two alloys is grain boundary sliding and grain rotation accommodated by dynamic recrystallization, dislocation motion, grain boundary diffusion, liquid phase, filament and cavity. The addition of Sc and Zr leads to low the flow stress and the uniform distribution of liquid phase, filament and cavity. These are helpful for grain boundary sliding and grain rotation.
     (4)The addition of Sc and Zr to Al-Mg-Mn alloy increases the fatigue strength and fatigue lives. The fatigue strength of Al-Mg-Mn alloys with and without Sc and Zr at 10~7 cycles was 150 MPa and 123 MPa, respectively. For the two alloys, their fatigue crack growth rate raise as the increasing of stress ratio R.
     (5) The Al-Mg-Mn-Sc-Zr alloy has higher fatigue lives and fatigue strength than the Al-Mg-Mn alloy, but it has higher macrocrack propagation rate. In the Al-Mg-Mn-Sc-Zr alloy, the nucleation and growth of microcrack are impeded effectively by the fine pancake-like grain structure, dispersion Al_3(Sc_(1-x)Zr_x) particles, high-density dislocation and grain boundary, high resistance force of dislocation motion, these are the main causes that lead to higher fatigue lives and fatigue strength for the Al-Mg-Mn-Sc-Zr alloy. It is notable in Al-Mg-Mn alloy that the effect of crack close induced by roughness and plastically deforming, but it is weak that the resistance for macrocrack propagation from fine grain and Al_3(Sc_(1-x)Zr_x) particles in Al-Mg-Mn-Sc-Zr alloy, So Al-Mg-Mn alloy has higher resistance for macrocrack propagation.
     (6)The exfoliation corrosion sensitivity of Al-Mg-Mn-Sc-Zr alloy is higher than that of the Al-Mg-Mn alloy. The satisfied combination of strength, plasticity and exfoliation corrosion resisting property can be obtained by means of adopting reasonable annealing practice to reduce or eliminate the precipitation ofβphase at the grain boundary.
     (7)The corrosion resisting property of the two alloys can be reflected by polarization resistance, corrosion current density, corrosion rate. The analysis results of polarization curves agree with the experimental results of exfoliation corrosion susceptibility.
     (8)During pit incubation of Al-Mg-Mn and Al-Mg-Mn-Sc-Zr alloy, the Nyquist diagram is mainly composed of a depressed capacitive arc at high-mediate frequency and an inductive arc at low frequency. The appearance of two capacitive arcs in the Nyquist diagram indicates the beginning of pitting corrosion. In Nyquist diagram, the disappearance of inductive arc and the emergence of two time constants of Al-Mg-Mn-Sc-Zr alloy are earlier than those of Al-Mg-Mn alloy. During pits propagation, the Nyquist diagram is composed of two overlapping capacitive arcs. The equivalent circuit is designed according to the structure of pit and the mechanism of electrochemical corrosion. The electrochemical impedance spectroscopy(EIS) of pits propagation of the two alloys are fitted. The good correspondence between the experiment results and the fitted results obtained using the equivalent circuit. EIS technique can evaluate the severity of corrosion quickly, semi-quantitatively and nondestructively.
     (9)For the 12 mm thick hot rolled sheet of Al-Mg-Mn-Sc-Zr alloy, the tensile strength, elongation and welding coefficient of friction stir welding(FSW) is 382MPa, 20.3% and 96.5%, respectively; the tensile strength, elongation and welding coefficient of tungsten inert gas welding(TIG) is 328MPa, 10.7% and 82.8%, respectively. For the 2 mm thick cold rolled and annealed sheet of Al-Mg-Mn-Sc-Zr alloy, the tensile strength, elongation and welding coefficient of FSW is 391Mpa, 10.9% and 92.4%, respectively; the tensile strength, elongation and welding coefficient of TIG is 365MPa, 10.2% and 86.3%, respectively. FSW can improve mechanical properties of the welding joint remarkably.
     (10)There aren't hot crack, gas cavity and other welding defect in the welding joints of friction stir welding, but the hot crack and gas cavity emerge generally in the welding joints of tungsten inert gas welding, dynamic recrystallization has happened in the weld nugget zone of FSW, there are very fine equiaxed grains in the weld nugget zone, the diameter of these grains is about 1-3μm, and there are a great deal of dislocation substructure and the second phase Al_3(Sc,Zr) particles in the thermo-mechanically affected zone of FSW joints. But the microstructure of TIG welding seam is solidification structure, its grains are coarse. Dislocation substructure disappears, and the density of Al3(Sc,Zr) particles decreases remarkably in the TIG heat-affected zone. The major cause which enhances the mechanical properties of FSW joints is the improvement of microstructure.
引文
[1]王祝堂,田荣璋主编.铝合金及其加工手册[M],长沙:中南工业大学出版社,1988:33.
    [2]V.G Davydov, T.D. Rostova, V.V. Zakharov, Yu.A. Filatov, V.I. Yelagin, Scientific principles of making an alloying addition of scandium to aluminium alloys[J].Materials Science and Engineering A, 2000,280:30-36.
    [3]张明杰,梁家骁.铝钪合金的性质及生产[J].材料与冶金学报,2002,1(2):110-114.
    [4]谢燮揆译.用钪合金化的铝合金[J].轻金属,1993,3:54-59.
    [5]Yu. A. Filatov,V. I. Yelagin, V.V. Zakharov. New Al-Mg-Sc alloys[J]. Materials Science and Engineering A,2000,280:97-101.
    [6]潘青林.Al-Mg-Sc和Al-Mg-Sc-Zr合金的性能与组织结构研究[D].中南工业大学博士学位论文,湖南长沙,2000.
    [7]Zhimin Yin, Qinglin Pan, Yonghong Zhang, Feng Jiang. Effect of minor Sc and Zr on the microstructure and mechanical properties of Al-Mg based alloys[J].Materials Science and Engineering A,2000,280:151-155.
    [8]Emmanuelle A. Marquis, David N.Seidman.Coarsening kinetics of nanoscale A13Sc precipitates in an Al-Mg-Sc alloy[J].Acta Materialia,2005 (53):4259-4268.
    [9]曾凡浩,夏长清,古一.Al-Mg-Sc-Zr系富Al角相图评估[J].材料导报,2002(6):16-20.
    [10]K. B. Hyde, A. F. Norman and P. B. Prangnell,The effect of cooling rate on the morphology of primary Al_3SC intermetallic particles in Al-Sc alloys[J],Acta Mater.,2001,49:1327-1337.
    [11]Christian B. Fuller, David N. Seidman, David C. Dunand.Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures [J],Acta Materialia,2003,51:4803-4814.
    [12]潘青林,尹志民,张传福.Sc和zr复合微合金化在Al-Mg合金中的存在形式与作用[J].航空材料学报,2002,22(1):6-10.
    [13]Christian B.Fuller,Joanne L.Murray,David N.Seidman.Temporal evolution of the nanostructure of Al(Sc,Zr)alloys:Part I-Chemical compositions of Al_3(Sc_(1-x)Zr_x)precipitates[J]. Acta Materialia,2005,53:5401 -5413.
    [14]A. Tolley, V. Radmilovic, U. Dahmen. Segregation in Al_3(Sc,Zr) precipitates in Al-Sc-Zr alloys[J].Scripta Materialia, 2005,52(7):621-625.
    [15]B(?)rge Forbord, H(?)kon Hallem,Nils Ryum,Knut Marthinsen.Precipitation and recrystallisation in Al-Mn-Zr with and without Sc[J].Materials Science and Engineering A,2004,387-389:936-939.
    [16]B. Forbord, W. Lefebvre, F. Danoix, H. Hallem, K. Marthinsen.Three dimensional atom probe investigation on the formation of Al3(Sc,Zr)-dispersoids in aluminium alloys[J].Scripta Materialia, 2004,51(4):333-337.
    [17]Christian B. Fuller, David N. Seidman.Temporal evolution of the nanostructure of Al(Sc,Zr) alloys:Part Ⅱ-coarsening of Al_3(Sc_(1-x)Zr_x) precipitates[J]. Acta Materialia,2005,53:5415-5428.
    [18]A.F. Norman a, K. Hyde a, F. Costello a, S. Thompson b, S. Birley b, P.B.Prangnell, Examination of the effect of Sc on 2000 and 7000 series aluminium alloy castings: for improvements in fusion welding [J], Materials Science and Engineering A, 2003, 354:188-198.
    [19]Vijaya Singh, K. Satya Prasad, Amol A. Gokhale, Effect of minor Sc additions on structure, age hardening and tensile properties of aluminium alloy AA8090 plate[J].ScriptaMaterialia,2004,50:903-908.
    [20]M.J. Jones, F.J. Humphreys.Interaction of recrystallization and precipitation:The effect of Al_3Sc on the recrystallization behaviour of deformed aluminium[J].Acta Materialia,2003,51: 2149-2159.
    [21]Christian B. Fuller, Albert R. Krause, David C. Dunand, David N.Seidman.Microstructure and mechanical properties of a 5754 aluminum alloy modified by Sc and Zr additions[J].Materials Science and Engineering A,2002,338: 8-16.
    [22]Tadashi Aiura, Nobutaka Sugawara, Yasuhiro Miura. The effect of scandium on the as-homogenized microstructure of 5083 alloy for extrusion[J] .Materials Science and Engineering A,20002,80:139-145.
    [23]Vladivoj Ocenasek, Margarita Slamova.Resistance to recrystallization due to Sc and Zr addition to Al-Mg alloys[J]. Materials Characterization,2001,47:157-162.
    [24]朱大鹏,尹志民等.微量Sc和Zr对A1-Mg-Mn合金组织和性能的影响[J].宇航材料工艺,2004,6:45-49.
    [25]林肇琦.新一代铝合金——铝钪合金的发展概况[J].材料导报,1992,3:10-16
    [26]K. K. Cho, Y. H. Chung, C. W. Lee, S. I. Kwun, M. C. Shin.Effects of grain shape and texture on the yield strength anisotropy of Al-Li alloy sheet[J].Scripta Materialia, 1999,40(6):651-657.
    [27]S.J. Hales, R.A. Hafley.Texture and anisotropy in Al-Li alloy 2195 plate and near-net-shape extrusions[J].Materials Science and Engineering A, 1998,257(30): 153-164.
    [28]F. Barlat, J. Liu.Precipitate-induced anisotropy in binary Al-Cu alloys[J].Materials Science and Engineering A, 1998,257(30) :47-61.
    [29]R. K. Singh, A. K. Singh, N. Eswara Prasad.Texture and mechanical property anisotropy in an Al-Mg-Si-Cu alloy [J].Materials Science and Engineering A, 2000,277(1-2): 114-122.
    [30]Xu Yue, Geng Jiping, Liu Yufeng.Effect of Rare Earth Elements on Anisotropy and Microstructure of Al-Li Alloy 2195 Sheets[J].Journal of Rare Earths, 2006,24(6):793-796.
    [31]E.S.Eardley, A Soulet, S.A.Court, et al.Microstructure and Anisotropy in rolled Al-Mg Alloys[J].Materials Science Forum,2003,426-432:363-368.
    [32]沈健,张新明.深冲用铝板的织构和各向异性[J].轻合金加工技术,1994,22:27-40.
    [33]Takayuki Sakuma, Toshio Komatsubara, et al.Effects of texture and arrangements of dislocation cell walls on yield stress anisotropy in cold rolled and recovery annealed Al-Mg alloy sheets[J].Materials Science Forum,2002,396-402:1055-1060.
    [34]H.B.Mcshane et al.宋禹田译,顾景诚校.AA5083合金热轧板的组织各向异性和力学性能[J].铝加工技术,1991,3:17-30.
    [35]Zakharov, V.V.; Rostova, T.D.Mechanical anisotropy in scandium-bearing aluminum alloy sheets[J].Aluminum Transactions, 2000,2(2):329-335.
    [36]Yoshimasa Takayama,Takayuki Nagai,Toshiya Shibayanagi. Superplasticity and Crystallographic Orientation Distribution in Friction Stir Processed Sheet of an Al-Mg-Mn Alloy[J].Materials Science Forum,2005,475-479:3029-3032.
    [37]Seiichi Endou, Hirosuke Inagaki.Effect of rolling reduction on the development of rolling and recrystallization textures in Al-Mg-Mg alloys[J]. Materials Science Forum,2002,408-412:1401 -1406.
    [38]R.K. Singh, A.K. Singh, N. Eswara Prasad.Texture and mechanical property anisotropy in an Al-Mg-Si-Cu alloy[J].Materials Science and Engineering A,20002,77:114-122.
    [39]李锡武,郑子樵等.1420铝锂合金力学性能的各向异性[J].稀有金属,2004,28(1):151-155.
    [40]S.R.Agnew, M.H.Yoo, C.N.Tom(?). Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y[J].Acta Materialia, 2001,49(20):4277-4289.
    [41]D.H.Bae, A.K. Ghosh. Grain size and temperature dependence of superplastic deformation in an Al-Mg alloy under isostructural condition[J]. Acta mater.2000,48:1207-1224.
    [42]陈浦泉,崔忠圻,赵敏.超塑性研究的进展、方向及变形机理[J].金属科学与工艺.1990,9(2):16-22.
    [43]T.GNieh, L.M.Hsiung, J.Wadsworth, R.Kaibyshev. High strain rate superplasticity in a continuously recrystallized Al-6%Mg-0.3%Sc alloy[J]. Acta mater., 1998,46:2789-2800.
    [44]Z. Horita, M. Furukawa, M. Nemoto, A. J. Barnes. Superplastic forming at high strain rates after severe plastic deformation[J]. Acta Mater., 2000,48:3633-3640.
    [45]K. Turba, P. M(?)lek, M. Cieslar. Superplasticity in an Al-Mg-Zr-Sc alloy produced by equal-channel angular pressing [J]. Materials Science and Engineering A,2007,462:91-94.
    [46]Tsuji N, Saito Y, Lee S H, Minamino Y. ARB(Accumulative Roll-Bonding) and other new techniques to produce bulk ultrafine grained materials[J]. Advanced Engineering Materials, 2003,5(5):338-344.
    [47]Yamashita A, Horita Z, Terence G L. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation[J].Materials Science and Engineering A, 2001,300:142-147.
    [48]Kyung-Tae Park, Duck-Young Hwang , Young-Kook Lee, Young-Kuk Kim,Dong Hyuk Shin. High strain rate superplasticity of submicrometer grained 5083 Al alloy containing scandium fabricated by severe plastic deformation[J].Materials Science and Engineering A,2003,341: 273-281.
    [49]I.C. Hsiao and J.C. Huang. Development of low temperature superplasticity in commercial 5083 Al-Mg alloys[J]. Scripta Materialia, 1999,40(6):697-703.
    [50]S. Lee, M. Furukawa, Z. Horita, T.G Langdon. Developing a superplastic forming capability in a commercial aluminum alloy without scandium or zirconium additions[J]. Materials Science and Engineering A,2003,342:294-301.
    [51]F. Musin, R. Kaibyshev, Y. Motohashi, G. Itoh. High strain rate superplasticity in a commercial Al-Mg-Sc alloy[J]. Scripta Materialia,2004,50:511-516.
    [52]Kee-Do Woo, Sug-Won Kim, Chang-Ho Yang, Tai Ping Lou, Yasuhiro Miura.Effects of grain size on high temperature deformation behavior of Al-4Mg-0.4Sc alloy[J]. Materials Letters,2003, 57:1903-1909.
    [53]S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa,Z. Horita, T.G Langdon. Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al-Mg alloys[J]. Acta Materialia,2002,50:553-564.
    [54]鲁连涛,张卫华.金属材料超高周疲劳研究综述[J].机械强度,2005,27(3):388-394.
    [55]陈传尧.疲劳与断裂[M].华中科技大学出版社.武汉,2002年1月第一版.
    [56]邓扬晨,章怡宁,郦正能.近似函数用于疲劳寿命曲线的数学建模[J].航空学报,2001,22(4):351-353.
    [57]田秀云,孙智强.2024-T42铝合金疲劳裂纹扩展曲线的拟合方法研究[J].航空学报,2003,24(2):144-146.
    [58]李向阳,崔维成,张文明.一种改进的疲劳裂纹扩展表达式[J].船舶力学,2006,10(1):54-61.
    [59]McEvily A J, Bao H, Ishihara S. A Modified constitutive relation for fatigue crack growth. In Proceedings of the seventh International Fatigue Congress(Fatigue'99)[C].Beijing, China: Higher Education Press, 1999.329-336.
    [60]Kujawski D. Enhanced model of partial crack closure for correlation of R-ratio effects in aluminum alloys[J]. International Journal of Fatigue, 2001,23: 95-102.
    [61]McEvily A J, Ishihara S. On the dependence of the rate of fatigue crack growth on the ~(σ_α~n(2a))parameter[J]. International Journal of Fatigue.2001,23:115-120.
    [62]Ishihara S, McEvily A J. Analysis of short fatigue crack growth in cast aluminum alloys[J] .International Journal of Fatigue, 2002,24:1169-1174.
    [63]Cui W C, Shenoi A R.On the use of FCP theory to predict the fatigue life of ship structures[C].Proceedings of International Symposium on Naval Architecture and Ocean Engineering Shanghai.China, 2003, 8-1-8-9.
    [64]McEvily A J, Ishihara S, Endo M. An analysis of multiple two-step fatigue loading[J]. International Journal of Fatigue,2005,27:862-866.
    [65]刘文廷,胡仁伟.全范围疲劳裂纹扩展速率表达式的研究[J].航空学报,1995,16(2):222-225.
    [66]傅惠民,高镇同.a-N(a-t)曲线三参数幂函数拟合法[J].航空学报,1989,10(12):666-670.
    [67]熊峻江,郭爱民,邱华勇.疲劳裂纹扩展曲线的正交多项式与三参数指数函数拟合法[J].应用力学学报,2002,19(2):110-113.
    [68]孟宪红,张行.确定疲劳裂纹扩展速率的积分法[J].机械强度,2001,23(2):213-215.
    [69]O.Roder,T. Wirtz and A.Gysler. Fatigue properties of Al-Mg alloys with and without scandium[J].Materials Science and Engineering A. 1997,234-236:181-184.
    [70]P.S.Pao,H.N.Jones,S.F.Cheng,C.R.Feng. Fatigue crack propagation in ultrafine grained Al-Mg alloy[J].International Journal of Fatigue. 2005,27:1164-1169.
    [71]R.T.Foley,Localized corrosion of aluminum alloys-A review. Corrosion, 1986,42 (5):277-288.
    [72]赵麦群,雷阿丽.金属的腐蚀与防护[M]北京:国防工业出版社,2002年9月.
    [73]Reinhold Braun , Blanka Lenczowski, Gerhard Tempus.Effect of Thermal Exposure on the Corrosion Properties of an Al-Mg-Sc Alloy Sheet[J]. Materials Science Forum.2000,331-337:1647-1652.
    [74]Zaki Ahmad, Anwar UI-Hamid. Abdul-Aleem B.J..The corrosion behavior of scandium alloyed Al 5052 in neutral sodiumchloride solution [J].Corrosion Science.2001, 43:1227-1243.
    [75]A.Conde, J.de Damborenea, Evaluation of exfoliation susceptibility by means of the electrochemical impedance spectroscopy [J], Corrosion Science, 2000,42:1363-1377.
    [76]LI Jin-feng, ZHANG Zhao, CAO Fa-he, et al. Investigation of exfoliation corrosion of AA8090 Al-Li alloy using electrochemical impedance spectroscopy[J].Transaction of Nonferrous Metals Society of China, 2003,13 (2):320-324.
    [77]Habashi M.,Bonte E.,Galland J., Bodu J.J.. Quantitative measurements of the degree of exfoliation on aluminum alloys [J]. Corrosion Science, 1993,35(1-4):169-183.
    [78]何建平,陈文理,许玮等.恒温剥蚀对LC4CS铝合金结构和力学性能的影响[J].南京航空航天大学学报,1999,31(5):575-579.
    [79]贺斌,孙有朝,樊蔚勋.剥蚀对铝合金疲劳性能的影响[J].南京航空航天大学学报,1998,30(3):306-310.
    [80]李荻,左尚志,郭宝兰.LY12铝合金剥蚀行为的研究[J].中国腐蚀与防护学报,1995,15(3):203-208.
    [81]Robinson M J,Jackson N C.Exfoliation corrosion of high strength Al-Cu-Mg alloys:effect of grain structure[J].Br.Corros.J.,1999,34(1):45-49.
    [82]Kelly D J,Robinson M J.Influence of heat treatment and grain shape on exfoliation corrosion of Al-Li alloy 8090[J].Corrosion,1993,49(10):787-795.
    [83]左尚志,李荻.国内外铝合金剥蚀研究的现状[J].材料保护,1994,27(12):23-26.
    [84]王本仁,张万金,高叔明.淬火工艺对2024管材晶间腐蚀的影响[J].轻合金加工 技术,1996,24(9):23-26.
    [85]何立子,张晓博,孙秋霞等.Cu及热处理制度对Al-Mg-Si系合金晶间腐蚀敏感性的影响[J].中国有色金属学报,2001,11(2):231-235.
    [86]李劲风,张昭,曹发和,程英亮,张鉴清,曹楚南.峰时效AA2090及AA8090铝-锂合金晶间腐蚀与剥蚀性能[J].中国腐蚀与防护学报.2004,24(3):135-142.
    [87]李劲风,曹发和,张昭,程英亮,张鉴清,曹楚南.铝合金剥蚀敏感性及其定量研究方法[J].中国腐蚀与防护学报.2004,24(1):55-64.
    [88]蒋太富.LF6合金的电导率及耐剥蚀性能[J].铝加工,1997,20(6):46-49.
    [89]高淑明,李广宇,冯正海.5A06铝合金板材腐蚀性能的研究[J].轻合金加工技术,2001,29(6):45-47.
    [90]王祝堂.铝合金在船舶中的应用暨5083合金的剥落腐蚀与工艺因素的关系[J].轻合金加工技术,1993,21(10):6-7.
    [91]王佳,曹楚南,林海潮.孔蚀发展期的电极阻抗频谱特征[J].中国腐蚀与防护学报,1989,9(4):271-279.
    [92]Conde A,Damborenea J de.An electrochemical impedance study of a natural aged Al-Cu-Mg alloy in NaCl[J].Corrosion Science,1997,39(2):285-303.
    [93]苏景新,张昭,曹发和,张鉴清,曹楚南.T6态2090Al-Li合金在EXCO溶液中的剥蚀行为和剥蚀发展过程中的电化学阻抗谱[J].金属学报,2005,(09):974-978.
    [94]李劲风,张昭,曹发和,程英亮,张鉴清,曹楚南.Al-Li合金在EXCO溶液中腐蚀的电化学阻抗研究[J].金属学报,2003,4:426-430.
    [95]Li D,Hu Y, Guo B.Study on the evaluation of localized corrosion of 2024 T3 aluminum alloy with EIS[J].Mater.Sci.Eng.,2000,A280:173-176.
    [96]Vera Cruz R P, Nishikata A,Tsuru T. AC impedance monitoring of pitting corrosion of stainless steel under a wet-dry cyclic condition in chloride-containing environment[J].Corrosion Science,1996,38(8):1397-1406.
    [97]宋诗哲,唐子龙.Al-Mg合金在不同pH值的NaCl溶液中腐蚀行为[J].腐蚀科学与防护技术,1995,7(3):217-224.
    [98]ZHANG Zhao,ZHANG Jian-qing,SHAO Hai-bo,WANG Jian-ming,CAO Chu-nan.Pitting corrosion of A12024-T3 in sodium chloride solution[J],Trans.Nonferrous Met.Soc.China,2001,11(5):748-750.
    [99]Conde A ,Damborenea J.Electrochemical modeling of exfoliation corrosion behavior of 8090 alloy [J].Electrochim. Acta ,1998 ,43(8):849-860.
    [100]水野政夫等著.许瑟姿译.铝及其合金的焊接[M].北京:冶金工业出版社,1985年.
    [101]#12
    [102]尹志民,姜锋.航天航空用铝钪合金研制与开发——俄罗斯专家来华讲学资料,2004
    [103]KnipstromK E,Pekksri B.Friction stir welding process goes commercial[J].WeldingJournal,1997,9:55-57.
    [104]Dawes C.J, Thomas W.M.. Friction stir process welds aluminum alloys[J].Welding Journal, 1996,75(3):41-45.
    [105]R.S. Mishra, Z.Y. Ma. Friction stir welding and processing[J].Materials Science and Engineering R,2005,50:l-78.
    [106]J. A. Esparza, W. C. Dvis, E. A. Trillo, et al. Friction stir welding of magnesium alloy AZ31B[J].Journal of Materials Science Letters.2002,21:917-920.
    [107]C. G Rhodes, M. W. Mahoney. Effect of friction stir welding on microstructure of 7075 A1[J]. Scripta Materialia.1997,36(1): 69-75.
    [108]S. Mironov, Y. Zhang, Y.S. Sato, H. Kokawa. Development of grain structure in β-phase field during friction stir welding of Ti-6Al-4V alloy[J].Scripta Materialia, 2008,59:27-30.
    [109]Y.S. Sato, H. Yamanoi, H. Kokawa, T. Furuhara. Microstructural evolution of ultrahigh carbon steel during friction stir welding[J].Scripta Materialia,2007,57:557-560.
    [110]Ling Cui, Hidetoshi Fujii, Nobuhiro Tsuji, Kiyoshi Nogi.Friction stir welding of a high carbon steel[J].Scripta Materialia, 2007,56: 637-640.
    [111]Cemal Meran.The joint properties of brass plates by friction stir welding[J].Materials & Design,2006,2.719-726.
    [112]Won-Bae Lee, Seung-Boo Jung.The joint properties of copper by friction stir welding[J].Materials Letters, 2004,58:1041-1046.
    [113]Y.J. Kwon, I. Shigematsu, N. Saito. Dissimilar friction stir welding between magnesium and aluminum alloys[J]. Materials Letters, 2008, 6:3827-3829.
    [114]Dawes C J.Introduction to friction stir welding and its development[J].Welding and Metal Fabrication,1995,63(1):13-15.
    [115]JoeljD.The friction stir welding advantage[J].Welding Journal,2001,80(5):30-34.
    [116]Rhodes C G,Mahoney M W et al. Effect of friction stir welding on microstructure of 7075 aluminum[J].Scripta Materialia ,1997, 36 (1) :69-75.
    [117]Li Y, Trillo E A ,Murr L E. Friction - stir welding of aluminum alloy 2024 to silver[J]. Journal of Materials Science Letters,2000 ,19 (12) :1047-1051.
    [118]M. Ericsson, R. Sandstrom.Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG[J].International Journal of Fatigue,2003,25(12):379-1387.
    [119]L. Ceschini, I. Boromei, G Minak, et al. Effect of friction stir welding on microstructure,tensile and fatigue properties of the AA7005/10 vol.%Al_2O_3p composite[J]. Composites Science and Technology, 2007, 67:605-615.
    [120]M. Jariyaboon, A.J. Davenport, R. Ambat, B.J. Connolly, S.W. Williams,D.A.Price.The effect of welding parameters on the corrosion behaviour of friction stir welded AA2024-T351 [J].Corrosion Science, 2007.49(2):877-909.
    [121]Stefano Maggiolino, Chiara Schmid.Corrosion resistance in FSW and in MIG welding techniques of AA6XXX[J].Journal of Materials Processing Technology, 2008,197:237-240.
    [122]Liu G, Murr L.E,Niou C. S. et al.Microstructural aspects of the friction-stir welding of 6061-T6 aluminum [J].Scripta Materialia, 1997,37(3):355-361.
    [123]M. Peel, A. Steuwer, M. Preuss, et al. Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds[J]. Acta Materialia. 2003, 51: 4791-4801.
    [124]M.W.Mahoney,C. G Rhodes,J. G Flintoff,et al.Properties of friction stir welded 7075-T651 aluminum [J].Metallurgical and Materials Transaction A:Physical Metallurgy and Materials Science. 1998,29(7): 1955-1964.
    [125]常志龙.LF6铝合金搅拌摩擦焊接研究[D].哈尔滨:哈尔滨工业大学,2006年.
    [126]尹志民,高拥政,潘青林等.微量Sc和Zr对Al-Mg合金铸态组织的晶粒细化作用[J].中国有色金属学报,1997,17(4):75-78.
    [127]朱大鹏.微量钪和锆对Al-Mg-Mn合金组织性能的影响[D].2004,中南工业大学硕士论文.2004.
    [128]高拥政.含Sc铝镁合金的研究[D].中南工业大学硕士论文.1997.
    [129]张永红.Al-Mg-Sc-Zr合金再结晶学行为的研究[J].合金与热处理,2001,24:42-44.
    [130]K.V.Jata,A.K.Hopkins,R.J.Rioja.Anisotropy and texture of Al-Li alloys[J].Mat.Sci.Forum, 1996,Vols. 217-222: 647-652.
    [131]R.K.Singh,A.K.Singh,N.Eswara Prasad.Texture and mechanical property anisotropy in an Al-Mg-Si-Cu alloy [J]. Materials Science and Engineering.2000, A277: 114-122.
    [132]Takayuki Sakuma,Toshio Komatsubara,Sin-ya Komatsu.Effects of texture and arrangements of dislocation cell walls on yield stress anisotropy in cold rolled and recovery annealed Al-Mg alloy sheets[J]. Mat.Sci.Forum,2002,Vols 396-402:1055-1060.
    [133]A.K.Vasudevan,M. A.Przystupa,W.GFricke,Jr.Texture-microstnicture effects in yield strength anisotropy of 2090 sheet alloy[J].Scripta Metallurgica et Materialia. 1990,24:1429-1434.
    [134]Hong Bin Genga, Suk Bong Kangb, Bok Ki Min. High temperature tensile behavior of ultra-fine grained Al-3.3Mg-0.2Sc-0.2Zr alloy by equal channel angular pressing[J]. Materials Science and Engineering A, 2004, 373: 229-238.
    [135]R. Kaibyshev, F. Musin, D.R. Lesuer, T. G Nieh. Superplastic behavior of an Al-Mg alloy at elevated temperatures[J]. Materials Science and Engineering A,2003, 342:169-177.
    [136]宋玉泉,程永春,王习文.拉伸变形应变速率指数的力学涵义及其规范测量[J].机械工程学报,2000,8:33-37.
    [137]张晓华,邱晓刚,卢国清,唐静.应变速率敏感系数(m值)测试方法探讨[J].钢铁钒钛,2001,1:63-68.
    [138]R.kaibyshev, T.Sskai, I.Nikulin, F.Musin. Achieving Superplasticity in the 7055 Aluminum Alloy[J].Materials Science Forum.2004,447-448:447-452.
    [139]邓忠勇,黄伯云,贺跃辉,孙坚.热变形态TiAl基合金超塑性拉伸过程中应变速率敏感系数的分析[J].稀有金属材料与工程,1999,4:228-230.
    [140]S.W. Lee, J.W.Yeh. Superplasticity of 5083 alloys with Zr and Mn additions produced by reciprocating extrusion[J], Materials Science and Engineering A, 2007,460-461:409-419.
    [141]Manish C.H.,I.Roy,Farghalli A.Mohamed.Creep behavior in near-nanostructured Al 5083 alloy[J]. Materials Science and Engineering A. 2005, 410-411:24-27.
    [142]Oleg D. Sherby, Jeffrey Wadsworth. Superplasticity-Recent advances and future directions[J]. Progress in Materials Science, 1989, 33:169-221.
    [143]H. Watanabe, T. Mukai, T.G. Nieh, K. Higashi.Low temperature superplasticity in a magnesium-based composite[J]. Scripta mater., 2000,42: 249-255.
    [144]Nguyen Q. Chinh, Peter Szommera, Tam(?)s Csan(?)di, Terence G Langdon. Flow processes at low temperatures in ultrafine-grained aluminum[J].Materials Science and Engineering A. 2006,434:326-334.
    [145]J.C.Tan, M.J.Tan. Superplasticity and grain boundary sliding characteristics in two stage deformation of Mg-3Al-lZn alloy sheet[J]. Materials Science and Engineering A, 2003,339:81 -89.
    [146]Z.Y. Ma, R.S. Mishra, M.W. Mahoney. Superplastic deformation behaviour of friction stir processed 7075A1 alloy [J]. Acta Materialia. 2002, 50: 4419-4430.
    [147]C.L.Chen, M.J. Tan. Cavity growth and filament formation of superplastically deformed Al 7475 Alloy [J]. Materials Science and Engineering A,2001,298:235-244.
    [148]Y.Takayama, T. Tozawa, H. Kato. Superplasticity and thickness of liquid phase in the vicinity of solidus temperature in a 7475 aluminum alloy [J]. Acta mater. 1999,47(4): 1263-1270.
    [149]D.L.Yin, K.F. Zhang, G.F. Wang, W.B. Han. Superplasticity and cavitation in AZ31 Mg alloy at elevated temperatures[J]. Materials Letters,2005,59:1714-1718.
    [150]赵文娟,丁桦,曹富荣,等.Ti6A14V合金的低温超塑性拉伸变形行为[J].材料研究学报,2008,22(3):269-273.
    [151]Yu.V.Milman,D.V.Lotsko,O.L.Sirko. 'Sc Effect' of improving mechanical properties in aluminium alloys[J]. Materials Science Forum.2000,331-337:1107-1112.
    [152]S. Lathabai, P.G Lloyd. The effect of scandium on the microstructure,mechanical properties and weldability of a cast Al-Mg alloy [J]. Acta Materialia,2002, 50:4275-4292.
    [153]WU Shi-dun.Theory of metallic superplastic deformation [M], Beijing: National Defence Industry Press, 1997. 37.
    [154]Desmukh, M.N., Pandey, R.K.; Mukhopadhyay, A.K.Fatigue behavior of 7010 aluminum alloy containing scandium[J].Scripta Materialia, 2005, 52: 645-650.
    [155]中华人民共和国国家质量技术监督局.GB/T 6398-2000.中华人民共和国国家标准.北京:中国标准出版社,2000-11-17.
    [156]谢明立,习年生,陶春虎.疲劳应力变幅的断口反推研究[J].航空材料学报,2000,20(4):34-40.
    [157]P.Cavaliere, M.Cabibbo.Effect of Sc and Zr additions on the microstructure and fatigue properties of AA6106 produced by equal-channel-angular-pressing[J].Materials Characterization. 2008,59:197-203.
    [158]J. Schijve, Some formulas for crack opening stress level[J],Engineer fracture mechanics. 1981,14: 461-465.
    [159]Y.P. Srivastava, S.B.L. Garg, Influence of R on e.ective stress range ratio and crack growth[J], Eng. Fract. Mech. 1985,22:915-926.
    [160]M.da Fonte,F.Romeiro, M.de Freitas.The effect of microstructure and environment on fatigue crack growth in 7049 aluminium alloy at negative stress ratios[J].International Journal of Fatigue, 2003,25:1209-1216.
    [161]M.A.Fonte,S.E.Stanzl-Tschegg,et al. The microstructure and environment influence on fatigue crack growth in 7049 aluminum alloy at different load ratios[J]. International Journal of Fatigue 2001,23:S311-S317.
    [162]J. Zhang, X.D. He, S.Y. Du. Analyses of the fatigue crack propagation process and stress ratio effects using the two parameter method[J] .International Journal of Fatigue, 2005,27(10-12):1314-1318.
    [163]黄小平,韩芸,崔维成,万正权,卞如冈.变幅载荷作用下焊接接头疲劳寿命预测方法[J].船舶力学,2005,9(1):89-97.
    [164]郑修鳞.材料的力学性能[M].西安:西北工业大学出版社,1996.
    [165]Kujawski D. A fatigue crack driving force parameter with load ratio effects[J].International Journal of Fatigue, 2001,23:S239-S246.
    [166]Bulloch J H. Near threshold fatigue crack propagation behavior of CrMoV turbine steel [J]. Theoretical and Applied Fracture Mechanics, 1995,23: 89-101.
    [167]Boyce B L, Ritchie R O. Effect of load ratio and maximum stress intensity on the fatigue threshold in Ti-6A1-4V[J]. Engineering Fracture Mechanics,2001,68:129-147.
    [168]S.Suresh.王中光译.材料的疲劳[M].北京:国防工业出版社.1993.
    [169]陈铮,王永欣,徐磊.铝锂合金强化和韧化的特殊机理[J].中国有色金属学报,1997,5:56-61.
    [170]陈铮,王永欣.中强和高强铝合金的疲劳裂纹扩展特性[J].有色金属,1998,4:90-95.
    [171]O. Roder,O.Schauerte,G.L(?)tjering,A.Gysler. Correlation between microstructure and mechanical properties of Al-Mg alloys without and with Scandium[J].Materials Science Forum,1996,217-222:1835-1840.
    [172]崔约贤,王长利.金属断口分析[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [173]吴连生.断口分析及其在失效分析中的应用[J].理化检验——物理分册,1994,30(5):26-39.
    [174]Annual Book of ASTM Standards [S], ASTM G 66-80,1986.
    [175]T.D.Burleigh,E.Ludwiczak,R.A.Petri.Intergranular Corrosion of an Aluminium-Magnesium-Silicon-Copper Alloy[J]. Corrosion Science, 1995,51(1): 50-55.
    [176]K.L.Kendig,D.B.Miracle.Strengthening mechanism of Al-Mg-Sc-Zr alloy[J].ActaMaterialia,2002,50:4165-4175.
    [177]郑玉珍,郑鹏,李英.LF6合金退火制度对抗蚀性能的影响[J].材料工程,1994,8-9:7-9.
    [178]Miljana Popovi(?), Endre Romhanji. Stress corrosion cracking susceptibility of Al-Mg alloy sheet with high Mg content[J]. Journal of Materials Processing Technology,2002,125-126:275-280.
    [179]F.Wenger, S.Cheriet, B.Talhi, J.Galland, Electrochemical impedance of pits.Influence of the pit morphology [J], Corrosion Science, 1997, 39(7):1239-1252.
    [180]I. Annergren, F. Zou, D. Thierry, Application of localised electrochemical techniques to study kinetics of initiation and propagation during pit growth [J],Electrochimica Acta, 1999,44:4383-4393.
    [181]Ren(?) Antan(?)o-Lopez, Michel Keddam, Hisasi Takenouti, A new experimental approach to the time-constants of electrochemical impedance: frequency response of the double layer capacitance[J], Electrochimica Acta,2001,46:3611-3617.
    [182]K. Darowicki, S. Krakowiak, P. Slepski , Evaluation of pitting corrosion by means of dynamic electrochemical impedance spectroscopy [J], Electrochimica Acta, 2004,49:2909-2918.
    [183]F.M.Reis,H.Gde Melo,I.Costa.EIS investigation on Al 5052 alloy surface preparation for self-assembling monolayer[J].Electrochimica Acta,2006,51:1780-1788.
    [184]曹楚南,王佳,林海潮.氯离子对钝态金属电极阻抗频谱的影响[J].中国腐蚀与防护学报,1989,9(4):261-270.
    [185]M.Keddam, C.Kuntz, H.Takenouti, D.Schuster, D.Zuili, Exfoliation corrosion of aluminium alloys examined by electrode impedance[J], Electrochimica Acta,1997,42(l):87-97.
    [186]A.Conde, J.de Damborenea, Electrechemical modeling of exfoliation corrosion behaviour of 8090 alloy[J], Electrochimica Acta, 1998,43(8):849-860.
    [187]CAI Chao, LI Jin-feng, ZHENG Zi-qiao, et al, Exfoliation corrosion susceptibility of 8090 Al-Li alloy examined by electrochemical impedance spectroscopy [J],Transaction of Nonferrous Metals Society of China,2004,14(4):742-746.
    [188]Yutaka S. Sato And Hiroyuki Kokawa. Distribution of Tensile Property and Microstructure in Friction Stir Weld of 6063 Aluminum. Metallurgical And Materials Transactions A,2001,32A:3023-3031.
    [189]傅志红,贺地求,周鹏展,胡爱武.7A52铝合金摩擦搅拌焊焊缝的组织分析[J].焊接学报,2006,27(5).
    [190]魏世同,郝传勇.01420铝锂合金的摩擦搅拌焊接[J].航空材料学报,2006,26(6).
    [191]陈苏里.Al-Mg-Sc合金焊丝制备及焊接接头组织性能研究[D].中南工业大学硕士学位论文,湖南长沙.2006.
    [192]Fredlyander I,et al. The Peculiarities of Grain Structure of Aluminum-Lithium Alloys[J]. Proc. of the 6th international conference on aluminum-lithium alloys,1992,867-871.
    [193]于尔靖,郝传勇,应慧筠,施成根,李感红.铝锂合金凝固组织特征[J].焊接学报,1996,17(1):1-6.
    [194]X. Sauvage, A. Dede, A. Cabello Munoz, B. Huneau. Precipitate stability and recrystallisation in the weld nuggets of friction stir welded Al-Mg-Si and Al-Mg-Sc alloys[J].Materials Science and Engineering A, 2008,491:364-371.
    [195]周振丰,张文钺.焊接冶金与金属焊接性[M].北京:机械工业出版社,1988.
    [196]GLapasset,Y.Girard,M.H.Campagnac,et al. Investigation of the microstructure and properties of a friction stir welded Al-Mg-Sc alloy[J].Materials Science Forum,2003,426-432:2987-2992.
    [197]A. Cabello Munoz, G Ruckert, B. Huneau, X. Sauvage, S. Marya. Comparison of TIG welded and friction stir welded Al-4.5Mg-0.26Sc alloy [J]. Journal of Materials Processing Technology, 2008,197: 337-343.
    [198]Woong-Seong Chang,Han-Sur Bang,Seung-Boo Jung,et al. Joint properties and thermal behaviors of friction stir welded age hardenable 6061A1 alloy[J].Materials Science Forum.2003,426-432:2953-2958.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700