中强可焊铝镁钪合金制备及其相关基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在工业化生产条件下,采用半连续铸造、热轧、冷轧和稳定化处理技术制备了厚度为2.0mm、宽度为1200mm的铝镁钪合金板材。采用热加工模拟、热塑性、硬度和电导率测试方法,室温拉伸、金相和电子显微分析方法研究了铝镁钪合金在不同均匀化处理、不同热加工工艺和稳定化处理工艺条件下的力学性能、腐蚀性能和显微组织结构及其变化。在此基础上,还研制成功了铝镁钪合金板材配用焊丝和研究了合金成品板材的焊接性能。论文研究获得以下主要结论:
     (1)铝镁钪合金的成分范围为Al-(5.5~6.5)Mg-(0.15~0.40)Mn-(0.2-0.4)Sc-(0.1~0.15)Zr-0.02Ti-0.0025Be,成分优化结果表明,Mg应当控制在中上限,取6.0%~6.2%,Mn应当控制在中限,取0.3%,Sc和Zr含量应当分别控制在0.25%和0.12%。
     (2)Mn以Al-10%Mn中间合金的形式随铝锭一道加入,装在铝锭的上层;Sc以Al-2%Sc中间合金、Zr以Al-4%Zr中间合金的形式在铝锭熔化后熔体温度达到800℃以上时加入;Ti以块状Al-4%Ti和线状Al-5%Ti-1%B中间合金两种形式加入,其中块状Al-4%Ti中间合金在炉前取样分析前加入,线状Al-5%Ti-1%B中间合金则是在半连续铸造时通过专用送线机构加入到静止炉与铸造机之间的流槽熔体中。
     (3)铝镁钪合金最佳精炼工艺由炉内熔体精炼净化和炉外在线精炼净化组成。炉外在线精炼净化需要在精炼净化装置中始终通入惰性气体,且保证气泡均匀细小。
     (4)设计并改进了结晶器二次冷却水出水孔的角度,将原来的45°改为30°,可避免大规格铸锭冷隔和裂纹的产生。铝镁钪合金最佳的熔铸工艺参数如下:
     (5)半连续激冷铸造条件下生产的铝镁钪合金铸锭在均匀化过程中有类似于传统铝合金固溶后时效过程中的析出特性,即半连续急冷铸造过程中形成的过饱和固溶体会分解析出纳米级的Al_3(Sc,Zr)相。
     (6)铝镁钪合金铸锭均匀化的目的除了消除铸锭的宏观应力从而降低铸锭热轧过程中的变形抗力外,主要是调控过饱和固溶体分解析出Al_3(Sc,Zr)的特性,使其均匀弥散分布在铝基固溶体基体上。
     (7)综合考虑析出粒子的特性和适当降低铸锭热轧过程中的变形抗力以及热轧后板材的最终拉伸力学性能,铝镁钪合金铸锭均匀化的最佳工艺为300~350℃/8h。
     (8)铝镁钪合金高温压缩变形时,应变速率的对数lnε和流变应力、lnσ、ln[sinh(ασ)]之间,ln[sinh(ασ)]和温度T的倒数1/T之间满足线性关系,说明该合金变形过程是一种类似于高温蠕变的热激活过程。据此求得该合金的高温变形材料常数为:
     铝镁钪合金热压缩变形的流变应力方程为:
     (9)随热塑性试验温度升高,铝镁钪合金高温瞬时强度降低,塑性升高,350℃-400℃铸锭合金变形抗力适中,热塑性较好,合宜的热轧温度为400℃-420℃。大生产条件下,应严格控制道次和道次变形量,开始轧制时道次压下量和轧制速度不宜过大,轧制变形量超过25%后,应逐渐加大道次压下量和提高轧制速度,使变形深透到整个轧件厚度。
     (10)铝镁钪合金的再结晶温度比较高,合金可以在较高温度下进行稳定化退火处理。冷轧板材在200℃以下稳定化退火,腐蚀速率、剥落腐蚀反而增加和变差,200℃/1h稳定化退火后腐蚀速率最大、剥落腐蚀最严重;300℃/1h以上稳定化退火,腐蚀速率变小,剥落腐蚀性能由EB级逐步向N级和P级转化。综合考虑合金的力学性能和抗腐蚀性能,铝镁钪合金冷轧板材最佳稳定化退火处理工艺为300℃/1h。
     (11)设计和制备了铝镁钪合金板材配用焊丝,这种焊丝与基材有很好的焊接相容性,焊接接头强度系数为85%,微量Sc、Zr对焊接接头的强化作用主要来源于两个方面,一是微量Sc、Zr对焊缝凝固组织的晶粒细化强化和含Sc、Zr化合物的析出强化,二是Al_3(Sc、Zr)析出粒子的存在显著提高了成品板材在焊接热循环过程中的抗再结晶软化能力。
     (12)研制的铝镁钪合金板材拉伸力学性能σ_b≥415 MPa,σ_(0.2)≥302MPa,δ_5≥15%,剥落腐蚀性能达到P级,焊接接头强度系数≥0.85,全面达到项目攻关要求。
The Al-Mg-Sc alloy sheets were prepared by semi-continuous casting、hot rollings cold rolling and stabilizing under the condition of industrialization production which dimension was thickness 2mm,by width 1200mm. Using thermal processing simulation and the research of plasticity、hardness measurement and electrical resistance test、tensile test at room temperature and metallographic analysis and electronic microscopy , the mechanical properties、corrosion resistance、microstructure and the variation disciplinarian of microstructure as well as weld properties of Al-Mg-Sc alloy sheets were investigated when the processing technical condition homogenizing and stabilizing treatment technical conditions are different. On the base, the welding properties of Al-Mg-Sc alloy finished sheets were researched. The results show that:
     (1) The optimum chemical components range of Al-Mg-Mn-Sc-Zr alloy is Al-5.5-6.5Mg-0.15-0.40Mn-0.2-0.4Sc-0.1-0.15Zr-0.02Ti-Be, in which the content of Mg should be controlled above the medium value and the concentration of Mn is limited to the interspace of the range, while that of Sc and Zr can be controlled in 0.25 and 0.12%, respectively.
     (2) Mn is entered together with aluminum bulks in the form of Al-10%Mn master alloys, being placed upper layer of aluminum bulks. Sc is joined in the form of Al-2%Sc master alloys agent, and Zr is joined in the form of Al-4%Zr master alloys, and both of them are carried when temperature of the melted materiel is over 800℃after aluminum bulks are melted. Ti is joined in the form of Al-4%Ti and Al-5%Ti-l%B master alloys, Al-4%Ti master alloys is joined before analyzing sample, inline in chute the form of Al-5%Ti-l%B master alloys at semi-continuous casting.
     (3)The best refined processing is made up of the melted refining in furnace and the melted refined online out furnace. During the whole of the latter process, the inert gases with small uniform air bladder are pumped continuously in filter.
     (4) The angle of mold draining hole for secondary cooling water is redesigned, and the original 45°is changed to 30°. The optimal parameter of melt-cast technical of Al-Mg-Sc alloy is show in the following table:
     (5) During the homogenization process of the as-cast, there is the precipitation property which is similar with the property of traditional aluminium alloy during the process of aging after solid solution, i.e. oversaturated solid solution formed during the process of semi-continuous sharp quenching casting can be decomposed to precipitate Al_3(Sc,Zr) phase of nanometer size.
     (6) Besides eliminating the macroscopical stress of the as-cast which decrease the deformation resistance in the process of hot rolling, the main purpose of homogenization is regulating the precipitation property mentioned above, in order to achieve the homogeneous distribution of the particles in the aluminum solid solution matrix.
     (7) Overall evaluating the property of precipitated particles, decrease of the deformation resistance in the process of hot rolling and the final mechanical property, the best homogenization temperature is 300-350℃, keeping for 8 hours.
     (8) When Sc-Al-Mg alloy is deformed by compression at high temperature, the natural logarithm of strain rate lnεand flow stress, lnσ, ln[sinh(ασ)] ,ln[sinh(ασ)] and the reciprocal of tempurture 1/T satisfy linear relationship. That's to say, the deformation process of this alloy is similar to a thermal activation process of high-temperature creep process. Thus, the high temperature deformation material constant of this alloy is:
     we can obtain the equation of flow stress of Al-Mg-Sc alloy deformed by reason of thermal compression as follows :ε= 8.75×10~(12)[sinh(0.1336σ)]~(5.25)exp(-183.201/RT)
     (9) With the increase of temperature in thermosplastic experiment, the the short time tensile strength of received-alloy is decreased, and the plasticity is increased. The cast at 350℃-400℃has a proper deformation resistance and a good thermal plasticity, so the proper temperature for hot rolling is 400℃-420℃. Under the manufacture conditions, the pass and reduction in pass should be controlled strictly. Reduction in pass and rolling speed should not be oversized at the beginning of rolling. And after the displacement is over 25%, the reduction in pass and rolling speed should be enhanced generally to make sure the deformation distributing in the whole workpiece.
     (10) The recrystallization temperature of Al-Mg-Sc alloy is higher and may be stabilizing annealinged under higher temperature. The corrosion resistance is worse when the stabilizing annealing temperature is lower then 200℃, and the corrosion resistance of cool-roll plane stabilizing annealinged under the conditions of 200℃/1h is the worst one. Correspondingly, the corrosion resistance becomes better and changes from EB degree to N and P degree, when the stabilizing annealing under the conditions of 300℃/1h. Considering the mechanical properties and the corrosion resistance, the best stabilizing annealing process parameters for the cool-roll planes are 300℃/1h.
     (11) The matched welding wire is also designed and prepared, which have a very good welding compatibility with the matrix, and the intensity coefficient of the welded joints achieves 86%. The effect of minor Sc and Zr on the joint strength includes two aspect. One is that the minor Sc and Zr refine and strengthen the welded joint structure. The other is the precipitate Al3(Sc,Zr) particles increase the recrystallization softening resistance during the welding thermal-cycle process.
     (12) The mechanical properties of the as-researched Al-Mg-Sc alloy plane areσb≥415MPa,σ0.2≥302MPa,δ5≥15%, and the exfoliation corrosion property achieves P degree, and the intensity coefficient of the welded joints is more than 0.85. The results meets the requirements roundly.
引文
[1] 王祝堂,田荣璋.铝合金及其加工手册,长沙:中南工业大学出版社,2005.
    
    [2] 邓至谦,周善初.金属材料及热处理,长沙:中南工业大学出版社,1989.
    
    [3] 《有色金属及其热处理》编写组,有色金属及其热处理,北京,国防工业 出版社,1981:39
    
    [4] 田荣璋,金属热处理,冶金工业出版社,1985
    
    [5] 林乐耘,刘增才,徐杰,等.实海暴露防锈铝合金局部腐蚀敏感性研究[J]. 腐蚀科学与防护技术,2000,Vol.12(4):26-28.
    
    [6] 王洪仁,吴建华,王均涛,等.5083铝合金在海水中的腐蚀电化学行为及活 性氯影响研究[J].电化学,2003,Vol.9(1):60-65.
    
    [7] E.Nes, et al, Characterisation and Modelling of work Hardening in Al-Mg and Al-Mn alloys, Materials Science Forum, 2002,Vols. 396-402:1145-1150
    
    [8] 尹志民,高拥政,潘青林等,微量Sc和Zr对Al-Mg合金铸态组织的晶粒 细化作用,中国有色金属学报,1997(12),Vol7(4):75-78
    
    [9] 刘春飞.新一代运载火箭箱体材料的选择.航空制造技术,2003(2):22-27
    
    [10]H.梁赞采夫等著,许贵之译.铝合金1460和1570燃料箱装配焊接的工艺前景, 航空精密制造技术.2003,Vol.9(4):14-18
    
    [11]林肇琦.铝-钪合金的发展概况.轻合金及其加工,1992(1):54-58
    
    [12]王祝堂.钪-铝合金的新型微量合金元素,轻合金加工技术.2000(1):31
    
    [13] K.A.Gschneidner, et al, The Al-Sc(Aluminum-Scandium) system, Bulletin ofalloy phase diagrams, 1989,Vol.10 (1):34
    
    [14] B.A.Parker, et al, The effect of small additions of scandium on the properties ofaluminum alloys, Journal of Materials Science. 1995, Vol.30:452-458
    
    [15] A.L.Berezina, et al, Structural state and decomposition kinetics in rapidlyquenched Al-Sc,Al-Mg-Sc alloys, Materials Science Forum, 2002,Vols.396-402:763-768
    
    [16] E.A.Marquies, et al, Nanoscale structural evolution of A13Sc precipitates inAl(Sc) alloys, acta materialia, 2001, Vol.49:1909-1919
    
    [17]潘青林,Al-Mg-Sc和Al-Mg-Sc-Zr合金的性能与组织结构研究,中南工业 大学博士学位论文,湖南长沙,2000
    
    [18]曾凡浩,夏长清,古一,Al-Mg-Sc-Zr系富Al角相图评估,材料导报, 2002(6):16-20
    
    [19]刘慧,高英俊,Al-Mg-Sc合金的价电子结构计算,广西大学学报, 2002(03):256-259
    
    [20]余宗森、田中卓,金属物理,冶金工业出版社,1981
    
    [21] Alexander Pisch, et al, Application of computational thermochemistry to Al andMg alloy processing with Sc additions, Materials Science and Engineering ,2000, Vol. A289:123-129
    
    [22] #12
    
    [23] #12
    
    [24] ToropovaLS, Kamardintin A N, et al.Phys Met Metall, 1990, Vol.70(6):106
    
    [25] Yelagin V I, Zakharov V V, et al.Phys MetMetall, 1985, Vol.60(1):88
    
    [26] #12
    
    [27] Yu Kun, et al.J Mater Sci Technol, 2000, Vol.l6(4):416
    
    [28]曹明盛,物理冶金基础,北京冶金工业出版社,1991
    
    [29]王笑天,金属材料学,北京:机械工业出版社,1987:267-274
    
    [30]陈景榕等,金属与合金中的固态相变,冶金工业出版社,1997
    
    [31]肖纪美,合金相与相变,北京:冶金工业出版社,1987:250
    
    [32]冯端等,金属物理学(第一卷),北京:科学出版社,1987:154
    
    [33]潘青林,尹志民,邹景霞等,微量Sc在Al-Mg合金中的作用,金属学报, 2001(07):749-753
    
    [34]杨磊,潘青林,高拥政,尹志民,退火工艺对含Sc铝镁合金组织与性能的影响, 铝加工,1998(6):41-45
    
    [35]李慧中,张永红,尹志民等,退火工艺对Al-Mg-Sc-Zr合金组织与性能的影响, 稀有金属材料与工程,1999(02):110-112
    
    [36]柏振海,罗兵辉,谭敦强,Al-Mg-Sc合金退火组织和性能,中南工业大学学 报,2002(06):600-603
    
    [37] K.B.Hyde, et al, The effect of Ti on grain refinement in Al-Sc alloys, MaterialsScience Forum, 2002,Vols. 396-402:39-44
    
    [38] S.Iwamura, et al, Coherency between Al_3Sc precipitate and the Matrix in Alalloys containing Sc, Materials Science Forum, 2002,Vols. 396-402:1151-1156
    
    [39]谭澄宇等,Al-Sc合金的时效行为和拉伸性能,中南矿冶学院学报, 1993(2):86-90
    
    [40] Hidenori Fujii, Makoto Sugamata, etal, Effect of Sc addition on rapidly??solidified Al-transition metal alloys, Materials Science Forum, 2002,Vols.396-402: 245-250
    
    [41] Y. Harada, et al, Thermal expansion of Al_3Sc and Al_3(Sc_(0.75)X_(0.25)), ScriptaMaterialia, 2003 , Vol. 48:219-222
    
    [42] David N. Seidman, et al, Precipitation strengthening at ambient and elevatedtemperatures of heat-treatable Al(Sc) alloys, acta materialia , 2002,Vol. 50:4021-4035
    
    [43]高彩茹,孝去祯,李英龙,Al-Sc合金高温力学性能研究,轻金属, 2001(2):53-55
    
    [44] K. Fukunaga, T. Shouji, Y. Miura, Temperature dependence of dislocationstructure of Ll_2-Ao_3Sc, Materials science and engineering, 1997,Vol.A239-240:181-184
    
    [45] Jiang Feng, Yin Zhimin, Huang Baiyun, Chen Suli.Homogenization andrecrystallization of Al-6Mg alloys with and without Sc and Zr.Journal of RareEarths,2004,Vol.22(5): 600-603
    
    [46] Christian B.Fuller,Joanne L.Murray,David N.Seidman. Temporal evolution ofthe nanostructure of Al(Sc,Zr)alloys: Part I-Chemical compositions ofAl_3(Sc_(1-x)Zr_x) precipitates. Acta Materialia, 2005, Vol. 53: 5401-5413
    
    [47] Christian B.Fuller,Joanne L.Murray,David N.Seidman.Temporal evolution ofthe nanostructure of Al(Sc,Zr)alloys: Part II-coarsening of Al_3(Sc_(1-x)Zr_x)precipitates. Acta Materialia, 2005, Vol. 53: 5415-5428
    
    [48] J.D.Robson,M.J.Jones,P.B.Prangnell.Extension of the N-model to predictcompeting homogeneous and heterogeneous precipitation in Al-Sc alloy. ActaMaterialia, 2003,(51): 1453-1468
    
    [49] Emmanuelle A.Marquis,David N.Seidman.Coarsening kinetics of nanoscaleA13Sc Precipitates in an Al-Mg-Sc alloy.Acta Materialia, 2005, Vol.53:4259-4268
    
    [50] K.A.Gschneidner. The Al-Sc(Aluminum-Scandium) system, Bulletin of alloyphase diagrams Vol. 10 (1), 1989: 34
    
    [51] Elagin VI, Zakharov VV, Pavlenko SG, Rostova TD. Phys Met Metallogr1985, Vol.60: 88
    
    [52] Toropova LS, Kamardinkin AN, Kindzhibalo VV, Tyvanchuk AT.Phys MetMetallogr 1990, Vol.70: 106
    
    [53] Kamardinkin AN. Russ Metall ,1991,(2): 216
    
    [54] Harada Y, Dunand DC.Scripta Mater. 2002,329-331:
    
    [55] T.Torma, E.Kovacs, Hardening mechanisms in Al-Sc alloys, Journal of materials science , 1989, Vol. 24:3924-3927
    
    [56]林肇琦等;铝-钪合金的发展概况,轻合金及其加工,1992(1):54-58
    
    [57]王祝堂等,钪-铝合金的新型微量合金元素,轻合金加工技术,2000,Vol.28 (1):31
    
    [58] John S. Vetrana, steve M. Bruemer, Influence of the particle size onrecrystallization and grain growth in Al-Mg-X alloys, Materials science andengineering, 1997, Vol. A238 ():101-107
    
    [59] Y.W. Riddle, H. Hallem, N.Ryum, Highly recrystallization resistant Al-Mn-MgAlloys using Sc and Zr, Materials Science Forum , 2002,Vols. 396-402:563-568
    
    [60]杭吕,俄罗斯的航空用高强高韧铝合金,航空制造工程,1996(5):19-21
    
    [61]高彩茹,李晋霞,徐永昌等,铝-钪合金发展现状及作为高温耐热合金的 展望,黄金学报,1999(3),Vol1:34-37
    
    [62] Kentaro Ihara and Yasuhiro Miura, High temperature Deformation of Al-Mg andAl-Mg-Sc alloys, Materials Science Forum 2002,Vols. 396-402:1377-1382
    
    [63] P.W. Hyland, et al., Homogeneous nucleation kinetics of Al_3Sc in a dilute Al-Sc,Metall. Trans. A, 1992, Vol. 23(7): 1947
    
    [64] M.S. Domack, D.L. Dicus, Evaluation of Sc-Bearing Aluminum alloy C557 foraerospace applications, Materials Science Forum, 2002, Vols. 396-402:839-844
    
    [65] Zaki Ahmad, Anwar U1-Hamid, Abdul-Aleem B.J, The corrosion behavior ofscandium alloyed Al5052 in neutrall sodium chloride soluteon, corrosionscience, 2001, Vol. 43:1227-1243
    
    [66] J.L. Searles, P.I. Gouma, R.G Buchheit, Stress corrosion Cracking of SensitizedAA5083 (Al-4.5Mg-1.0Mn), Materials Science Forum, 2002, Vols. 396-402:1437-1442
    
    [67]潘青林,尹志民等,含Sc铝镁合金超塑变形行为与显微组织特征,中南工 业大学学报,1999(4):179-181
    
    [68] S.Lee, et al,Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al-Mg alloys, acta materialia , 2002, Vol. 50:553-564
    
    [69]倪红军,孙宝德,蒋海燕.JDN-1熔剂对铝熔体除氢净化效果的研究[J].轻合??金加工技术,2001,Vol.29(9):13-15.
    
    [70]傅高升,康积行,陈文哲,等.提高铝熔体净化效果的理论基础及途径[A]. 中国有色金属加工工业协会.铝加工高新技术文集[C]2001.71-79.
    
    [71]杨长贺,高钦.有色金属净化[M].大连:大连理工大学出版社,1989.48-88.
    
    [72]杨长贺,孙军,高钦.DUT-89铝熔体净化新技术[J].轻合金加工技术,1991, (10):11-13.
    
    [73]杨长贺,孙军,高洪吾.旋转喷头法对滤液的高效除氢作用[J].特种铸造与有 色合金,1995,(3):6-7.
    
    [74]中国机械工程学会铸造专业学会.铸造手册第3卷(铸造非铁合金)[M].北京: 机械工业出版社,1993.132-133.
    
    [75]肖亚庆,谢水生,刘静安,王涛.铝加工技术实用手册,北京:冶金工业出版 社,2005.
    
    [76]王祝堂,王殿楹,王真超.铝合金的新型合金元素添加剂及添加方法[J].轻合 金加工技术,2000,Vol.28(9):15-19.
    
    [77] Martin Syvertsen, Frede Frisvold Thorvald, Abel Engh and Didrik S. Voss.Development of a Compact Deep Filter for Alummium[A]. Light Metals[C].1999.1049-1055.
    
    [78] Harriss R J. Aluminium Treatment Technology in the 90's[J] .Foundry TradeJournal, 1989,163:145-147.
    
    [79] Serge Lavoie.Eric Pilote,Marc Awder.Thibault Jeam Claude.The Alcan CompactDegasser,A Trough-Based Aluminium Theatment Process[A]. LightMetals[C].1996.1007-1010.
    
    [80] Martin B Taylor, Mart Czssetee and Eli Duke. Recent Experience with the AlcanCompact Degasser in Two Plants[A].Light Metals[C].2000.779-784.
    
    [81]单长智,王贵福,迟福全.提高5A06铝合金Φ720 mm铸锭质量的研究[J]. 轻合金加工技术,2002,Vol.30(2):16-18.
    
    [82] Michael Miniedzinski, Dawid D Smith, Leonard S Aubrey, Edwad M Williams.Staged Filtration Evaluation at an Aircraft Plate and SheetManufacturer[A] .Light Metals[C]. 1999.1019-1030.
    
    [83] Gary Parher,Tabb Williams and Jennifer Black. Production Scale Evaluation ofa New Design Ceramic Foam Filter[A].Light Metals[C]. 1999.1057-1062.
    
    [84] A Tranche and A L Greer.Design of Grain Refiners for Aluminium Alloys[A].Light Metals[C] .2000.827-832.
    
    [85]陈策,王京海.铝合金热轧技术发展[J].轻合金加工技术,2002,Vol.30(4):??8-14.
    
    [86]王祝堂.全球单机架热轧机概貌[A].铝加工高新技术文集[C].2001.174-185.
    
    [87]吕新宇,唐明君,焦兴贵.乳液对热轧铝带卷的影响[J].轻合金加工技术, 2001,Vol.29(9):26-27.
    
    [88]魏云华.铝热轧乳液的性能控制[J].轻合金加工技术,2002,30(10):14-15.
    
    [89]梁延彬,张新明,张克伟.5A05铝合金热塑性变形的高温金相观察[J].轻合 金加工技术,2000,Vol.28(6):44-46.
    
    [90]赵鸿金,张迎晖,马宏声.热轧状态Al-0.328%Sc合金的动态再结晶[J].轻合 金加工技术,2001,Vol.29(2):13-15.
    
    [91]陈策,宋德周.国外现代铝带冷轧机和国产先进冷轧机[A].铝加工高新技术 文集,2001,186-195.
    
    [92]尹丽丽,范瑞尤.铝合金挤压的最新技术和装备[A].铝加工高新技术文集 [C].2001.291-299.
    
    [93]唐明君,微量元素对5383合金板材组织和性能的影响,哈尔滨理工大学硕 士学位论文,黑龙江哈尔滨,2005.
    
    [94]王雪玲,谢延翠,赵永军.5754-H34铝合金板材生产工艺研究[J].轻合金加 工技术,2002,Vol.30(5):23-25.
    
    [95]张华,梁延彬,李世伟.5754铝合金板材H2n状态工艺研究[J].轻合金加工 技术,2002,Vol.30(5):26-27.
    
    [96]罗伟.防锈铝的焊接技术.机械工程师,1997(5):55-57
    
    [97]吴树雄,尹士科.焊丝选用指南,化学工业出版社2002,139-141
    
    [98]娄燕雄 刘贵材.有色金属线材生产,中南工业大学出版社123-125
    
    [99]刘春飞.新一代运载火箭箱体材料的选择.航空制造技术,2003(2):22-27
    
    [100]《有色金属及其热处理》编写组.有色金属及其热处理,北京:国防工业出版 社,1981
    
    [101]徐禾水.Al-Mg系合金工艺性能试验及结果.宇航材料工艺,1997(6):40-45
    
    [102]公永建,吴金杰,周慧琳.防锈铝合金的钨极氩弧焊.河南机电高等专科学校 学报,2005,Vol.13(5):7-9
    
    [103]罗伟.防锈铝的焊接技术.机械工程师,1997(5):55-57
    
    [104]E.A.Marquies.Nanoscale structural evolution of Al_3SC precipitates in Al(Sc)alloys.Acta Materialia, 2001, Vol. (49): 1909-1919
    
    [105] T. I. Malinkina, N. A. Markachev,V. A. Kovtun,N. M. Bukhanova. Weldedstructures of 01570 aluminium alloy . Welding International, 1998, Vol.l2(7):566-569
    
    [106]尹志民,姜锋.航天航空用铝钪合金研制与开发-俄罗斯专家来华讲学资 料,2004
    
    [107]H.梁赞采夫等著,许贵之译.铝合金1460和1570燃料箱装配焊接的工艺前景, 航空精密制造技术.2003,Vol.9(4):14-18
    
    [108] Berezina A L , Chuistov K V, Kolobnev, N. I, et al., Sc in aluminum alloys,Materials Science Forum , 2002, Vols. 396-402:741-746
    
    [109]Filator Y A, Yelagin V I, Zakharov, New Al-Mg-Sc alloys, Materials Scienceand Engineering, 2000, Vol.A280:97
    
    [110] AiuraTadashi, Sugawara Nobutaka, Miura Yasuhiro, The effect of scandium onthe as-homogenized microstructure of 5083 alloy for extrusion, MaterialsScience and Engineering, 2000, Vol. A280:139
    
    [111] Kendig K L, Miracle D B, Strengthening mechanisms of an Al-Mg-Sc-Zr alloy,acta materialia, 2002, Vol.50:4165-4175
    
    [112]Marquies E A, Nanoscale structural evolution of Al_3Sc precipitates in Al(Sc)alloys, acta materialia, 2001, Vol.49:1909-1919
    
    [113] Yin zhimin, Jiang Feng, Pan Qinglin e tal., Microstructure and MechanicalProperties of Al-Mg and Al-Zn-Mg based alloys containing minor Sc and Zr,Trans Nonferrous Met china 2003, Vol. 13(3):515-520
    
    [114]Iwamura S, Nakayama M and Miura Y, Coherency between Al_3Sc precipitateand the Matrix in Al alloys containing Sc, Materials Science Forum, 2002,Vol.396-402:1151-1156
    
    [115] Berezina A L, Structural state and decomposition kinetics in rapidly quenchedAl-Sc,Al-Mg-Sc alloys, Materials Science Forum, 2002, Vol. 396-402:763-768
    
    [116]田莳,合金物理性能,北京,航空工业出版社,1994:36
    
    [117]Poirier J.P.关德林,译.晶体的高温塑性变形[M].大连:大连理工大学出版社, 1989
    
    [118]何宜柱,陈大宏,雷廷权,,等.形变Z因子与动态再结晶晶粒尺寸间的理论 模型[J].钢铁研究学报,2000,Vol.12(1):26-30
    
    [119]王祖唐.金属塑性加工工艺的力学分析[M].清华大学出版社,1987.
    
    [120] Franck R E, Bawk J A. Script Metallurgical., 1989, Vol. (23):113-118.
    
    [121] Frost H J, Ashby M F. Deformation Mechanism Maps. Oxford, Pergamon, 1982.
    
    [122] Rao K P, Prasad Y V. J. Mech. Work. Technol., 1986, Vol. (l3):83-95.
    
    [123] Roberts W. In: Krauss Ed, Deformation Processing and structure Metals Park, ohio: ASM, 1984.
    
    [124] Garofalo F. Trans.Met.Soc, AIME, 1963,227: 351-356.
    
    [125]刘万成.轻合金板带材生产[M].中国有色金属工业总公司职工教育教材编 审办公室,1986,82.
    
    [126]赵永军,师雪飞, 张景学, 马英义。5A06-H34厚板生产工艺研究[J].轻 合金加工技术,2005,Vol.33(5):29-32.
    
    [127]沈健.AA7005铝合金的热加工变形特性[J].中国有色金属学报,2001, Vol.11(4):593-597.
    
    [128]何启基,金属的力学性能,北京:冶金工业出版社,1982:193
    
    [129]柏振海,赵楠等,Sc对Al-Mg合金组织和性能的影响,铝加工,2002(02):17-22
    
    [130] B. F, Brown. Stress- corrosion cracking in high strength steels and in Titanium and Aluminum Alloys. NAVAL RESEARCH LABORATORY. Washington D. C . 1972. 184-190.
    
    [131] E.H. Dix. W.A. Andeison and M. Byron. Shumaker Corrosion, 1979, Vol.19(2): 19.
    
    [132]李劲风,曹发和,张昭,铝合金剥蚀敏感性及定量研究方法,中国腐蚀与防护学 报,2004,Vol.24(1):55-58
    
    [133]唐仁正,物理冶金基础.冶金工业出版社,1997,240
    
    [134]余宗森,田中卓,金属物理.冶金工业出版社,1981
    
    [135] Alexander Pisch. Application of computational thermochemistry to Al and Mgalloy processing with Sc additions. Materials Science and Engineering,2000,(A289): 123-129
    
    [136]Hidenori Fujii, Makoto Sugamata, Effect of Sc addition on rapidly solidifiedAl-transition metal alloys. Materials Science Forum , 2002 ,(396-402):245-250
    
    [137] K. Fukunaga, T. Shouji, Y. Miura. Temperature dependence of dislocationstructure of Ll_2-Al_3Sc. Materials science and engineering, 1997,(239-240):181-184
    
    [138]周振丰,张文钺,焊接冶金与金属焊接性,北京:机械工业出版社,1998
    
    [139]姜澜,王炎金,刘爱军,魏绪钧.火焰矫形对高速列车用铝合金焊接接头组织 和性能的影响.材料热处理学报,2003,24(2):59-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700