深厚覆盖层地基高土质心墙堆石坝抗震安全性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国西部水能资源的大开发,将出现一批建立在高地震烈度区、深厚覆盖层等不良地质条件下的200m甚至300m级高土石坝,而目前世界上在深厚覆盖层地基上已建最高坝——瀑布沟心墙堆石坝的最大坝高仅为186米。对于深厚覆盖层上200m级以上的高土石坝,坝体和坝基的防渗设计、大坝抗震安全措施等方面均无成熟经验可借鉴,在设计、施工和运行中都存在极具挑战性的世界性难题。本文主要对深厚覆盖层上200m级以上高土石坝的抗震安全性进行研究探索,主要研究内容如下:
     1.土石坝筑坝材料的动力特性参数有较强的围压依赖性,广泛应用的Hardin-Drnevich模型仅体现了围压的部分影响,但并不能完全反应不同围压条件下土石料动力特性性质。针对传统Hardin-Drnevich模型进行改进,提出一个可以考虑土石料动力特性参数围压依赖性的改进动力本构模型,该模型更加符合动力特性试验结果,可以更真实地反应材料的动力特性。新的本构模型中每个参数均存在明确的物理意义,且参数确定方便,虽然模型中材料参数数量增加,但并不会降低计算效率。以大型通用有限元程序ADINA为平台进行二次开发,将新模型应用于深厚覆盖层地基240m高长河坝大坝的地震动力响应分析中,计算结果表明在高土石坝动力分析时,不考虑土石料围压效应的计算结果偏于保守,对工程的经济性有一定影响。
     2.防渗系统是高心墙堆石坝结构中最为关键的结构,坝体防渗结构与坝基防渗结构的接头是大坝抗震安全的薄弱环节。在研究总结深厚覆盖层地基高土石坝防渗系统特征的基础上,以长河坝高心墙堆石坝为工程背景,采用考虑围压效应的Hardin-Drnevich土石料本构模型和先进的有限元子模型分析技术对深厚覆盖层地基高土石坝防渗系统的抗震安全性进行了系统深入研究,分析高心墙堆石坝心墙与深厚覆盖层地基内防渗墙、墙顶廊道的动力反应规律,并采用混凝土非线性开裂本构模型对混凝土廊道在坝体填筑及蓄水过程中裂缝发展的非线性变化过程进行分析。最后,分别评价了坝体防渗心墙、坝基防渗墙、心墙与防渗墙接头的抗震安全性,总结了深厚覆盖层地基上高土质心墙堆石坝动力反应的特点,并结合工程经验提出了防渗系统的抗震措施。
     3.分别针对土工格栅与混凝土抗震梁格两种高土石坝坝顶抗震措施,从加固机理、加固效果与应用特点等方面进行了研究。针对两种措施存在的不足,提出了一种新的坝顶抗震加固措施—-Hardfill材料抗震加固措施,以长河坝工程为例,对该措施的加固效果与实施的可能性进行了考察。计算结果表明,Hardfill抗震加固措施对增强坝体整体的稳定性、抑制坝体永久变形有较明显的效果,同时使反滤料和心墙料的动强度安全系数得到提高,且将Hardfill材料布置于土石坝中不会对大坝的运行带来明显不利影响,该措施具有施工简便快速、造价低廉、与土石坝施工无干扰等优点,具有很好的推广应用前景。
     4.传统经典振动孔压模型一般根据砂土试验得到,不能直接应用于粘性土、砂砾石土等土料的振动孔压计算当中。根据饱和不排水动三轴试验结果,提出一种计算粘性土、砂砾石土等振动孔压的新模型,新模型考虑了动剪应力比对材料动强度特性的影响,更加符合材料动强度试验结果,可以更好地反应材料动强度的真实特性。模型中参数确定方便,虽然增加了材料参数的数量,但并不会降低计算效率基于ADINA平台,编制了以新孔压本构模型为基础的土石坝有效应力法有限元分析程序,并应用于长河坝工程高土石坝动力响应的计算分析中,得到了地震过程中坝内振动孔隙水压力的发展积累过程及震后振动孔隙水压力消散、扩散的过程及其规律。
With the progress of the hydropower resources development in western China, there will appear a batch of200m and even300m high earth-rockfill dams, which will be located in the area of high seismic intensity, thick overburden and even adverse geological conditions. So far, however, the highest dam on thick overburden in the world is the Pubugou dam with only186meter dam height. For building the high dam more than200m on the thick overburden layer, both the seepage control design for dam and foundation and the anti-seismic measures have no experience to draw on, which bring worldwide challenges to the design, construction and operation. The seismic safety of the high earth-rockfill dams more than200m on the thick overburden foundation was studied; the main contents are as follows:
     1. The material parameters of the earth-rockfill dams are strongly dependent on confining pressure. The widely used Hardin-Drnevich model can reflect the effect of confining pressure partly. A new improved constitutive model that could accurately consider the confining pressure was put forward based on the traditional Hardin-Drnevich model in this paper. The new model can fit the experimental data better, response the dynamic properties of the material accurately. Each parameter in the new constitutive model still retains their physical meaning and easy to be defined. The model would not reduce the computational efficiency though the number of material parameters in the model is big. The relevant calculated procedure with the new model was programmed based on the program of ADINA, which are applied to the calculation and analysis of seismic dynamic response of240m high Cnanghe dam on the thick overburden foundation. The conclusion can be got that the result was conservative without considering the effect of confining pressure when analyzing high rockfill dam, which will have a certain influence on the economics of engineering.
     2. Seepage prevention system is the most important structure in high rockfill dam with earth core. The joint of the dam seepage structure and foundation seepage control structure is the weakest part in the seismic safety of dams. Taking high core rockfill Changhe dam as background, the seismic safety of seepage prevention system of high rockfill dam on thick overburden layer was studied using the improved Hardin-Drnevich model considering confining pressure and the advanced sub-model technology. The dynamic responses on the core wall of high rockfill dam and the cutoff wall and the corridor on thick overburden layer were analyzed. Used nonlinear constructive model of concrete cracking, the nonlinear changes in the cracks development process of the corridor in process of reservoir impounding and dam construction were analyzed. At last, seismic safety of the dam seepage core wall, the dam foundation cutoff wall, the joint of core wall and cutoff wall was evaluated. The feature of dynamic response on the high core rockfill dam with thick overburden was summarized. Combined with engineering experience, safety measures of seepage control system were put forward.
     3. The calculation and analysis were carried out on the aspects of reinforcement mechanisms, effects and application characteristics for anti-seismic measures of geogrid and concrete beam grillage used in the crest of high earth-rockfill dam. But some problems exist in the anti-seismic measures, so a new kind of rockfill dam seismic strengthening measure has been put forward:Hardfill seismic strengthening measure. The reinforcement effect and the possibility of implementing of Hardfill seismic strengthening measure were discussed based on the Changheba project. The results show that the Hardfill seismic strengthening measure can enhance the overall stability, inhibit the permanent deformation and improve the dynamic strength safety coefficient, bring no adverse effect to the operation of the dam. The new measure has the advantages such as, the simple construction process, low cost as well as no interference with construction schedule of the dam and has a good application prospect.
     4. Some of the traditional classical vibration pore pressure models were obtained based on the testing of sand, which cannot be directly applied to seismic pore pressure computation of the cohesive soil and gravel of high earth-rockfill dam. A new vibration pore pressure model for cohesive soil and gravel was put forward in this paper according to the results of saturated undrained dynamic triaxial test. The new vibration pore pressure model considered the influence of dynamic shear stress ratio and can fit the experimental data better, response the dynamic strength properties of the material more accurately. The model parameters were determined conveniently and the model would not reduce the computational efficiency though the number of material parameters in the model is added. Based on the program of ADINA, the effective stress algorithm program with the new vibration pore pressure model was implemented. The new model was used in the calculation and analysis of Changheba dam. The pattern of the accumulation process of excess pore pressure during earthquake and the dissipation as well as diffusion of excess pore pressure after earthquake were understanded through the calculation and analysis.
引文
[1]马洪琪.大型水电工程建设技术[M].北京:中国电力出版社,2011,130.
    [2]顾淦臣,束一鸣,沈长松.土石坝工程经验与创新[M].北京:中国电力出版社,2004,7-8.
    [3]J.Vrymoed. Dynamic FEM model of Oroville dam[J]. Journal of the Geotechnical Eng. Division, ASCE.1982,107(8):1057-1077.
    [4]Kulhawy, F H, Duncan, J M.Stresses and Movements in Oroville Dam[J]. Journal of Soil Mechanics & Foundations Div,1972,98(7):653-665.
    [5]Zdenek Eisenstein, Steven T.C. Law. Skermer. Analysis of Consolidation Behavior of Mica Dam [J]. Journal of the Geotechnical Engineering Division,1977,103(8):879-895.
    [6]Nigel A. Skermer.Mica Dam Embankment Stress Analysis[J]. Journal of the Geotechnical Engineering Division,1975,101(3),229-242
    [7]Mehmet Akkose, Suleyman Adanur, Alemdar Bayraktar, etal. Stochastic seismic response of Keban dam by the finite element method[J]. Applied Mathematics and Computation.2007, 184(2):704-714.
    [8]J. Barry Cooke. Progress in Rockfill Dams[J]. Journal of Geotechnical Engineering.1984, 110(10):1381-1414.
    [9]童文鲁,古慧如.努列克水利枢纽的建设经验[J].人民长江,1980,(4):81-84,89.
    [10]A. A. Borovoi,L S. Moiseev. Construction of the Chicoasen dam[J]. Power Technology and Engineering,1977,11(5):534-537.
    [11]Marulanda A, Amaya F. Design and construction of Colombia's Guavio dam[J]. International Water Power and Dam Construction,1989,41(12):7.
    [12]肖庸.正在兴建的世界上最高的坝—苏联罗贡坝[J].水利水电技术,1987,(5):62-64.
    [13]James N. Brune. The seismic hazard at Tehri dam[J]. Tectonophysics,1993,218(1-3): 281-286.
    [14]白克森,李忙虎,王远庆.石头河水库大坝安全监测系统土建工程施工技术[J].陕西水利水电技术,2003,(2):57-61.
    [15]高澜,胡本雄.碧口土石坝实测变形分析[J].西北水电,1998,(2):20-22.
    [16]王立福,张正梅.鲁布革大坝变形监测控制网稳定分析[J].大坝与安全,2009,(3):41-43.
    [17]张建华,严军,吴基昌,等.瀑布沟水电站枢纽工程关键技术综述[J].四川水力发电,2006,25(3):8-11.
    [18]陈立宏,陈祖煜,张进平,等.小浪底大坝心墙中高孔隙水压力的研究[J].水利学报,2005,36(2):219-224.
    [19]王柏乐.中国当代土石坝工程[M].北京:中国水利水电版社,2011,11-21.
    [20]熊堃,何蕴龙,伍小玉,等.长河坝坝基廊道应力变形特性研究[J].岩土工程学报,2011,33(11):1767-1774.
    [21]中国水力发展电工程学会水工及水电站建筑物专业委员会.利用覆盖层建坝的实践与发展[M].北京:中国水利水电出版社,2009.
    [22]朱晟,顾淦臣,林益才.深覆盖层上混凝土面板堆石坝地震反应分析[J].河海大学学报,1997,(5):80-85
    [23]周江平,彭雄志,赵善锐.复杂地基上高土石坝坝体稳定可靠度分析[J].西南交通大学学报,1998,(10):544-549.
    [24]郑娅娜,党发宁,尹小涛.深厚覆盖层上高土石坝的动力反应特性研究[J].西安理工大学学报,2005,21(01):59-63
    [25]沈慧,迟世春,贾宇峰,等.覆盖层地基上250m级土石坝抗震分析[J].河海大学学报(自然科学版),2007,35(3):271-275
    [26]中辉.深厚覆盖层士石坝的动力响应特征及稳定性研究[D].西安:西安理工大学,2007.
    [27]费康,朱凯,刘汉龙.深厚覆盖层上高土石坝抗震稳定性的三维分析[J].扬州大学学报(自然科学版),2008,11(1):74-78
    [28]Morgan H.Thompson. Some Construction Aspects of Tarbela Dam[J]. Journal of the Construction Division,1974,100(CO3),247-254
    [29]G. G. Lapin, A. D. Shargorodskii. Expercence in constructing higt earth dams abroad[J]. Power Technology and Engineering,1991,25(5):283-288
    [30]Oscar Dascal. Structral behaviour of the Manicouagan 3 cut off[J]. Can. Geotech. J.1979, 16:200-220
    [31]陈磊,窦向贤.深厚覆盖层砾石土心墙堆石坝抗滑稳定分析[J].四川水力发电,2010,29(4):8-11.
    [32]熊堃,何蕴龙,曹学兴.汶川地震对跷碛大坝影响分析[J].武汉大学学报(工学版)2009,42(1):33-37.
    [33]朱平,周武林.水牛家水电站工程特点[J].四川水力发电,2010,29(6):80-84.
    [34]杨晓东,覃新闻,郑亚平,等.深厚覆盖层防渗技术[M].北京:中国水利水电版社,2011,17-18.
    [35]张建华,严军,吴吉昌,等.瀑布沟水电站枢纽工程关键技术综述[J].四川水力发电,2006,25(3):8-12.
    [36]涂扬举,王文涛,陈向浩,等.瀑布沟砾石土心墙堆石坝施工期监测分析[J].水力发电,2010,36(6):71-74.
    [37]姚福海.深厚覆盖层上土石坝基础廊道的结构形式探讨[J].水力发电,2010,36(6):54-55,59.
    [38]熊堃,何蕴龙,曹学兴.汶川地震对硗碛大坝影响分析[J].武汉大学学报(工学版),2009,42(1):33-37.
    [39]陈生水,郦能惠.瀑布沟心墙堆石坝地震裂缝分析[J].水利水运科学研究,1995,(4):384-392.
    [40]邵磊,迟世春,李红军,等.高心墙堆石坝极限抗震能力初探[J].岩士力学,2006,32(12):3827-3838.
    [41]赵剑明,刘小生,陈宁,等.高心墙堆石坝的极限抗震能力研究[J].水力发电学报,2009,28(5):97-102.
    [42]赵剑明,常亚屏,陈宁.高心墙堆石坝地震变形与稳定分析[J].岩土力学,2004,24(supp:2):423-428.
    [43]熊堃,何蕴龙,曹学兴.观音岩水电站混合坝插入式接头的抗震性能[J].天津大学学报,2010,43(7):583-592.
    [44]沈新慧.防渗墙及其周围土体的应力探讨[J].水利学报,1995(11):39-45.
    [45]刘娜.土石坝二维非线性有限元分析及防渗墙应力状态研究[D].西安:西安理工大学,2007:1-93.
    [46]刘杰.混凝土防渗墙渗流控制几个问题实例分析[J].大坝观测与土工测试,1992,(5):39-43.
    [47]王平,李浩伟.硗碛水电站砾石土心墙堆石坝基础处理设计[A].现代堆石坝技术进展:2009—第一届堆石坝国际研讨会论文集[C].北京:中国水利水电出版社,2009.226-232.
    [48]祁月,崔会东,熊春发.硗碛坝基廊道0+168.12m结构缝变形及渗漏分析与评价[A].现代堆石坝技术进展:2009——第一届堆石坝国际研讨会论文集[C].北京:中国水利水电出版社,2009.638-642.
    [49]陈崇茂,迟世春,贾宇峰.土石坝料的动力特性与坝体敏感性分析[J].水电能源科学,2011,29(8):96-99.
    [50]Hardin B O, Drnevich V P. Shear modulus and damping in soils design equations and curves[J]. Journal of Soils Mechanics and Foundation Division,1972,98(7):667-692.
    [51]Sherif M A, I shibashi I. Dynamic shear moduli for dry sands[J]. Journal of Geotechnical Engineering Division,1986,102(11):1171-1184.
    [52]Sherif M A, Ishibashi I, Gaddah A H. Damping ratio for dry sands[J]. Journal of Geotechnical Engineering Division,1977,103(7):743-756.
    [53]Iwasaki T, Tatsuoka F, Takagi Y. Shear moduli of sands under cyclic torsional shear loading[J]. Soils and Foundations,1978,18(1):39-56.
    [54]Tatsuoka F, Iwasaki T, Takagi Y. Hysteretic damping of sands under cyclic loading and its relation to shear modulus[J]. Soils and Foundations,1978,18(2):25-40.
    [55]Ishibashi.I, Zhang.X. Unified dynamic shear moduli and damping of sand and clay[J]. Soil and foundation,1993,33:182-191.
    [56]Seed,H.B., M.D.E vans,N.B.Diehl,etl. Shear modulus and damping relationships for gravels[J]. Journal of Geotechnical Engineering Division,1986,124:1016-1032.
    [57]Darendelli M B. Development of a new family of normalized modulus reduction and material damping curves[D]. PhD Dissertation, University of Texas at Austin,2001.
    [58]Hardin,B.O.,Black,W.L. Sand stiffnesses under various triaxial stresses[J]. Soil Mechanic sand Foundations Div., ASCE,1966,92(2):27-42.
    [59]Hardin,B.O., Drnevich,V.P. Shear modulus and damping in soils:design equation sand curves[J]. J.Soil Mechanic sand Foundations, ASCE,1972,98(7):667-692.
    [60]Seed,H.B., Idriss,I.M. Soil Moduli and Damping Factors for Dynamic Response Analysis, Report No.UCB/EERC-70/10, Earthquake Engineering Research Center, University of Berkeley, Berkeley, CA,1970.
    [61]孔宪京,娄树莲,邹德高,等.筑坝堆石料的等效动剪切模量与等效阻尼比[J].水利学报,2001,(8):20-25.
    [62]迟世春,陈崇茂,张宗亮.士石坝料动力试验数据的一种统计公式[J].水利与建筑工程学报,2011,9(6):5-8.
    [63]Clough R W,Chopra A K. Earthquake stress analysis in earth dams[J].Journal of Engieering Mechanics,1966,(2):197-211.
    [64]Seed, H. B.A method for earthquake resistant design of earth dams[J].Journal of Soil Mechanics and Foundations Div,1966,92(1):13-41.
    [65]Idriss I M, Seed H B. Seismic response of horizontal soil layers[J]. Am Soc Civil Engr J Soil Mech,1968,94(sm 4):1003-1031.
    [66]沈珠江,徐刚.堆石料的动力变形特性[J].水利水电科学研究,1996,(6):143-150.
    [67]朱晟,周建波.粗粒筑坝材料的动力变形特性[J].岩土力学,2010,31(5):1375-1380.
    [68]Finn W D L.State-of-the-art of geotechnical earthquake engineering practice[J].Soil Dynamics and Earthquake Engineering.2000,20:1-15
    [69]Seed H B, Idriss I M. Simplified Procedure for Evaluating Soil Liquefaction Potential[J]. Journal of the Soil Mechanics and Foundations Division,1971,97(9):1249-1273.
    [70]Idriss,I.M., Lysmer.J., j., Hnang, R, and Seed, H. B.QUAD4:a computer program for evaluating the seismic response of soil structure by variable damping finite element procedures[R]. Report No. EERC-73-16, Univ.of California, Berkeley,1973.
    [71]Seed, H.B., Idriss, I.M., Lee, K.L., Makadisi, F.I.. Dynamic Analysis of the Slide in the Lower San Fernando Dam during the Earthquake of February 9,1971 [J]. Journal of the Geotechnical Engineering Division.1975,101(9):889-911.
    [72]Seed, H.B., Lee, K.L., Idriss, I.M., Makadisi, F.I.. The slides in the San Fernando dams during the earthquake of February 9,1971 [J]. Journal of Geotechnical and Geoenvironmental Engineering.1975,101(7):651-688.
    [73]徐志英,沈珠江.地震液化的有效应力二维动力分析方法[J].华东水利学院学报,1981,9(3):1-14.
    [74]周健,徐志英.土(尾矿)坝的三维有效应力动力反应分析[J].地震工程与工程振动,1984,4(3):60-70.
    [75]盛虞,卢盛松,姜朴.土工建筑物动力固结的耦合振动分析[J].水利学报,1989,(12):31-42.
    [76]赵剑明,汪闻韶,常亚屏,等.高面板坝三维真非线性地震反应分析方法及模型试验验证[J].水利学报,2003,(9):12-18.
    [77]Newmark N M. Effects of Earthquakes on Dams and Embankments[J]. Geotechnique,1965, (2):139-160.
    [78]Ozkan,M.Y., Erdik,M., Tuncer,M.A. and Yilmaz,C. An evaluation of Surgu Dam response during 5 May 1986 earthquake[J]. Soil Dynamics and Earthquake Engineering,1996,15(1):1-10.
    [79]Makdisi F I, Seed H B. Simplified procedure for estimating dam and embankment earthquake-induced deformations [J]. Journal of the Geotechnical Engineering Division,1978, 104(7):849-867.
    [80]Hynes-Griffm,M.E. and Franklin,A.G. Rationalizing the Seismic Coefficient Method, Miscellaneous Paper GL-84-13,Department of the Army, US Army Corps of Engineers, Washington, DC,1984.
    [81]Sarma,S.K. Seismic stability of earth dam sand embankments. Geotechnique[J].1975, 25(4):743-761.
    [82]Seed, H.B., Idriss, I.M., Lee, K.L., Makadisi, F.I.. Dynamic Analysis of Slide in the Lower San Fernando Dam during the Earthquake of February 9,1971 [R]. Report No. EERC73-2, University California, Berkeley, USA,1973.
    [83]Lee K L, Albaisa A.Earthquake-induced settlement in saturated sands[J]. Journal of Geotechnical and Geoenvironmental Engineering,1974,100 (4):387-406.
    [84]Serff N, Seed H B, Makdisi F I, etal. Earthquake induced deformations of earth dams[R]. Report No. EERC76-4, University California, Berkeley, USA,1976.
    [85]Taniguchi E, R V Whitman, W A Marr. Prediction of earthquake induced deformation of earth dams[J]. Soil and Foundations,1983,23 (4):126-132.
    [86]Kuwano,J. and Ishihara,K. Analysis of permanent deformations of earth dams due to earthquakes[J]. Soils Foundations,1988,28(1):41-55.
    [87]谢君斐,石兆吉,郁松寿,等.液化危害性分析[J].地震工程与工程振动,1988,(1):61-77.
    [88]张克绪,李明宰,常向前.地震引起的土坝永久变形分析[J].地震工程与工程振动,1989,(1):91-100.
    [89]刘汉龙,陆兆溱,钱家欢.土石坝地震永久变形分析[J].河海大学学报,1996,24(1)91-96.
    [90]刘汉龙,钱家欢.随机地震作用下土石坝永久变形预估[J].河海大学学报,1996,24(2):86-91.
    [91]刘汉龙.随机地震作用下地基及土石坝永久变形[J].岩土工程学报,1996,18(3):19-27.
    [92]Kuwano J, Ishihara K, Haya H, etal. Analysis of Permanent deformation of embankments caused by earthquakes[J].Soils and Foundation,1991,31(3):97-110.
    [93]李红军.高土石坝地震变形分析与抗震安全评价[D].大连:大连理工大学,2008.
    [94]陈祖煜.土质边坡稳定分析—原理·方法·程序[M].北京.中国水利水电出版社,2003.
    [95]Bishop A W. The use of the slip circle in the stability analysis of slopes[J]. Geotechnique, 1955,5(1):7-17.
    [96]Griffiths D V,Lane P A.Slope stability analysis by finite elements[J]. Geotechnique,1999, 49(3):387-403.
    [97]Ugai K,leschinsky D. Three-dimensional limit equilibrium and finite element analyses:a comparison of results[J]. Soils Foundations,1995,29(4):1-7
    [98]徐斌,邹德高,孔宪京,等.高土石坝坝坡地震稳定分析研究[J].岩士工程学报,2012,34(1):139-144.
    [99]朱俊高,徐莹莹,曹荣,等.地震作用下土石坝边坡稳定性分析研究[c]//首届全国水工抗震防灾学术会议论文集.南京:中国水力发电工程学会抗震防灾专业委员会,2006:458-464.
    [100]邵龙潭,唐洪祥,孔宪京,等.随机地震作用下土石坝边坡的稳定性分析[J].水利学报,1999, (11):66-71.
    [101]Seed H B, Idriss I M. Simplified Procedure for Evaluating Soil Liquefaction Potential [J]. Journal of the Soil Mechanics and Foundations Division,1971,97(9):1249-1273.
    [102]汪闻韶.饱和砂土振动孔隙水压力的产生、扩散和消散[C]//中国土木工程学会第一届土力学及基础工程学术会议论文选集.北京:中国工业出版社,1964:224-235.
    [103]P. DeAlba, C.K. Chan, H.B. Seed. Sand Liquefaction in Large-Scale Simple Shear Tests[J]. Journal of Geotechnical Engineering, ASCE,1976,102(9):909-927.
    [104]Seed H B, Martin G R, Lysmer J. Pore water pressure changes during soil liquefaction[J]. Journal of Geotechnical Engineering, ASCE,1976,102(4):327-346.
    [105]Finn W D L, Lee K W, Martin G R. An effective stress model for liquefaction[J]. Journal of Geotechnical Engineering, ASCE,1977,103(6):517-533.
    [106]徐志英,沈珠江.地震液化的有效应力的二维分析方法[J].华东水利学院学报,1981,(3): 1-14.
    [107]Martin G R, Finn W D L, Seed H B. Fundamentals of liquefaction under cyclic loading[J]. Journal of Geotechnical Engineering, ASCE,1975,101(5):423-438.
    [108]Byrne P M. A cyclic shear-volume coupling and pore pressure model for sand[C]// Proceedings of the second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics,Missouri,USA,1991:47-55.
    [109]Yasuhara K, Yamanouchi T, Hirao K.Cyclic strength and deformation of normally consolidated clay[J]. Soils and Foundations,1982,(3):77-91.
    [110]Ishihara,K., Tatsuoka,F., Yasuda,S. Undrained deformation and liquefaction of sand under cyclic stresses[J].Soils Foundations,1975,15(4):85-100.
    [111]Ghaboussi,J., Dikmen,S.U. Liquefaction analysis of multi-directional shaking[J]. J.Geotechnical Engineering Division, ASCE,1981,107(5):605-658.
    [112]Ghaboussi.J., Dikmen,S.U. Effective stress analysis of seismic response and liquefaction: case studies[J]. J.Geotechnical Engrg., ASCE,1984,110(5):645-658.
    [113]Dikmen,S.U., Ghaboussi,J. Effective stress of seismic response and liquefaction:theory[J]. J.Geotechnical Engrg., ASCE,1984, 110(5):628-644.
    [114]曹宇春,王天龙.上海粉土液化特性及孔压模型的试验研究[J].上海地质,1998,(3):64-64.
    [115]曾长女,刘汉龙,丰士根,等.饱和粉土孔隙水压力性状试验研究[J].岩土力学,2005,26(12):1963-1966.
    [116]陈国兴,刘雪珠.南京粉质黏土与粉砂互层土及粉细砂的振动孔压发展规律研究[J].岩土工程学报,2004,26(1):79-82.
    [117]张茹,何昌荣,费文平,等.饱和黏性土和砂砾石料振动孔压的试验研究[J].岩土力学,2006,27(10):1805-1810.
    [118]岑威钧,顾淦臣,隋世军.深厚黄土覆盖层上土石坝地震响应特性分析[J].防灾减灾工程学报,2009,29(1):51-56。
    [119]刘启旺,刘小生,陈宁,等.双江口心墙堆石坝地震残余变形和破坏模式的试验研究[J].水力发电,2009,35(5):60-62.
    [120]顾淦臣.国内外土石坝重大事故剖析-对若干土石坝重大事故的再认识[J].水利水电科技进展,1997,17(1):13-20.
    [121]日本电力土木技术协会编,陈慧远,等译.最新土石坝工程学[M].北京:水利电力出版社,1983,140-141.
    [122]梁海安.土石坝震害预测及快速评估方法研究[D].哈尔滨:中国地震局工程力学研究所,2012.
    [123]Castro, G., Seed, R.B., Keller, T.O. Seed, H.B.. Steady-State Strength Analysis of the Lower SanFernando Dam Slide[J]. Journal of Geotechnical engineering,1992,118(3):406-427
    [124]汪闻韶,黄锦德.中国水利工程震害资料汇编1961-1985[M].北京:中国科学院、水利水电部水利水电的科学研究院抗震防护研究所,1990.
    [125]中国科学院工程力学研究所.海城地震震害[M].北京:地震出版社,1979.
    [126]刘恢先.唐山大地震震害(第三册)[M].北京:地震出版社,1986.
    [127]中国科学院工程力学研究所,河北省地震局抗震组.唐山地震震害调查初步总结[M].北京:地震出版社,1978.
    [128]沈珠江,黄锦德,王钟宁.陡河水库土坝的地震液化及变形分析[J].水利水运科学研究,1984(1):52-61.
    [129]景立平,陈国兴,李永强,等.汶川8.0级地震水坝震害调查[J].地震工程与工程振动,2009,29(1):14-23.
    [130]Jing Liping, Liang Haian, etal.Characteristics and factors that influenced damage to dams in the Ms8.0 Whenchuan earthquake[J].Earthquake Engineering and Engineering Vibration, 2011,10(3):349-358.
    [131]张桂龙,董正兴,郭永彬.土石坝震损机理及震害影响因素研究[J].灾害学,2012,27(3):25-30.
    [132]梁海安,景立平,李永强,等.汶川地震溃坝险情土石坝烈度分布及震害特征[J].岩土工程学报.2012,34(7):1323-1328.
    [133]王斌,周建平.汶川地震灾区水电工程震害调查及分析概述[J].水力发电,2009,35(3):1-5.
    [134]Sakamoto T., Yoshida H., Yamaguchi Y., etal. Numerical simulation of sliding of anearth dam during the 1995 Kobe earthquake [C].The 22ndUSSD Annual Meeting and Conference Pre-conference Workshop 3rd U. S.-Japan Workshop on Advanced Research on Earthquake Engineering for Dams.2002.
    [135]Raghvendra Singh,Debasis Roy,Sudhir K. Jain. Analysis of earth dams affected by the 2001 Bhuj Earthquake[J]. Engineering Geology,2005,80:282-291.
    [136]Gu WH, Morgenstern N R, Robertson P K.Progressive failure of lower San Fernando dam[J]. J Geotech Engrg, ASCE,1993,119(2):333-349.
    [137]沈珠江,徐志英.1976年7月28日唐山地震时密云水库白河主坝有效应力动力分析[J].水利水运科学研究.1981,(3):46-62.
    [138]牛运光.密云水库白河筑坝滑坡及处理[J].大坝与安全.2001,(1):34-35.
    [139]徐志英,沈珠江.1975年辽南地震时石门土坝滑动有效应力动力分析[J].水利学报.1982,(3):13-21.
    [140]林皋.汶川大地震中大坝震害与大坝抗震安全性分析[J].大连理工大学学报.2009,49(5):657-665.
    [141]陈靖甫.唐山陡河水库土坝震害[J].人民长江.1991,22(2):37-42.
    [142]Raghvendra Singh,Debasis Roy.Sudhir K. Jain. Analysis of earth dams affected by the 2001 Bhuj Earthquake[J].Engineering Geology,2005,80:282~291.
    [143]Lee, K.L., Seed, H.B., Idriss, I.M., Makadisi, F.L. Properties of Soil in the San Fernando Hydraulic Fill Dams [J]. Journal of the Geotechnical Engineering Division.1975,101 (8):801-821.
    [144]孔宪京,邹德高,邓学晶,等.高土石坝综合抗震措施及其效果的验算[J].水利学报,2006,37(12):1489-1495.
    [145]胥彦刚,李明辉.泸定水电站大坝抗震梁的设计优化与施工方法[J].水力发电,2012,38(1):44-49.
    [146]李光涛,谭劲.土工格栅在泸定水电站大坝中的应用[J].水力发电,2012,38(1):57-58,80.
    [147]沈珠江,郦能慧,孔宪京,等.高土石坝动力分析及抗震工程措施研究[R].南京:南京水利科学研究院,1993.
    [148]胡军.高土石坝动力稳定分析及加固措施研究[D].大连:大连理工大学博士毕业论文,2008.
    [149]刘莹光.加筋技术在高士石坝抗震中的应用[D].大连:大连理工大学博士毕业论文,2006.
    [150]杨星,刘汉龙,余挺,等.高土石坝震害与抗震措施评述[J].防灾减灾工程学报,2009,29(5):583-589.
    [151]袁晓铭,孙锐,孙静等.常规土类动剪切模量比和阻尼比试验研究[J].地震工程与工程振动,2000,20(4):133-139.
    [152]李红军,迟世春,钟红,林皋.考虑土料动力特性参数围压依赖性的高土石坝动力反应分析[J].水利学报,2007,38(8):938-943.
    [153]Darendelli M B. Development of a new family of normalized modulus reduction and material damping curves[D]. PhD Dissertation,University of Texas at Austin,2001.
    [154]Ishibashi.I, Zhang.X. Unified dynamic shear moduli and damping ratios of sand and clay[J]. Soil and foundation,1993,33:182-191.
    [155]蒋通,邢海灵.围压对土动剪模量和阻尼比影响的简化计算方法[J].岩石力学与工程学报,2007,26(7):1432-1437.
    [156]李淑平,张尔其.土动模量的退化和阻尼比变化[J].哈尔滨工业大学学报,2006,30(6):975-977.
    [157]陈国兴,谢君斐,张克绪.土的动模量和阻尼比的经验估计[J].地震工程与工程振动,1995,15(1):73-84.
    [158]Seed H B, Idriss I M. Soil moduli and damping factors for dynamic response analysis[R]. Report No EERC70-10, Earthquake Engineering Research Center, University of California. California:Berkely,1970.
    [159]Seed H B, Wong R T, Idriss I M, etal. Moduli and damping factors for dynamic analyses of cohesionless soils[J]. Journal of Geotechnical and Geoenvironment Engineering, ASCE,1986, 112(11):1016-1032.
    [160]Rollins K, Evans M D, Diehl N B, etal. Shear modulus and damping relationships for gravels[J]. Journal of Geotechnical and Geoenvironment Engineering, ASCE,1998,124(5): 396-405.
    [161]Kokusho T. Cyclic triaxial test of dynamic soil properties for wide strain range [J]. Soil and foundation,1980,(2):45-60.
    [162]Kim T C, Novak M. Dynamic properties of some cohesive soils of Ontario [J]. Canadian Geotechnical Journal,1981,18(3):371-389.
    [163]栾茂田,吴兴征,阴吉英,等.堆石料动力特性参数对面板堆石坝三维非线性地震响应的影响[J].水力发电学报,2001(1):7-18.
    [164]长河坝水电站砾石土心墙堆石坝筑坝材料动力特性试验报告[R].中国水利水电科学研究院.2007.
    [165]观音岩水电站心墙堆石坝坝料动力特性试验研究报告[R].南京水利水电科学研究院.2009.
    [166]陈国兴.岩土地震工程学[M].北京:科学出版社,2007.
    [167]Konder, R L. Hyperbolic stress-strain response cohesive soils[J]. Journal of the Soil Mechanics and Foundation Division,1963,89(SM1):115-144.
    [168]Janbu N. Soil compressibility as determined by oedometer and triaxial tests[C]//European Conference on Soil Mechanics and Foundation Engineering.1963,1:19-25.
    [169]Xuexing Cao, Yunlong HE, Kun xiong. Confining pressure effect on dynamic response of high rockfill dam[J] Frontiers of Architecture and Civil Engineering in China,2010,4(1),116-126.
    [170]熊堃,岑威钧,胡清义,曹学兴.多途径综合开发商业软件精细求解土石坝结构静动力分析[J].岩石力学与工程学报,2013,32(1):117-125.
    [171]Schnabel P B, Lysmer J, Seed H B.PEERC-72-12 SHAKE-a computer program for earthquake response analysis of horizontally layered sites[R]. Report No. EERC-72-12, Univ.of California, Berkeley,1972.
    [172]Duncan J M, Chang Y C. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Divi,1970,96(5):1629-1653.
    [173]Duncan J M, Byrne P, Wong K S, et al. Strength, stress strain and bulk modulus parameters for finite element analysis of stresses and movements in soil masses[R]. Univ. of California, Barkeley,1978.
    [174]余学明,何兰.瀑布沟水电站砾石土心墙堆石坝设计[J].水力发电,2010,36(6)39-42.
    [175]王刚,张建民,濮家骝.坝基混凝士防渗墙应力位移影响因素分析[J].土木工程学报,2009,37(4):73-77.
    [176]吕洪旭,陈科文,邓建辉,等.瀑布沟大坝防渗墙应力分布特性及机理探讨[J].人民长江,2011,42(10):39-43,64.
    [177]郭庆国,蔡长治.土石坝建设实用技术研究及应用[M].郑州:黄河水利出版社,2004.
    [178]吴秋军,傅少君.子模型方法研究瀑布沟土石坝防渗结构[J].武汉大学学报(工学版),2006,39(3):55-59.
    [179]刘晓青,李同春,闫园园,等.地震作用下混凝土坝孔口应力分析的动力子模型法[J].水力发电学报,2009,28(5):88-91.
    [180]Hu Liming, Pu Jialiu. Application of damage model for soil-structure interface [J]. Computers and Geotechnics,2003,30(1):165-183.
    [181]Coutinho A,Martins M,Sydenstricker R,et al.Simple zero thickness kinematically consistent interface elements[J].Computers and Geotechnics,2003,30(5):347-374
    [182]Frost J D, DeJong J T, Recalde M.Shear failure behavior of granular-continuum interfaces[J]. Engineering Fracture Mechanics,2002,69(17):2029-2048.
    [183]Goodman R E, Taylor R E and Brekke T. A model for the mechanics of jointed rock[J]. J. Soil. Mech. Foun., ASCE,1968, (94):637-659.
    [184]Desai C S, Zaman M M, Lightner J G, et al. Thin-layer element for interfaces and joints[J]. Int. J. Numer. Anal. Meth. Geomech.,1984,8:19-43.
    [185]卢廷浩,鲍伏波.接触面薄层单元耦合本构模型[J].水利学报,2000(2):71-75.
    [186]万彪,何蕴龙,熊堃.有厚度节理单元的开发与应用[J].水电能源科学,2008,26(4):63-66.
    [187]万彪,何蕴龙,熊堃.ADINA中用于模拟夹层的薄层单元的开发[J].武汉大学研究生学报(自然科学版),2008,24(2):91-96.
    [188]Bandis S C, Lumsden A C, Barton N R. Fundamentals of rock joint deformation [J]. International Journal of Rock Mechanics and Mining Sciences,1983,20(6):249-268.
    [189]Clough G W, Duncan J M. Finite element analysis of retaining wall behavior [J]. Journal of Soil Mechanics and Foundation Engineering Division, ASCE,1971,97(12):1657-1673.
    [190]邹德高,徐斌,孔宪京.钉结护面板对高土石坝坝坡地震稳定性影响研究[J].大连理工大学学报.2009,49(5):675-679.
    [191]金平水电站沥青混凝土心墙堆石坝防渗系统静动力分析[R].武汉大学,2010.
    [192]陈慧远,徐关泉,李鸿俊等译.最新土石坝程学[M].北京:水利电力出版社,1986.
    [193]褚福永,朱俊高,张富有等.300m级弧形直心墙超高堆石坝应力变形分析[J].土木工程学报,2011,39(5):506-510.
    [194]郦能惠.高混凝土面板堆石坝新技术[M].北京:水利水电出版社,2007.
    [195]米占宽,李国英.强震区士坝抗震措施研究[J].岩土力学,2007,28(1):193-196.
    [196]虞一鸣,何蕴龙,伍小玉.高堆石坝土工格栅抗震加固效果分析[J].岩土工程学报,2011,33(9):1425-1433.
    [197]马家燕.土工格栅应用于水工大坝初探[J].四川水力发电,2007,26(6):84-85,92.
    [198]冉从勇,朱先文,卢羽平.瀑布沟水电站砾石土心墙堆石坝的抗震设计[J].水电站设计,2011,27(3):26-30,51.
    [199]欧阳仲春.现代土工加筋技术[M].北京:人民交通出版社,1991.
    [200]YANG Z. Strength and deformation characteristic of reinforced sand[D]. Los Angeles, California:University of California,1972.
    [201]P. Londe and M. Lino. The faced symmetrical Hardfill dam:a new concept for RCC[J]. International Water Power & Dam Construction.1992,44(2):19-24.
    [202]S. Batmaz, Cindere dam-107 m high roller compacted Hardfill dam (RCHD) in Turkey[A]. in:Proceedings 4th International Symposium on Roller Compacted Concrete Dams[C], 17-19 November 2003, Madrid,121-126.
    [203]熊堃.Hardfill坝破坏模式与破坏机理研究[D].武汉:武汉大学博士毕业论文,2011.
    [204]T. Hirose, T.Fujisawa, H. Kawasaki, et al. Design concept of trapezoid-shaped CSG dam [A]. Proceedings 4th International Symposium on Roller Compacted Concrete Dams[C], Madrid,2003:457-464.
    [205]T. Hirose, T. Fujisawa, H. Yoshida, et al. Concept of CSG and its material properties[A]. Proceedings 4th International Symposium on Roller Compacted Concrete Dams[C], Madrid,2003: 465-473.
    [206]韦卓信.碾压混凝土改造土坝的探讨[J].人民珠江,2000,(2):34-36.
    [207]芮淮丰编译.利用碾压混凝土进行大坝修复[J].水电科技进展,1999, (1):28-32.
    [208]吕联亚摘译.碾压混凝土筑坝技术在美国的应用[J].水力发电,1992, (2):59-63.
    [209]T.P.多连.美国垦务局几座RCC溢洪道的施工方法[J].水利水电快报,2006,27(19):17-22.
    [210]G·P·波莱奇,D·L·斯文昂.填筑坝漫顶一适应稀遇洪水的方案[J].人民长江,1990,21(7):53-61.
    [211]J.R.金等.美国拟用水泥加高老坝[J].水利水电快报,1998,19(3):1-4.
    [212]陈关庆.水泥土的研究与应用[J].灌溉排水,1984,3(2):9-22.
    [213]付磊.潮河土坝抗震加固设计[J].水利学报,2000,(8):16-20.
    [214]顾淦臣,沈长松,岑威钧.土石坝地震工程学[M].北京:中国水利水电出版社,2009.
    [215]谢定义.土动力学[M].北京:高等教育出版社,2011.
    [216]Martin, P.P., Seed, H.B.. Simplified procedure for effective stress analysis of ground response[J]. Journal of Geotechnical and Geoenvironmental Engineering.1979,105(6):739-758.
    [217]陈国兴,谢君斐,韩炜等.土体地震反应分析的简化有效应力法[J].地震工程与工程振动,1995,15(2):52-61.
    [218]党发宁,鞠花.粘土心墙土石坝震后破坏的机理分析[A].中国岩石力学与工程学会第七次学术大会论文集[C].中国:西安,2002,283-286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700