中强可焊铝镁钪合金板材制备及焊接性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究是国家“十五”重点攻关项目(项目编号:MKPT-2004-16ZD)的一部分,论文以Al-Mg-Mn-Sc-Zr系合金为研究对象,采用硬度、拉伸力学性能测试方法和金相、透射电镜等微观组织观察手段,研究大生产条件下铸锭均匀化、加工热处理对合金组织性能的影响以及铝镁钪合金板材的焊接性能,论文研究得出以下主要结论:
     1)Al-Mg-Mn-Sc-Zr铸态合金在均匀化退火时有硬化现象。合金硬度的变化是激冷凝固过程形成的含锰、钪、锆过饱和固溶体的分解,析出的Al6Mn和Al3(Sc,Zr)粒子导致合金硬度的增加。
     2)Al-Mg-Mn-Sc-Zr合金铸锭在300℃退火6小时,合金硬度达到峰值,其最佳均匀化退火温度为300~350℃,退火时间6~8小时。
     3)Al-Mg-Mn-Sc-Zr合金合宜的热轧起始温度为470℃、终轧温度为360℃冷轧变形量应当控制在67%以上,稳定化退火工艺为300~350℃/1h,在此条件下,合金的抗拉强度、屈服强度和延伸率分别为411 MPa、293 MPa和14%。
     4)Al-Mg-Mn-Sc-Zr合金的强化主要来源于Mg的固溶强化、添加微量Sc和Zr引起的晶粒细化强化、亚结构强化和Al3(Sc,Zr)、A16Mn析出强化。
     5)采用Al-Mg-Sc-Zr焊丝为焊接填充材料,Al-Mg-Mn-Zr-Sc合金板材焊接接头(带余高)抗拉强度为380MPa,延伸率>7%,焊接接头抗拉强度达到基材的90%。
This study is a part of the key project of the national "tenth five" programme (item number: MKPT-2004-16ZD).This paper took Al-Mg-Mn-Sc-Zr alloys as object of reserch, and studied the influence of cast ingot homogenization heat treatment and machining heat treatment on microstructure, mechanical properties and welding performance of Al-Mg-Sc aluminum alloy plane under the manufacture conditions, by testing the hardness, mechanical properties, optical microscopy (OM), and transmission electron microscopy (TEM). The results show that:
     1) The Al-Mg-Mn-Sc-Zr as-cast alloy hardened during the process of uniform annealing. The change of alloy hardness was because of the decomposition of supersaturated solid solution including manganese, scandium and zirconium during the flash set. And the precipitated A16Mn , A13 (Sc, Zr) particles led to the increment of hardness.
     2) Al-Mg-Mn-Sc-Zr alloy reached the peak hardess after annealing for 6 hours at 300°C. So the best homogenization annealing temperature for this alloy is 300~350°C, and annealing for 6~8 hours.
     3) The proper start temperature of hot rolling for the Al-Mg-Mn-Sc-Zr alloy was 470°C, finishing temperature was 360°C, the amount of deformity should more then 67%, and the stabilization annealing treatment was 300~350°C/1h. At this condition, tensile strength, yield strength, and specific elongation of the alloy was 411MPa、293MPa and 14%, respectively.
     4) The strength of Al-Mg-Mn-Sc-Zr alloy came from solution strengthening of Mg, grain refinement strengthening led by addition of Sc and Zr, substructure strengthening, and the precipitation strengthening of A13(Sc, Zr)、A16Mn.
     5) Using Al-Mg-Sc-Zr soldering wire as Welding fillings, the tensile strength and specific elongation of weld joint was 380MPa and >7%, respectively, and the tensile strength of weld joint reached 90% of the matrix.
引文
[1]王祝堂,田荣璋主编,铝合金及其加工手册,长沙:中南工业大学出版社,1988
    [2]邓至谦,周善初等编,金属材料及热处理,中南工业大学出版社,1989
    [3]《有色金属及其热处理》编写组,有色金属及其热处理,北京,国防工业出版社,1981:39
    [4]田荣璋,金属热处理,冶金工业出版社,1985
    [5]E.Nes,et al,Characterisation and Modelling of work Hardening in Al-Mg and Al-Mn alloys,Materials Science Forum Vols.396-402(2002):1145-1150
    [6]尹志民,高拥政,潘青林等,微量Sc和Zf对A1-Mg合金铸态组织的晶粒细化作用,中国有色金属学报,1997(12),Vol7,No4:75-78
    [7]张迎晖等,铸态下钪在铝基体中的存在状态,轻合金加工技术,2001(No.8):41
    [8]潘青林,尹志民等,Al-Mg-Sc合金的再结晶,中国有色金属学报,1998(3):427-430
    [9]张迎晖等,温轧态Al-Sc二元合金的再结晶,东北工学院学报,1993(11):576
    [10]Vladivoj Ocenasek,et al,Resistance to recrystallization due to Sc and Zr addition to A1-Mg alloys,Materials Characterization 47(2001):157-162
    [11]张迎晖,孝云祯,马宏声,微量元素Sc对工业纯铝再结晶的影响,中国有色金属学报,1998(3),Vol8,No1:85-88
    [12]赵鸿金,张迎晖,马宏声,热轧状态Al-0.328Sc合金的动态再结晶,轻合金加工技术,2001,Vol29,No.2:13-15
    [13]潘青林,尹志民,邹景霞等,微量Sc在Al-Mg合金中的作用,金属学报,2001(07):749-753
    [14]潘青林,高拥政,尹志民,左铁镛,Sc对Al-Mg合金组织与性能的影响,材料科学与工艺,1997(4):9-14
    [15]柏振海,赵楠等,Sc对Al-Mg合金组织和性能的影响,铝加工,2002(02):17-22
    [16]T.Torma,E.Kovacs,Hardening mechanisms in A1-Sc alloys,Journal of materials science 24(1989):3924-3927
    [17]林肇琦等;铝一钪合金的发展概况,轻合会及其加工,1992(1):54-58
    [18]王祝堂等,钪-铝合金的新型微量合金元素,轻合金加工技术,2000(No.1):31
    [19]柏振海译,新型Al-Mg-Sc合金,国外金属加工,2002(3):1-6
    [20]Ferro R,et al,铝、镁轻合金中的稀土,中国稀土学报,1997,vol.15,No.3:262-272
    [21]A.L.Berezina,et al,Sc in aluminum alloys,Materials Science Forum Vols.396-402(2002):741-746
    [22]杭吕,俄罗斯的航空用高强高韧铝合金,航空制造工程,1996(5):19-21
    [23]高彩茹,李晋霞,徐永昌等,铝-钪合金发展现状及作为高温耐热合金的展望,黄金学报,1999(3),Vol1,No1:34-37
    [24]孙志臣,钪在铝合金中的应用,湖南冶金,1991(1):31-33
    [25]谢燮揆译,用钪合金的铝合金.轻金属,1993(3):54-59
    [26]潘青林,Al-Mg-Sc和Al-Mg-Sc-Zr合金的性能与组织结构研究,中南工业大学博士学位论文,湖南长沙,2000
    [27]高拥政,含Sc铝镁合金的研究,中南工业大学硕士学位论文,湖南长沙,1997
    [28]K.A.Gschneidner,et al,The A1-Sc(Aluminum-Scandium)system,Bulletin of alloy phase diagrams Vol.10 No.1,1989:34
    [29]B.A.Parker,et al,The effect of small additions of scandium on the properties of aluminum alloys,Journal of Materials Science 30(1995):452-458
    [30]A.L.Berezina,et al,Structural state and decomposition kinetics in rapidly quenched Al-Sc,Al-Mg-Sc alloys,Materials Science Forum Vols.396-402(2002):763-768
    [31]E.A.Marquies,et al,Nanoscale structural evolution of A13Sc precipitates in Al(Sc)alloys,acta materialia 49(2001):1909-1919
    [32]曾凡浩等,Al-Mg-Sc-Zr系富Al角相图评估,材料导报,2002(6):16-20
    [33]刘慧,高英俊,Al-Mg-Sc合金的价电子结构计算,广西大学学报,2002(03):256-259
    [34]余宗森、田中卓,金属物理,冶金工业出版社,1981
    [35]Alexander Pisch,et al,Application of computational thermochemistry to Al and Mg alloy processing with Sc additions,Materials Science and Engineering A289(2000):123-129
    [36]夏德顺,含钪的铝和铝锂合金,航天工艺,1999(4):37-42
    [37]曹明盛,物理冶金基础,北京冶金工业出版社,1991
    [38]王笑天,金属材料学,北京:机械工业出版社,1987:267-274
    [39]陈景榕等,金属与合金中的固态相变,冶金工业出版社,1997
    [40]肖纪美,合金相与相变,北京:冶金工业出版社,1987:250
    [41]冯端等,金属物理学(第一卷),北京:科学出版社,1987:154
    [42]杨磊,潘青林,高拥政,尹志民,退火工艺对含Sc铝镁合金组织与性能的影响,铝加工,1998(6):41-45
    [43]李慧中,张永红,尹志民等,退火工艺对Al-Mg-Sc-Zr合金组织与性能的影响,稀有金属材料与工程,1999(02):110-112
    [44]柏振海,罗兵辉,谭敦强,Al-Mg-Sc合金退火组织和性能,中南工业大学学报,2002(06):600-603
    [45]K.B.Hyde,et al,The effect of Ti on grain refinement in A1-Sc alloys,Materials Science Forum Vols.396-402(2002):39-44
    [46]S.Iwamura,et al,Coherency between A13Sc precipitate and the Matrix in Al alloys containing Sc,Materials Science Forum Vols.396-402(2002):1151-1156
    [47]谭澄宇等,Al-Sc合金的时效行为和拉伸性能,中南矿冶学院学报,1993(2):86-90
    [48]Hidenori Fujii,Makoto Sugamata,etal,Effect of Sc addition on rapidly solidified Al-transition metal alloys,Materials Science Forum Vols.396-402(2002):245-250
    [49]Y.Harada,et al,Thermal expansion of A13Sc and A13(Sc0.75X0.25),Scripta Materialia 48(2003):219-222
    [50]David N.Seidman,et al,Precipitation strengthening at ambient and elevated temperatures of heat-treatable AI(Sc)alloys,acta materialia 50(2002):4021-4035
    [51]高彩茹,孝去祯,李英龙,Al-Sc合金高温力学性能研究,轻金属, 2001(2):53-55
    [52]K.Fukunaga,T.Shouji,Y.Miura,Temperature dependence of dislocation structure of L12-Al3Sc,Materials science and engineering,A239-240(1997):181-184
    [53]John S.Vetrana,steve M.Bruemer,Influence of the particle size on recrystallization and grain growth in A1-Mg-X alloys,Materials science and engineering,A238(1997):101-107
    [54]Y.W.Riddle,H.Hallem,N.Ryum,Highly recrystallization resistant Al-Mn-Mg Alloys using Sc and Zr,Materials Science Forum Vols.396-402(2002):563-568
    [55]Kentaro Ihara and Yasuhiro Miura,High temperature Deformation of Al-Mg and Al-Mg-Sc alloys,Materials Science Forum Vols.396-402(2002):1377-1382
    [56]P.W.Hyland,et al.,Homogeneous nucleation kinetics of A13Sc in a dilute A1-Sc,Metall.Trans.A,1992,23(7):1947
    [57]M.S.Domack,D.L.Dicus,Evaluation of Sc-Bearing Aluminum alloy C557 for aerospace applications,Materials Science Forum Vols.396-402(2002):839-844
    [58]Zaki Ahmad,Anwar U1-Hamid,Abdul-Aleem B.J,The corrosion behavior of scandium alloyed A15052 in neutrall sodium chloride soluteon,corrosion science,43(2001):1227-1243
    [59]J.L.Searles,P.I.Gouma,R.G.Buchheit,Stress corrosion Cracking of Sensitized AA5083(Al-4.5Mg-1.0Mn),Materials Science Forum Vols.396-402(2002):1437-1442
    [60]潘青林,尹志民等,含Sc铝镁合金超塑变形行为与显微组织特征,中南工业大学学报,1999(4):179-181
    [61]S.Lee,et al,Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al-Mg alloys,acta materialia 50(2002):553-564
    [62]汪锡孝,试验研究方法,长沙:湖南科学技术出版社,1989
    [63]中国有色金属学会,金属物理性能及测试方法,北京:冶金工业出版社,1987.12:421
    [64]哈宽富,金属力学性质的微观理论,北京,科学出版社,1983

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700