船用高镁铝合金腐蚀性能屈服行为及高温变形行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分三部分研究了加工工艺和退火对高镁5XXX系铝合金组织和性能的影响及Mg含量最高的5A01铝合金的热变形行为。第一部分通过组织检测,腐蚀和力学性能检测等实验手段,研究Mg含量和时效温度对固溶淬火态高镁铝合金组织和性能的影响规律。第二部分考察不同压下量和不同退火温度的冷轧态5456铝合金的腐蚀性能和屈服行为,确定高镁铝合金的腐蚀性能和屈服行为随压下量和退火温度的变化规律。第三部分采用Gleeble-1500热力模拟机对5A01合金进行等温恒应变热压缩实验,研究了5A01合金热变形流变应力行为,并建立流变应力的数学模型。通过实验数据的分析比较,得到以下结果:
     1.在同样Mg含量的情况下,固溶淬火态高镁铝合金在经过150℃时效后析出了大量粗大的,无规则分布的β相,经过350℃时效后β相基本溶解,但样品在时效后的空冷过程中生成了少量的细小的β相。因此在腐蚀性能方面,经过150℃时效后的样品的应力腐蚀敏感性比淬火态和经过350℃时效的同样Mg含量的样品都要高,且抗晶间腐蚀能力最差。随着Mg含量的增加,合金中析出的β相越多,合金的应力腐蚀敏感性增加,抗晶间腐蚀能力降低;在屈服行为方面,经过150℃时效的样品由于析出大量的β相导致固溶体中的Mg含量降低,从而使得经过150℃时效的样品的的锯齿屈服强度比淬火态和经过350℃的样品都要小,同时,时效的时间越长,固溶体中的Mg含量越低,锯齿强度越低。
     2.对于不同压下量冷轧态的5456铝合金,由于残余应力的存在,冷轧态试样的抗剥落腐蚀能力最差,由于冷轧压下量大的样品中位错密度大,所具有的储能高,因此要产生同等程度的腐蚀,压下量大的样品所需要的退火温度比压下量小的样品所需要的退火温度要低。随着冷轧压下量的增加,再结晶形成的晶粒越小,晶粒数目越多,吕德丝带越长,锯齿的频率和振幅都越大。在单轴拉伸过程中,随着应变的增加,锯齿的频率降低,锯齿的振幅先升高后降低。经过回复退火后的样品内位错密度比冷轧态样品要小,因此锯齿的强度越小。
     3.在同一变形温度下,均匀化后的5A01铝合金的真应力随应变速率的增大而增大,表明5A01是正应变速率敏感材料。在同一应变速率下,5A01的真应力水平随温度的提高而降低。在相同的变形温度以及变形速率下,变形量对流变应力的影响不大。采用双曲正弦形式的Arrhenius关系来描述5A01铝合金高温变形时的流变应力,获得5A01的材料常数A、α、n和Q分别为0.06831s~(-1)、0.0094MPa~(-1)、2.7089和161.14KJ/mol。
In this paper,the corrosion resistance,yielding behavior and the behavior during hot compression deformation of high Mg 5XXX aluminum alloy with different Mg content and different treatment have been studied by means of the slow strain-rate test,isothermal compression simulation test,DSC analysis,micro-hardness testing,electro-chemistry characteristic,metallographic microscope,SEM, TEM.Experimental results show:
     1.The low SCC resistance and intergranular corrosion resistance of the as-quenched alloy annealing at 150℃for 1 huor is relate to more and largerβphase precipitate after 150℃1 hour aging than the same Mg content alloy as-quenched or after 350℃1 hour aging.The same treatment alloy with lower Mg content has better corrosion resistance than the one with higher Mg content under the same condition.The serrated yielding intense of alloy after 150℃aging reduce when adding aging time.Low serrated yielding intense,elongation and high UTS is relate to more and largerβphase precipitate after 150℃1 hour aging than the same Mg content alloy as-quenched or after 350℃1 hour aging.
     2.The as cold-rolled alloy has the worst exfoliation corrosion resistance due to exist of residual stress.The precipitated temperature ofβphase reduce when increase reduction of cold-rolled treatment,which induce the different effect of heat treatment temperature to corrosion resistance of alloy.After recrystallization is completed,the smaller the recrystallized grain the longer the Luders elongation.The frequency of serrations also increases with decreasing grain size.The frequency of serrations decreases and the magnitude of serrations first increases and then decrease with increase in strain.The cold-rolled sample which has higher dislocation density has more intense serration than the sample after recovery heat treatment.
     3.To the 5A01 alloy after homogenization annealing:The stress increase with the strain rate at the same compression temperature,which show 5A01 aluminum alloy is positive strain rate sensitivity material,the stress increase with the compression temperature at the same strain rate. Deforming degree has little effect on the stress at the strain rate and the same compression temperature.The flow stress of 5A01 aluminum alloy during hot deformation can be expressed by Arrhenius function in the hyperbolic sine style.The values of A、α、n and Q in the analytical expression are 0.06831s~(-1)、0.0094MPa、2.7089 and 161.14KJ/mol.
引文
[1](苏)叶尔曼诺夫著;李西铭等译.船舶用Al合金整体壁板及焊接材料的研究.铝合金壁板挤压.北京:国防工业出版社,1988
    [2]彭勇宜,尹志民.Sc与Zr对Al_Mg_Mn合力学性能和剥落腐蚀性能的影响.国稀土学报,2006,24(2):217-222
    [3]陶斌武,王克然,刘建华,李松梅.So对Al_6Mg_Zr铝合金模拟海水中耐蚀性能的影响研究.稀有金属材料工程,2005,34(9):1485-1488
    [4]孟力平,柏振海,罗兵辉.MgSc含量和稳定化退火温度对Al_Mg_Sc合金组织及性能的影响.矿冶工程,2003,23(4):84-86
    [5]Mumin Sahin,H.Erol Akata,Kaan Ozel.An experimental study on joining of severe plastic deformed aluminium materials with friction welding method.Mater Design(2006),doi:10.1016/j.matdes.2006.11.004
    [6]G.Lucadamo a,N.Y.C.Yang a,.,C.San Marchi a,E.J.Lavemia b.Microstructure characterization in cryomilled AI 5083.Materials Science and Engineering A 430(2006) 230-241
    [7]Langenbeck SK,Griffth WM,Hildeman GJ,et al.Development of dispersion-strength Ened aluminum alloys.American Society for Testing and Materials Philadelphia,1986:410-422
    [8]Shigeniri Y.Development of elevated temperature P/M aluminium alloy by rapid solidification proessing.住友轻金属日报(日),1988,29(4):16-22
    [9]Kazuhisa S.Change of metallurgical structure of rapidly solidified AI-8%Fe-2%V alloy by heating.住友轻金属日报(日),1989,30(4):12-17
    [10]Kaxuhisa Shioue.Rapidly solidified Al-Fe alloy flakes by atomization-rolling process.住友轻金属日报(日),1987,28(4):25-30
    [11]Hideo S.Mechanical Properties of the radically solidified A1-Fe binary alloys by atomization-rolling.Properties of the radically solidified AI-Fe binary alloys by atomization-rolling proc 住友轻金属日报(日),1987,28(4):31-36
    [12]Gerard M,Georges C.Physical metallurgy of P/M aluminum alloys.Invited paper rpresented at 1CAA2,Oct,1990,Beij ing,P.RChina
    [13]Vecoglu ML,Suryanarayana C,WDix.Identification of precipitate phases in a mechanically alloyed rapidly solidified Al-Fe-Ce alloy.Metallurgical and Materails Transactions A,1996,27A(4):1033-1041
    [14]Hamana D,Bouchear M,Betrouche M,et al.Comparative study of formation and transformation of transition phases in Al-12wt%Mg alloy.Joural of Alloys and Compounds,2001(320):93-102
    [15]Starink M J,Zahra A M.β'and βprecipitation in an A1-Mg alloy studied by DSC and TEM.Acta Metallurgica Inc,1998,46(10):3381-3397
    [16]王祝堂.全球单机架热轧机概貌[A].铝加工高新技术文集[C].2001.174-185.
    [17]吕新宇,唐明君,焦兴贵.乳液对热轧铝带卷的影响[J].轻合金加工技术,2001,29(9):26-27.
    [18]魏云华.铝热轧乳液的性能控制[J].轻合金加工技术,2002,30(10):14-15.
    [19]梁延彬,张新明,张克伟.5A05铝合金热塑性变形的高温金相观察[J].轻合金加工技术,2000,28(6):44-46.
    [20]赵鸿金,张迎晖,马宏声.热轧状态Al-0.328%Sc合金的动态再结晶[J].轻合金加工技术,2001,29(2):13-15.
    [21]陈策,宋德周.国外现代铝带冷轧机和国产先进冷轧机[A].铝加工高新技术文集,2001,186-195.
    [22]尹丽丽,范瑞尤.铝合金挤压的最新技术和装备[A].铝加工高新技术文集[C].2001.291-299.
    [23]王雪玲,谢延翠,赵永军.5754-H34铝合金板材生产工艺研究[J].轻合金加工技术,2002,30(5):23-25.
    [24]张华,梁延彬,李世伟.5754铝合金板材H2n状态工艺研究[J].轻合金加工技术,2002,30(5):26-27.
    [25]林乐耘,刘增才,徐杰,等.实海暴露防锈铝合金局部腐蚀敏感性研究[J].腐蚀科学与防护技术,
    [26]张辉.铝合金多道次热轧显微组织演变的模拟研究:[博士学位论文].长沙:中南工业大学,2000
    [27]韩冬峰.2195铝锂合金高温热变形行为研究:[硕士学位论文].长沙:中南大学,2005
    [28]Garofalo F.An empirirical relation refining the stress dependence of minimum creep rote in metals.Trans Metall Soc.AIME,1963,227(2):351-355
    [29]Poirier J.P.关德林,译.晶体的高温塑性变形.大连:大连理工大学出版社,1989
    [30]何宜柱,陈大宏,雷廷权,等.形变Z因子与动态再结晶晶粒尺寸间的理论模型.钢铁研究学报,2000,12(1):26-30
    [31]Puchi E S,Staia M H.High-temperature deformation of commercial-purity aluminum.Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1998,29A(9):2345-2359
    [32]Garofalo F. Fundamentals of creep and creep rupture in metals. Macmillan, New York, 1965
    
    [33]McQueen H J, Yue S, Ryan N D, et al. Hot Working characteristics of steels in austenitic state. Mater Process Technol, 1995,53:293-310
    
    [34]Castro-Femandez F R, Selllars C M, Whiteman J A. Change of stress and microstructure during hot deformation of Al-Mg-1Mn. Materials Science and Technology, 1990,6(5) :45 3-460
    
    [35]Shi H, Mclaren J, Sellers C M, Shahani R, Bolingbroke R. Constitutive equations for high temperature flow stress of aluminum alloys. Materials Science and Technology, 1997,13(3):210-216
    
    [36]Sellars C M, Tegart W J M. La relation entre la Rresistance et la structure dans le deformation a chaud. Mem Sci Rev Metall, 1966(63):731~746
    
    [37]Kreuss G. Deformation processing and structure.Ohio, American Society for Metal, 1984:109-230
    
    [38]Davenpot S B, Silk N J, Sparks C N, et al. Development of constitutive equations for modeling of hot rolling. Materials Science and Technology,2000,16(5): 539-546
    
    [39]Rao K P, Hawbolt E B. Development of constitutive relationship using compressing testing of a medium carbon steel. Journal of Engineering Materials and echnology, 1992,114(1): 116-123
    
    [40]Jonas J J, Sellars C M T. Strength and structure under hot working conditions. Int. Metallurgical Reviews, 1969(14): 1-24
    
    [41]Zener C, Hollomon J H. Effect of strain rate upon the plastic flow of steel. Journal of Applied Physics,1944,15(1):22~32
    
    [42]Clifton R J, Hartley K A, Shawki T C. On critical conditions for shear band formation at high strain rates.Sci. Metall, 1984,18(5):443~448
    
    [43]Hodgson P D. Microstructure modeling for property prediction and control. Journal of Materials Processing Technology, 1996,60(1-4):27~33
    
    [44]Sellars C M, Irisarri A M, Puchi E S. Recrystallization characteristics of aluminum-1% magnesium under hot working conditions.Recovery and Recrystallization,Warrendal P A,TMS,1985:179-196
    
    [45]Sheppard T, Zaidi M A, Hollinshead P A, et al. Microstructural control in aluminum alloys: deformation, recovery and recrystallisation. PA,TMS,New York,1985:19~44
    
    [46]Hirsch J. Modeling of microstructures and properties for industrial sheet production.Lecture held at Department of Materials and Engineering.CSUT,1999
    [47]曹发和.高强度航空铝合金局部腐蚀的电化学研究:[博士学位论文].杭州:浙江大学,2005
    [48]蔡超.纯铝在中性NaCl溶液中的腐蚀研究:[硕士学位论文].银川:宁夏大学,2005
    [49]张承忠.金属的腐蚀与保护.北京:冶金工业出版社,1985
    [50]杨武.金属的局部腐蚀.北京:化学工业出版社,1995
    [51]巩汉杰.LC4铝合金应力腐蚀与腐蚀疲劳特性研究:[硕士学位论文].长沙:国防科学技术大学,2002
    [52]李久青,屠益东,肖衍,等.船用铝合金剥落腐蚀机理的研究.材料保护,1994,27(4):1-4
    [53]Pickens J R,Gordon J R,Green J A S.Effect of loading mode on the stress corrosion cracking of aluminum alloy 5083.Metallurgical Transactions A,1983,14(5):925-930
    [54]Carroll M C,Buchheit R G;Daehn G S,et al.Optimum Trace Copper Levels for SCC Resistance in a Zn-Modified A1-5083 Alloy.Materials Science Forum,2002,396-402(3):1443-1448
    [55]Ohnishi T,Nakatani Y,Higashi K.Effect of thermomechanical treatment on hydrogen embrittlement and stress corrosion cracking of Al-8%Mg alloy.Journal of the Japan Institute of Metals,1981,45(4):373-378
    [56]Miyagi Y,Hino M,Lkeda K,et al.Properties of 5083-0 Aluminum Alloy Plate for Lng Storage Tank.Research and Development,1978,28(4):52-57
    [57]Skoulikidis T,Colios J A.An electrochemo-mechanical approach to stress corrosion cracking in aluminium alloys.Aluminium,1987,63(6):619-623
    [58]Burlergh T D.The postulated mechanisms for stress corrosion cracking of aluminum alloys.Corrosion,1991,47(2):89-98
    [59]Skoulikidis T,Spathis P K.Influence of stress and notch orientation on SCC in an aluminum alloy.Corrosion,1989,45(4):303-307
    [60]扈显琦,梁成浩.交流阻抗技术的发展与应用.腐蚀与防护,2004,25(2):57-60
    [61]Chung K W,Kin K B.A study of the effect of concentration build-up of electrolyte on the atmospheric corrosion of carbon steel during drying.Corrosion Science,2000,42(3):517-531
    [62]Vera C R P,Nishikata A,Tsuru T.AC impedance monitoring of pitting corrosion of stainless steel under a wet-dry cyclic condition in chloride-containing environment.Corrosion Science,1996,38(8):1397-1406
    [63]宋诗哲,唐子龙.Al-Mg合金在不同PH值得NaCl溶液中的腐蚀行为.腐蚀科学与防护,1995,7(3):218-224
    [64]Cottrell AH.A note on the Portevin-Le Chatelier[J].Phil.Mag.1953,44:829-832.
    [65]McCormick P G..A model for the Portevin-Le Chatelier effect in substitutional alloys[J].Acta Metall.1972,20:351-354.
    [66]Van den Beukel A.Theory of the effect of dynamic strain aging on mechanical properties[J].Phys Stat Sol(a),1975,30:197-206.
    [67]Hahner P,Ziegenbein A,Rizzi E,Neuhauser H.Spatiotemporal analysis of Portevin-Le Chatelier deformation bands:Theory,simulation,and experiment [68].Phys Rev B.,2002,6.5:13410921-20.
    [69]Zhang Q C,J iang Z Y,Jiang H F,Chen Z J,Wu X P.On the propagation and pulsation of Portevin-Le Chatelier.deformation bands:An experimental study with digital speckle pattem met rology[J].Int.J.Plasticity,2005,21(11):2150-2173.
    [70]Jiang Z Y,Zhang Q C,Jiang H F,Chen Z J,Wu X P.Spatial characteristics of the Portevin-Le Chatelier deformation bands in A1-24 at%Cu polycrystals[J].Mater.Sci.Eng.A,2005,403(122):154-164.
    [71]Pink E,Kumar S,Tian B.Serrated flow of aluminium alloys influenced by precipitates[J].Mater.Sci.Eng.A,2000,280:17-24.
    [72]Mertens F,Franklin S V,Marder M.Dynamics of plastic deformation fronts in an aluminum alloy[J].PhyRevLett,1997,78:4502-4505.
    [73]Balik J,Lukac P.Portevin-Le Chatelier instabilities in Al_(23)Mg conditioned by st rain rate and strain[J].Acta Metall.Mater.1993,41(5):1447-1454.
    [74]Kubin L P,Est fin Y.Evolution of dislocation densities and the critical conditions for the Portevin-Le Chatelier effect[J].Acta Metall.Mater.,1990,38(5):697-708.
    [75]Estrin Y,Kubin L P.Plastic instabilities:phenomenology and theory[J].Mater.Sci.Eng.A,1991,137:125-134.
    [76]Hahner P,Rizzi E.On the kinematics of Portevin-Le Chatelier bands:theoretical and numerical modeling[J].Acta Mater.,2003,51:3385-3397.
    [77]Kok S,Bharathi M S,Beaudoin A J,Fressengeas C,Ananthakrishna G,K-ubin L P,Lebyodkin M.Spatial coupling in jerky flow using polycrystal plasticity[J].Acta Mater.,2003,51:3651-3662.
    [78]Ananthakrishna G,Valsakumar M C.Repeated yield drop phenomenon:a temporal dissipative st ructure[J].J.Phys.D:Appl.Phys.,1982,15:L171-L175.
    [79]Rajesh S,Ananthakrishna G.Relaxation oscillations and negative st rain rate sensitivity in the Portevin-LeChatelier effect[J].Phys.Rev.E,2000,61:3664.
    [80]陈忠家,昌木松,张青川.铝合金板材塑性性能的研究.[J].实验力学.(8)2007第22卷.第3-4期.413-418
    [81]Chen Z J,Zhang Q C,Wu X P.A multiscale analysis and numerical modeling of the Portevin-Le Chatelier effect[J].Int.J.Mult.Comp.Eng.,2005,3(2):227-237.
    [82]Mark C.Carroll.Improvements to the strength and corrosion resistance of Al-Mg -Mn alloys of near-AA5083 chemistry.[D].The Ohio State of USA.The Ohio State University.2001.
    [83]Sheppard T,Parson N C,Zaidi M A.Dynamic recrystallization in A1-7Mg alloy.Metal Science,1983,17(10):481-490
    [84]Chang J C,Chuang T H.Stress-corrosion cracking susceptibility of the superplastically Formed 5083 Aluminum Alloy in 3.5 Pct NaC1 Solution.Metallurgical and Materials Transaction A:Physical Metallurgy and Materials Science,1999,30(12):3191-3199
    [85]Kiryl A.Yasakau,Mikhai L.Zhenludkevich.Role of intermetallic phases in localized corrosion ofAA5083[J].ELECTROCHIMICA Acta.52(2007)7651-7659.
    [86]宋诗哲,唐子龙.工业纯铝在3.5%NaCl溶液中的电化学阻抗谱分析[J].中国腐蚀与防护技术,1996,16(2):127-132.
    [87]Jones R H,Vetrano J S,Windisch Jr.Stress corrosion cracking of AI-Mg and Mg-Al alloys[J].Corrosion,2004,60(12):1144-1154.
    [88]许刚,曹楚南,林海潮,等.纯铝在NaCl溶液中活化溶解时电化学行为研究[J].腐蚀科学与防护技术,1998,10(6):321-326.
    [89]罗兵辉,柏振海,谢绍俊,等.铸造铝镁合金的应力腐蚀.中南工业大学学报,1998,29(6):570-572
    [90]褚武扬.氢损伤和滞后断裂.北京:冶金工业出版社,1988,131-143
    [91]KOZO OSAMURA and TETSUZO OGURA.Metastable Phases in the Early Stage of Precipitation in Al-Mg Alloys[J].METALLURGICAL TRANSACTIONS A.VOLUME 15A,MAY 1984.pp.835-842.
    [92]M.J.STARINK and A.M.ZAHRA.β' and β precipitation in an Al-Mg alloy studied by DSC and TEM[J].Acta mater.Vol.46,No.10,pp.3381-3397,1998.
    [93]罗兵辉,单毅敏,柏振海.退火温度对淬火后冷轧5083铝合金组织及腐蚀性能的影响[J].中南大学学报:自然科学版,2007(5),10:802-808.
    [94]Wei Wen,Yumin Zhao,J.G.Morris.The effect of Mg precipitation on the mechanical properties of 5XXX aluminum alloys.[J].MATERIALS SCIENCE &ENGINEERING A.392(2005) 136-144
    [95]郑子樵.材料科学基础[M].长沙:中南大学出版社,2005
    [96]Kiryl A.Yasakau,Mikhail L.Zheludkevich.Role of intermetallic pases in localized corrosion of AA5083.[J].ELECTROCHIMICA Acta.52(2007)7651-7659.
    [97]Robinson M J.The role of wedging stresses in the exfoliation corrosion of high strength aluminium alloys.Corrosion Science,1983,23(8):887-899
    [98]Conde a,Damborenea J.Evaluation of exfoliation susceptibility by means of the electrochemical impedance spectroscopy.Corrosion Science,2000,42(8):1363-1377
    [99]Conde a,Damborenea J.Electrochemical modelling of exfoliation corrosion behaviour of 8090 alloy.Electrocimica Acta,,1998,43(8):849-860
    [100]Robinson D J,Robinson M J.Influence of heat treatment and grain shape on exfoliation corrosion of Al- Li alloy 8090.Corrosion,1999,49(10):787-795
    [101]Robinson M J.Mathematical modeling of exfoliation corrosion in high strength aluminum alloys.Corrosion Science,1982,22(8):775-790
    [102]Reboul M C,Bouvaist J.Exfoliation mechanisms in the 7020 aluminum alloys.Werkstoffe und korrosion,1979,30:700-708
    [103]Wei Wen,J.G.Morris.The effect of cold rolling and annealing on the serated yielding phenomenon of AA5182 aluminum alloy.[J].Materials Science and Engineering A 373(2004)204-216.
    [104]王进,陈军,赵震,等.非调质钢F40MnV高温流动模型研究.塑性工程学报,2005,12(5):54-57
    [105]Siamak S,Ali K T.Prediction of flow stress at hot working condition.Mechanics Research Communications,2003,30:87-93
    [106]Serajzadeh S,Karimi T A.An investigation on the effect of carbon and silicon on flow behavior of steel.Materials and Design,2002,23:271-276
    [107]Mecking H,Kocks U F.Kinetics of flow and strain-hardening.Acta Metallurgica,1981,29(11):1865-1875
    [108]唐仁正.物理冶金基础.北京:冶金工业出版社,1997
    [109]王瑜,林栋樑,Chi C.Law TiAl合金高温拉伸流变应力与Zener-Hollomon因子的关系函数.上海交通大学学报,2004,34(3):338-341
    [110]韩冬峰,郑子樵,蒋呐,等.高强可焊2195铝-锂合金热压缩变形的流变应力.中 国有色金属学报,2004,14(12):2090-2095
    [111]王兵.6066/SIC复合材料的热模拟研究:[学士学位论文].长沙:中南大学,2003
    [112]林高用,张辉,郭武超,等.7075铝合金热压缩变形流变应力.中国有色金属学报,2001,11(3):412-415
    [113]林启权,张辉,彭大暑,等.5182铝合金热压缩变形流变应力.湘潭大学自然科学学报,2002,24(3):84-88
    [114]Rornhanji E,Dudukovska M,Glisic D.The effect of temperature on strain-rate sensitivity in high strength Al-Mg alloy sheet.Journal of Materials processing Technology,2002,(125-126):193-198
    [115]杨立斌,张辉,彭大暑,等.7075铝合金高温流变行为的研究.热加工工艺.2002,1:1-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700