钽基二氧化钌阴极薄膜电沉积工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学超级电容器作为新一代储能元器件具有广泛的应用。钽基二氧化钌阴极薄膜作为超级电容器的关键材料其特点是:该电极材料既保持了充放电效率高、能量密度大,同时具有制备工艺简单、生产效率高等优点,其经济效益和社会效益显著。本论文采用阴极电沉积制备的RuO_2·nH_2O薄膜阴极材料具有适合电化学超级电容器用途的特殊结构和形貌,通过SEM、XRD、Zeta电位、万能电子拉伸试样机和循环伏安等测试手段分析表明:
     1、以RuCl_3·xH_2O为电沉积液,KCl、NaNO_3为支持电解质,CTAB为表面活性剂,电沉积制备出了薄膜厚度约4.5μm的RuO_2·nH_2O薄膜。较为详细地研究了该氧化物的制备、形成机理及后续热处理工艺。
     2、对电沉积液的浓度、初始pH值、电流密度、电沉积时间和电沉积液温度等工艺参数进行了研究及优化,结果表明:随着电沉积液浓度的增大,薄膜附着力会逐渐变差,通过试验得出RuCl_3·xH_2O电沉积液的浓度5mmol·L~(-1)为最佳浓度值;随着电沉积液初始pH值的升高,RuO_2·nH_2O薄膜越疏松,龟裂纹越大,与基体结合力越差,电沉积液的初始pH值2.1为最佳值;随着电流密度的增大,电沉积后的RuO_2·nH_2O薄膜颜色由基体色逐渐变成深黑色,附着力也随之变差,三段式电沉积最佳电流密度为15mA·cm~(-2)(0—30min)、25mA·cm~(-2)(30—120min)、35mA·cm~(-2)(120—180min);随着电沉积时间的延长,RuO_2·nH_2O薄膜增厚,但是RuO_2·nH_2O薄膜的开裂倾向增大,电沉积3h可获得较好质量的薄膜;通过对RuO_2·nH_2O薄膜电沉积液温度的实验得知,电沉积温度25℃时较为适宜。
     3、采用KCl作为电沉积液的支持电解质制备的RuO_2·nH_2O薄膜龟裂纹粗大,薄膜开裂翘起明显,附着力差;而采用NaNO_3作为电沉积液的支持电解质,得到的RuO_2·nH_2O薄膜龟裂纹细小,薄膜开裂但不翘起,附着力可达12.79MPa。还进一步研究了RuCl_3·xH_2O溶液的性质,RuCl_3.αH_2O(?)RuCl_3.cH_2ORuCl3·xH_2O水解呈胶体形成的胶团带负电荷。添加了CTAB的薄膜整个表面能均匀的覆盖RuO_2·nH_2O,作为阳离子表面活性剂的CTAB对胶体进行了改性,使其在电场作用下易于向阴极定向移动,使胶体粒子易于在阴极上沉积转化,提高了沉积速率并改善了薄膜的质量。
     4、稳定化热处理可以提高RuO_2·nH_2O电容的稳定性,但随着薄膜退火温度升高,比电容变化的总体趋势是先升后降,在约100℃时比电容达到最大值,通过电沉积制备的未经稳定化处理的RuO_2·nH_2O薄膜比电容为0.1604F·cm~(-2),经稳定化退火处理后的薄膜的比电容为1.1325 F·cm~(-2)。
Electrochemical capacitors are playing great roles in widespread application as a new energy store device. For the first time, the systematic exploration was carried out to preparation and characterization and electrochemical capacitance of the hydrous ruthenium oxide film electrode materials with the virtues of simple operating,high efficency, big energy density and charge/discharge efficency. Therefore great social benefits economic benefits could be brought by it. SEM、XRD、Zeta potential and electronic universal testing machine showed that hydrous ruthenium oxide film electrode material developed in our lab exhibits special physical structure and morphology. The main results are as follows:
     1.The author researched the preparation and theory of 4.5μm RuO_2·nH_2O films and successional heatreatment etal.RuCl_3·xH_2O, KCl, NaNO_3 and CTAB respectively as the electrodeposition solution, support electrolyte and surface active agent.
     2.Concentration of electrolyte, initial pH, current density, time and temperature of electrolyte are optimized by experiment.The results indicate that with the grow of the current density, the adhesion of films will be worse. 5mmol.L~(-1) is a optimum of concentration of electrolyte.With increasing initial pH of RuCl_3·xH_2O solution,loosen film and bad adhesion, the crack will be extended. PH 2.1 is a optimum initial pH. 15mA.cm~(-2) (0 to 30min), 25mA.cm~(-2) (30 to 120min) and 35mA.cm~(-2) (120 to 180min) is a optimum current density. Three hours is a optimum time of electrodeposition; 25℃is a optimum temperature of electrolyte.
     3.The crack of RuO_2·nH_2O film is very great with KCl as a supporting electrolyte, the adhesion of film is bad. NaNO_3 is applied to electrodeopsition of RuO_2·nH_2O film as a supporting electrolyte for the first time, the crack of film is very small, the adhesion of film is good and the value is 12.79MPa. Colloid property of RuCl_3·xH_2O solution is studied, RuCl_3.αH_2O(?)RuCl_3.cH_2O that colloid of of RuCl_3·xH_2O solution is electronegative is manifested for the first time; colloid property can be changed with CTAB, so that colloid particle can easily move to cathodic electrode.
     4.Heat-treatment can improve the capacitance stability of RuO_2·nH_2O film, but specific capacitance of RuO_2·nH_2O film increase and then decrease with the ascent of temperature. Maximum of specific capacitance occur when the temperature of heat-treatment is about 100℃. The specific capacitance of unannealed RuO_2·nH_2O film is 0.1604F·cm~(-2), the specific capacitance is unsteady; the specific capacitance of annealed RuO_2·nH_2O film is 1.1325F·cm~(-2),the specific capacitance is steady.
引文
[1] Yu M, Vol F, Serdyuk T M. Electrochemical capacitor [J]. Russian Journal of Electrochemistry, 2002, 38 (9):935-956.
    [2] R.Kotza and M.Carlen. Principles and applications of electrochemical capacitors [J], Electrochimica Acta ,2000,45(15-16):2483-2498.
    [3] Burke A. Ultracapacitors: why, how, and where is the technology [J]. Journal of Power Sources, 2000,91 (1):37-50.
    [4] Zheng J P, Jow T R.A new charge storage mechanism for electrochemical capacitor [J]. Journal of the Electrochemical Society, 1995, 142(1):L6-L7.
    [5] Zheng J P, Cygan p J, Jow T R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitor [J]. Journal of the Electrochemical society, 1995, 142(8): 2699-2703.
    [6] 曹林.新能源材料研究——电化学电容器电极材料制备及性能:[博士学位论文].兰州:兰州大学,2004.
    [7] Conway B E. Electrochemical science and technology: transition from "supercapacitor" to "Battery" behavior in electrochemical engery storage [J]. Journal of Electrochemical society, 1991, 138(6): 1539-1548.
    [8] Naoi k, Suematsu S.Electrochemical capacitors using conducting polymers.Denki Kagaku, 1998, 66(6):896-903.
    [9] Trasatti S, Buzzanca P. Ruthenium oxide: a new interesting electrode material, solid state structure and electrochemical behavior [J].Journal of Electroanalysis chemistry, 1997, 29(1): 1-5.
    [10] Zheng J P, Huang J, Jow T R. Limitations of energy density for electrochemical capacitors [J].Journal of the Electrochenmical Society, 1997,144(6):2026-2031.
    [11] R. Kotz, M. Carlen.Principles and applications of electrochemical capacitors, Electrochimica Acta, 2000, 45(15-16):2483-2498.
    [12] Elzbieta Frackowiak, Francois Beguin, Carbon materials for the electrochemical storage of energy in capacitors[J], Carbon 2001,39(6):937-950.
    [13] Anon H P. 2300F double layer capacitor based on AC/C composite electrode technology. Extended abstracts of 188th fall meeting. Chicago, Electrochemical society. 1995:313-317.
    [14] Salitra G, Softer A, Eliad L, et al. Carbom electrodes for double layer capacitors-I Relations between ion and pore dimensions[J].Journal of Electrochemical society,2000,147(7):2486-2493.
    [15] Arbizzani C, Mastragostino M, Soavi F. New trends in electrochemical supercapacitors [J]. Journal of Power Sources, 2001, 100(1-2): 164-170.
    [16] Marina Mastragositino, Catia Arbizzani, Francesca Soavi. Polymer-based supercapacitors [J]. Journal of Power sources, 2001, 97-98: 812-815.
    [17] Kalakodimi R P, Norio M. Electrochemical synthesis and characterization of nanostructured tin oxide for electrochemical redox supercapacitors [J]. Electrochemistry Communications, 2004, 6(8):849-852.
    [18] Zheng J P, Jow T R. Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide [J]. Journal of Electrochemical society, 1998, 145(1): 49-52.
    [19] Mulvancy P.kinetics of reductive dissolution of colloidal manganese dioxide [J]. Journal of Physics Chimistry, 1990, 94(21): 8339-8345.
    [20] Tench D, Warren L F. Electrodepositon of conducting transition metal oxide/hydroxide Films from aqueous solution [J]. Journal of Electrochemical society. 1983, 130(4):869-872.
    [21] Hee Y. Lee, and J. B. Goodenough. Supercapacitor Behavior with KCl Electrolyte [J]. Journal of Solid State Chemistry, April 1999, 144(1):220-223.
    [22] Pang S C, Anderson M A, Chapman T W. Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide [J]. Journal of the Electrochemical Society, 2000, 147(2): 444-450.
    [23] Hu C-C, Tsou T-W. Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition [J]. Electrochemistry Communications, 2002,4(2): 105-109.
    [24] Huang Y S, Liao P C. Preparation and characterization of RuO_2 thin films [J]. Solar Energy Materials and Solar Cells, 1998, 55 (7): 179-197.
    [25] Krusin-Elbaum L. Effects of oxygen on the electrical transport in RuO_2 [J]. Thin Solid Films, 1989, 169(1): 17.-24.
    [26] Krusin-Elbaum L, Wittmer M. Conducting transition metal oxides: possibilities for RuO_2 in VLSI metallization [J]. Journal of the Electrochemical Society, 1988, 135(10): 2610-2614.
    [27] Kuhn A T, Mortimer C J. Kinetics of chlorine evolution and reduction on titanium-supported metal oxidesespecially RuO_2 and IrO_2 [J]. Journal of the Electrochemical Society, 1973, 120 (2): 231-236.
    [28] Stilwell D E, Park S M.Electrochemistry of conductive polymers. Ⅱ. Electrochemical studies on growth properties of polyaniline [J]. Journal of the Electrochemical Society, 1988, 135 (9): 2254-2262.
    [29] Parkb B O, Lokhande C D, Park H S, et al. Cathodic electrodeposition of RuO_2 thin films from Ru(Ⅲ)Cl_3 solution [J]. Materials Chemistry and Physics, 2004, 87 (9): 59-66.
    [30] Mckeown D V, Hagans P L,Linda P L, et al.Structure of hydrous ruthenium oxides: implications for charge storage[J]. Journal of American Chemistry B, 1999,103: 4825-4832.
    [31] Park S E, Kim H M, Kim K B, et al. RuO_2 thin film fabrication with plasmaenhanced chemical vapor deposition[J]. Thin Solid Films, 1999, 341: 52-54.
    [32] Bai G R, Wang A, Foster C M, et al.Low-temperature growth and orientational control RuO_2 thin films by metal-organic chemical deposition[J]. Thin Solid Film, 1997, 310(1-2): 75-80.
    [33] Lu P, He S, Li F X, et al. Epitaxial growth of RuO_2 thin films by metal-organic chemical vapor deposition[J]. Thin Solid Films, 1999, 40(1-2): 140-144.
    [34] Lee D J, Kang S W, Rhee S W. Chemical vapor deposition of ruthenium oxide thin films from Ru(tmhd)_3 using direct liquid injection[J]. Thin Solid Films, 2002, 413(1-2): 237-242.
    [35] 张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2002.135-138.
    [36] Hu C C, Chang K H. Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical supercapacitors: effects of the chloride precursor transformation [J].Journal of Power Sources, 2002, 112(2):401-409.
    [37] Takasu Y, Murakami Y. Design of oxide electrodes with large surface area [J]. Electrochimica Acta, 2000, 45(25-26): 4135-4141.
    [38] Evans D A. Capacitor. us pat: 5,369,547. 1994, November 29.
    [39] Zhitomirsky I. Cathodic electrodeposition of ceramic and organoceramic materials: Fundamental aspects [J]. Advances in Colloid and Interface Science, 2002, 97(1-3):279-317.
    [40] Lokhande C D, Pawar S H. Electrodeposition of thin film semiconductors [J]. Physica Status Solidi (A) Applied Research, 1989, 111(1): 17-40.
    [41] Fan C L, Piron D L.Electrodeposition as a means of production large-surface electrodes required in water electrolysis[J]. Surface and Coating Technology, 1995, 73: 91-97.
    [42] Hu C C, Huang Y H. Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors [J]. Journal of The Electrochemical Society, 1999, 146(7): 2465-2471.
    [43] Hu C C, Huang Y H, Chang K H. Annealing effects on the physicochemical characteristics of hydrous ruthenium and ruthenium-iridium oxides for lectrochemical supercapacitors[J]. Journal of Power Sources, 2002, 108(1): 117-127.
    [44] Zhitomirsky I, Galor L. Ruthenium oxide deposits prepared by cathodic electrosynthesis[J].Materials Letters, 1997,31(1-2): 155-159.
    [45] Zhitomirsky I. Cathodic electrosynthesis of titanium and ruthenium Oxides[J]. Materials Letters, 1998, 33(1):305-310.
    [46] Park B O, Lokhande C D, Park H S, et al. Electrodeposited ruthenium oxide (RuO_2)films for electrochemical supercapacitors[J]. Journal of Materials Science,2004,39: 4313-4317.
    [47] Zhitomirsky I. Electrrolytic TiO_2-RuO_2 deposits [J]. Journal of Materials Science, 999,34: 2441-2447. 1
    [48] Lee S H,Liu P,Seong M J,et al.Electrochemical supercapacitors for optical modulation[J].Electrchemical and Solid-State Letters,2003,6(2):A40-A42.
    [49] Park B O, Lokhande C D, Park H S, et al. Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes -effect of film thickness [J]. Journal of Power Source, 2004, 134(1): 148-152.
    [50] Soudan P, Gaudet J, Guay D, et al. Electrochemical properties of Ruthenium-Based nanocrystalline materials as electrodes for supercapacitors[J]. Chem. Material, 2002, 14 (3):1210-1215.
    [51] Long J W, Swider, K E, Merzbacher C I, et al. Voltammetric characterization of ruthenium oxide-based aerogels and other RuO_2 solids: The nature of capacitance in nanostructured materials [J]. Langmuir, 1999, 15(3): 780-785.
    [52] Subramanian V, Hall S C, Smith P H,et al. Mesoporous anhydrous RuO_2 as a supercapacitor electrode material[J], Solid State Ionics ,2004,175(1-4):511-515.
    [53] Stenphen.L, Boril.L, Xuejun.C.Nanostructured Carbons: New prospects for electrochemical capacitors proceedings.7th international seminar on double layer capacitors and similar energy storage device.Deerfield Beach, FL Dec.8-9, 1997. Fluorida Educational Seminars, Inc.
    [54] James.K.Aerogel capacitor performance proceedings. 7th international seminar on double layer capacitors and similar energy storage device.Deerfield Beach, FL Dec.8-9,1997.Fluorida Educational Seminars,Inc.
    [55] Oren Y, Tobias H and Softer A. The electrical double layer of carbon and graphite electrode part 1, ependence on electrolyte type and concentration. J. Electroanal. Chem. 1984,162:87.
    [56] Biniak S,Dzielerdziak B and Siedlewski J. The electrochemical behavior of carbon fiber electrodes in various electrolytes, double layer capacitance.Carbon, 1995,33:1255-1263.
    [57] Inoue Y, Inagawa M,Saito T etal.Development of thin-type electric double layer capacitors.NEC Technical Journal, 1998,51 (10):71-76.
    [58] Liu X,Momma T and Saka O.Dependence on the electrolyte solution of the capacitance of active fiber electrode for electric double layer capacitor.Denki Kagaku, 1996,64(7):831-835.
    [59] Morimoto T, Hiratsuka K, Sanada Y etal.Electric double-layer capacitor using organic electrolyte.J.Power Source,1996, 60:239-247.
    [60] Ue M,I da K and Moris.Electrochemical properties of organic liquid electrolytes based on quaternary ammonium salts for electrical double-layer capacitor.J. Electrochem.Soc, 1994,1471:2989.
    [61] Ue M, Takada M, Takehara M etal. Electrochemical Properties of quaternary ammonium salts for electrochemicaol capacitors.J. Electrochem.Soc,1997. 144(8):2684.
    [62] Liu X, Osaka T. All solid-state electric double-layer capacitor with isotropic high-density graphite electrodes and polyethylene oxide/LiClO_4 polymer electrolyte.J.Electrochem Soc, 1996 ; 143(12): 3982-3986.
    [63] Matsuda A, Honjo H, Hirata K et al.Electric double-layer capacitor using composites composed of phosphoric acid-doped silica gel and styrene-etylene-butylene-styrene elastomer as a solid electrolyte.J.Power Sources, 1999,77:12-16.
    [64] Bard A J,Faulkenr L R.电化学方法:原理和应用(第二版)(邵元华,朱果逸译),北京:化学工业出版社,2005.97-109.
    [65] Zhitomirsky I, Boccaccini A R. Application of electrophoretic and electrolytic deposition techniques in ceramics processing[J].Current Opinion in Solid State and Materials Science,2002,6(3):251-260.
    [66] 黄子勋,吴纯素.电镀理论(第一版),北京:化学工业出版社,1982.13-31.
    [67] 李荻.电化学原理(修订版),北京:北京航空航天大学出版社,1999.
    [68] L.I.安特罗波夫.理论电化学(吴仲达,朱耀斌,吴万伟译).北京:高等教育出版社,1982.296-420.
    [69] An H J, Jang S R, Vital R, et al. Cathodic surfactant promoted reductive electrodeposition of nanocrystalline anatase TiO_2 for application to dyesensitized solar cells[J]. Electrochimica Acta, 2005, 50 (13):2713-2718.
    [70] Zheng J P, Xin Y. Characterization of RuO_2·xH_2O with various water contents [J]. Journal of Power Sources, 2002,110 (7): 86-90.
    [71] Shi H. Activated carbons and double layer capacitance. Electrochem 1996 41(10):1633-9.
    [72] Pekala RW, farm JC, Alviso CT etal.Carbon aerogels for electrochemical application .J Non-Cryst Solids 1998;225:74-80.
    [73] K.Matsuda,Y.Yaguchi,and S.Minami,Proc.Denki Kakaku,Yokohama, 1994,p.234.
    [74] C.C.H, C.Y.Lin,T.C. Wen,Mater.Chem.phys.44(1996)233.
    [75] Y.Kudoh, S.Tsuchida,T.Kojima and S.Yoshimura, Synt.Met,41 (1991) 1133.
    [76] D.Pletcher, A first Course in Electrode Processes, The Electrochemical Consultancy, England, 1991.
    [77] M.R.Hoffman, S.T.Martin,W.Choi,D.W.Bahneman,Chem.Rev.95(1995) 6.
    [78] Kibi Y, Saito T, Kurata M,Tabuchi J,Ochi A. Fabrication of high-power electric double-layer capacitors.J.Power Source. 1996;60:219-24.
    [79] 欧定斌.超级电容器用钽基二氧化钌电极薄膜电沉积工艺的研究:[硕士学位论文].长沙:中南大学,2006.
    [80] Bonnefoi L, Simon P, Fauvarque IF, Sarrazin C,Sarrau IF, Dugast A.Electrode compositions for carbon power supercapacitor .J.Power Source 1999;80(1-2) 149-55.
    [81] Escribano S, Berthon S,Ginoux JL,Achard P.In:Characterization of Carbon-aerogel.Extended abstract,EuroCarbon'98 Strasbourg,(France), 1998,pp.841-2.
    [82] 何捍卫、欧定斌等.混合电容器多孔氧化钌阴极涂层的制备与表征.中国有色金属学报.2005.15(10).1544—1549.
    [83] 朱立群.功能膜层的电沉积理论与技术,北京:北京航空航天大学出版社,2005.
    [84] Ball R.,Witten T.A.,Causality Bound on the Density of Aggregate,Phys.Rev. A.29(1984),2966.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700