用户名: 密码: 验证码:
非线性系统的稳定性与同步控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性系统在国防、工业、人类社会和生物界等领域有着广泛的应用背景,一直是控制界研究的热点问题.本文主要研究了非线性系统的稳定性和同步控制问题,主要工作可以归结为以下几方面:
     1.针对含有时变时滞的Lurie系统,利用时滞划分的方法分别讨论了直接控制系统和中立型间接控制系统的鲁棒绝对稳定性问题.通过选择适当的Lyapunov函数,以及采用不同的时滞划分方法,给出系统绝对稳定的时滞相关判据.同时,通过数值仿真比较,可以发现本文所得结果具有较小的保守性.
     2.针对非线性函数属于扇形区域和满足斜率条件的混沌Lurie系统,首次利用收缩分析的方法研究了带有反馈控制器的Lurie系统的同步问题.不需要讨论误差系统的稳定性,给出了一般Lurie系统同步的判定条件,并把结论推广到Chua’s电路中非线性函数不可微的情形.同时,数值仿真也表明了理论结果的正确性.
     3.针对Lurie型复杂动态网络系统,首次利用收缩分析的方法,研究了两种含有不同耦合时滞的复杂网络的同步问题.基于收缩理论以及矩阵测度的相关性质,先讨论了仅含有连续耦合的同步问题,然后考虑了连续与离散时滞耦合同时存在的同步问题,给出了系统同步的时滞无关判据.仿真结果也说明了结论的有效性.
     4.针对含有时变时滞的二阶多智能体系统,研究了系统的一致性问题.指出二阶多智能体系统的一致性性问题可以转化为线性多智能体误差系统的稳定性问题.利用时滞划分的方法得出系统实现一致可取的最大时滞上界,所得结果以线性矩阵不等式的形式给出,便于求解.
     5.针对含有耦合变量的二阶多智能体系统,首先利用线性多智能体系统的相关结论给出了系统在不含有领导者的情形下实现一致的充要条件.然后将其推广到有领导者的情形,并进行了数值仿真.
     6.针对一般线性多智能体系统以及含有非线性项的多智能体系统,首次利用收缩分析的方法研究了智能体系统的一致性问题.给出了系统在不含有领导者和带有领导者的情形下实现一致的判定条件.另外,通过数值仿真说明了结论的有效性.
Nonlinear system has broad application background in national defense, industry,human society and biosphere, and so on. And it has always been the hot topic of researchin the control feld. This dissertation mainly studies the stability and synchronizationcontrol problems of the nonlinear systems. The main works of this dissertation can besummarized into the following aspects:
     1. For the Lurie systems with time-varying delay, a delay decomposition method isemployed to solve the problems of robust absolute stability of direct system and neutralindirect system, respectively. By selecting suitable Lyapunov functions and diferent delaydivision methods, some delay-dependent conditions for absolute stability of these systemsare given. Through simulations and comparison, it can be found that the obtained resultsof this paper has less conservativeness.
     2. For the chaotic Lurie systems with sector and slope restricted nonlinearities,contraction analysis is used for the frst time to study the synchronization problem ofLurie systems with feedback controller. Without considering the stability of the errorsystem, synchronization condition for general Lurie systems is given. Furthermore, theresult is extended to the Chua’s system whose nonlinear function is not diferentiable.Meanwhile, numerical simulations are also demonstrated to show the correctness of thetheoretical results.
     3. For Lurie complex dynamical networks, contraction analysis is utilized for thefrst time to study two synchronization problems of complex networks with diferentdelay-couplings. Based on contraction theory and matrix measure properties, the syn-chronization problem of system with constant coupling is frstly discussed, and then thesynchronization problem of system with constant coupling and discrete-delay coupling isalso considered. Some delay-independent synchronization conditions are proposed. Andsimulation results are illustrated to show the efectiveness of these conclusions.
     4. For the second-order multi-agent system with time-varying delay, the consen-sus problem of this system is studied. It is pointed out that the consensus problemof the second-order multi-agent system can be changed into the stability of the errorsystem about the linear multi-agent system. Then, the maximal advisable time-delaybound about the system achieving consensus is obtained through time-delay decomposi-tion method. The obtained results are presented in the form of linear matrix inequalities.This can help us to get a solution.
     5. For the second-order multi-agent systems with coupling strengths, the necessaryand sufcient conditions of these systems reaching leaderless consensus are frstly given by using some conclusions originated from the linear multi-agent systems. Then, the resultsare extended to the leader-following case. Numerical simulations are also given.
     6. For the multi-agent systems with general linear and nonlinear dynamics, con-traction analysis is used to consider their consensus problems for the frst time. Someconditions about these systems reaching consensus in leaderless and leader-following caseare presented. Moreover, simulation results are also given to validate the efectiveness ofthe conclusions.
引文
1. He Y, Wu M, She J H, Liu G P. Robust stability for delay Lur’e control systems with multiplenonlinearities [J]. Journal of Computational and Applied Mathematics,2005,176(2):371-380.
    2. Cao J W, Zhong S M, Hu Y Y. Delay-dependent condition for absolute stability of Luriecontrol systems with multiple time delays and nonlinearities [J]. Journal of MathematicalAnalysis and Applications,2008,338(1):497-504.
    3. Curran P F, Chua L O. Absolute stability theory and the synchronization problem [J].International Journal of Bifurcation and chaos,1997,7(6):1375-1382.
    4. Suykens J A K, Curran P F, Chua L O. Robust synthesis for master-slave synchronizationof Lur’e systems [J]. IEEE Transaction on Circuits and Systems I: Fundamental Theory andApplications,1999,46(7):841-850.
    5. Sbarbaro D. A stability criterion for Hopfeld networks based on Popov theorem [C]. Pro-ceedings of1994IEEE International Conference on Neural Networks, IEEE World Congresson Computational Intelligence,1994,7:4567-4570.
    6. Xiao H M. Stability of Hopfeld neural networks with time-varying delay [M]. Advances inNeural Networks–ISNN2009, Springer Berlin Heidelberg,2009:375-382.
    7. Cao Y C, Yu W W, Ren W, Chen G R. An overview of recent progress in the studyof distributed multi-agent coordination [J]. IEEE Transactions on Industrial Informatics,2013,9(1):427-438.
    8.刘佳,陈增强,刘忠信.多智能体系统及其协同控制研究进展[J].智能系统学报,2010,5(1):1-9.
    9.王晓丽,洪奕光.多智能体系统分布式控制的研究新进展[J].复杂系统与复杂性科学,2010,7(2-3):70-81.
    10. Lur’e A I. Some nonlinear problems in the theory of automatic control [M]. London: H.M.Stationery Ofce,1957.
    11. Popov V M. Hyperstability of control systems [M]. New York, NY: Springer,1973.
    12. Popov V M, Halanay A. Absolute stability of non-linear controlled systems with delay [J].Automation and Remote Control,1962,23(7):849-851.
    13. Liao X X, Yu P. Absolute stability of nonlinear control systems [M]. Springer Netherlands,2008.
    14. Gruji′c L T, Petkovski D B. Robust absolutely stable Lurie systems [J].1987,46(1):357-368.
    15. Tesi A, Vicion A. Robust absolute stability of Lur’e control systems in parameter space [J].Automatica,1991,27(1):147-151.
    16. Gan Z X, Ge W G. Lyapunov functional for multiple delay general Lurie control systemswith multiple non-linearities [J]. Journal of Mathematics Analysis and Applications,2001,259(2):596-608.
    17. Arcak M, Teel A. Input-to-state stability for a class of Lurie systems[J]. Automatica,2002,38(11):1945-1949.
    18. Yu L, Han Q L, Yu S M, Gao J F. Delay-dependent conditions for robust absolute stabilityof uncertain time-delay systems [C]. Proceedings42nd IEEE Conference on Decision andControl, Maui, Hawaii, USA,2003,6033-6037.
    19. Xu B J, Liu X Z, Liao X X. Absolute stability of Lurie systems with impulsive efects [J].Computers&Mathematics with Applications,2004,47(2):419-425.
    20. Wang F. Robust absolute stability of interval Lurie systems with time-delays [C]. Proceed-ings of the4th International Conference on Machine Learning and Cybernetics, Guangzhou,18-21August2005,1138-1142.
    21. Han Q L. Absolute stability of time-delay systems with sector bounded nonlinearity [J].Automatica,2005,41(12):2171-2176.
    22. Liao X X, Yu P. Sufcient and necessary conditions for absolute stability of time-delayedLurie control systems [J]. Journal of Mathematical Analysis and Applications,2006,323(2):876-890.
    23. Yang C Y, Zhang Q L, Zhou L N. Strongly absolute stability of Lur’e type diferential-algebraic systems [J]. Journal of Mathematical Analysis and Applications,2007,336(1):188-204.
    24. Yang C Y, Zhang Q L, Zhou L N. Strongly absolute stability problem of descriptor systems: Circle criterion [J]. Journal of the Franklin Institute,2008,345(5):437-451.
    25. Hao F. Absolute stability of uncertain discrete Lur’e systems and maximum admissibleperturbed bounds [J]. Journal of the Franklin Institute,2010,347(8):1511-1525.
    26. Molchanov A P, Liu D R. Robust absolute stability of time-varying nonlinear discrete-time systems [J]. IEEE Transaction on Circuits and Systems I: Fundamental Theory andApplications,2002,49(8):1129-1137.
    27. Gao J F, Pan H P, Ji X F. A new delay-dependent absolute stability criterion for Luriesystems with time-varying delay [J]. Acta Automatic Sinica,2010,36(6):845-850.
    28. Qiu F, Zhang Q X. Absolute stability analysis of Lurie control system with multiple delays:an integral-equality approach [J]. Nonlinear Analysis: Real World Applications,2011,12(3):1475-1484.
    29.年晓红. Lurie滞后反馈控制系统绝对稳定的鲁棒扰动界[J].信息与控制,2001,30(2):155-158.
    30.年晓红. Lurie控制系统绝对稳定的时滞相关条件[J].自动化学报,1999,25(4):564-566.
    31. Han Q L. A new delay-dependent absolute stability criterion for a class of nonlinear neutralsystems [J]. Automatica,2008,44(1):272-277.
    32. Qiu F, Cui B T, Ji Y. Delay-dividing approach for absolute stability of Lurie control systemwith mixed delays [J]. Nonlinear Analysis: Real World Applications,2010,11(4):3110-3120.
    33. Pankaj M, Narayan K I, Purushottam B R K. Delay-distribution-dependent robust stabilityanalysis of uncertain Lurie systems with time-varying delay [J]. Acta Automatic Sinica,2012,38(7):1100-1106.
    34. Wang D, Liao F C. Absolute stability of Lurie direct control systems with time-varyingcoefcients and multiple nonlinearities [J]. Applied Mathematics and Computation,2013,219(9):4465-4473.
    35. Vincent U E. Chaos synchronization using active control and backstepping control: a com-parative analysis [J]. Nonlinear Analysis: Modelling and Control,2008,13(2):253-261.
    36. Yu Y G, Zhang S C. Adaptive backstepping synchronization of uncertain chaotic system [J].Chaos, Solitons&Fractals,2004,21(3):643-649.
    37. Park J H. Adaptive synchronization of a unifed chaotic system with an uncertain parameter[J]. International Journal of Nonlinear Sciences and Numerical Simulation,2005,6(2):201-206.
    38. Hu J, Chen S H, Chen L. Adaptive control for anti-synchronization of Chua’s chaotic system[J]. Physics Letters A,2005,339(6):455-460.
    39. Liao T L, Huang N S. An observer-based approach for chaotic synchronization with ap-plications to secure communications [J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,1999,46(9):1144-1150.
    40. Boutayeb M, Darouach M, Rafaralahy H. Generalized state-space observers for chaotic syn-chronization and secure communication [J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,2002,49(3):345-349.
    41. Chen M Y, Zhou D H, Shang Y. A new observer-based synchronization scheme for privatecommunication [J]. Chaos, Solitons&Fractals,2005,24(4):1025-1030.
    42. Lohmiller W, Slotine J J E. On contraction analysis for nonlinear systems [J]. Automatica,1998,34(6):683-696.
    43. Yin C, Zhong S M, Liu Z J, Huang X G. Master-slave synchronization of chaotic Lur’esystems with sector and slope restricted nonlinearities under delayed feedback control [J].World Academy of Science, Engineering and Technology,2010,71:209-214.
    44. Wang W, Xu B J. Criteria for chaos synchronization of a class of Lurie systems [C]. Proceed-ings of the7th World Congress on Intelligent Control and Automation, Chongqing, China,2008,4600-4603.
    45. Grassi G, Mascolo S. Nonlinear observer design to synchronize hyperchaotic systems via ascalar signal [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory andApplications,1997,44(10):1011-1014.
    46. Boutayeb M, Darouach M, Rafaralahy H. Generalized state-space observers for chaotic syn-chronization with applications to secure communication [J]. IEEE Transactions on Circuitsand Systems I: Fundamental Theory and Applications,2002,49(3):345-349.
    47. Xu S Y, Yang Y. Synchronization for a class of complex dynamical networks with time-delay [J]. Communications in Nonlinear Science and Numerical Simulation,2009,14(8):3230-3238.
    48. Xiang J, Li Y J, Wei W. An improved condition for master-slave synchronization of Lur’esystems with time delay [J]. Physics Letters A,2007,362(2-3):154-158.
    49. Ji D H, Park J H, Won S C. Master-slave synchronization of Lur’e systems with sector andslope restricted nonlinearities [J]. Physics Letters A,2009,373(11):1044-1050.
    50. Guo H M, Zhong S M, Gao F Y. Design of PD controller for master-slave synchronizationof Lur’e systems with time-delay [J]. Applied Mathematics and Computation,2009,212(1):86-93.
    51. Liu X, Gao Q, Niu L Y. A revisit to synchronization of Lurie systems with time-delayfeedback control [J]. Nonlinear Dynamics,2010,59(1-2):297-307.
    52. Dun A, Geng Z Y, Huang L. Design of controller for Lur’e systems guaranteeing dichotomy[J]. Applied Mathematics and Computation,2011,217(22):8927-8935.
    53. Wang W, Slotine J J E. Contraction analysis of time-delayed communications and groupcooperation [J]. IEEE Transactions on Automatic Control,2006,51(4):712-717.
    54. Slotine J J E. Modular stability tools for distributed computation and control [J]. Interna-tional Journal of Adaptive Control and Signal Processing,2003,17(6):397-416.
    55. Joufroy J, Slotine J J E. Methodological remarks on contraction theory [C]. Proceedings ofthe43rd IEEE conference on decision and control, Atlantis, Bahamas,2004,2537-2543.
    56. Sharma B B, Kar I N. Observer-based synchronization scheme for a class of chaotic systemsusing contraction theory [J]. Nonlinear Dynamics,2011,63(3):429-445.
    57. Sharma B B, Kar I N. Contraction based adaptive control of a class of nonlinear systems[C]. Proceeding of2009American Control Conference, Hyatt Regency Riverfront, St. Louis,MO, USA,2009,808-813.
    58. Sharma B B, Kar I N. Contraction theory based adaptive synchronization of chaotic systems[J]. Chaos Solitons and Fractals,2009,41(5):2437-2447.
    59. Wang X F. Complex networks: topology, dynamics, and synchronization [J]. InternationalJournal of Bifurcation and Chaos,2002,12(5):885-916
    60. Wang X F, Chen G R. Pinning control of scale-free dynamical networks [J]. Physica A,2002,310(3-4):521-531.
    61. Li Z, Chen G R. Global synchronization and asymptotic stability of complex dynamicalnetworks [J]. IEEE Transactions on Circuits and Systems II,2006,53(1):28-33.
    62. Cao J D, Chen G R, Li P. Global synchronization in an array of delayed neural networkswith hybrid coupling [J]. IEEE Transactions on Systems Man and Cybernetics Part B:Cybernetics,2008,38(2):488-498.
    63. De Lellis P, di Bernardo M, Sorrentino F, Tierno A. Adaptive synchronization of complexnetworks [J]. International Journal of Computer Mathematics,2008,85(8):1189-1218.
    64. De Lellis P, di Bernardo M, Garofalo F. Adaptive pinning control of networks of circuits andsystems in Lur’e form [J]. IEEE Transactions on Circuits and Systems I: Regular Papers,2013,60(11):3033-3042.
    65. Mwafo V, De Lellis P, Profri M. Criteria for stochastic pinning control of networks ofchaotic maps [J]. Chaos,2014,24:013101.
    66. Wang W, Slotine J J E. On partial contraction analysis for coupled nonlinear oscillators [J].Biological Cybernetics,2005,92(1):38-53.
    67. Slotine J J E, Wang W. A study of synchronization and group cooperation using partialcontraction theory [M]. Cooperative Control, Springer Berlin Heidelberg,2005:207-228.
    68. De Lellis P, di Bernardo M, E. Gorochowski T, Russo G. Synchronization and control ofcomplex networks via contraction, adaptation and evolution [J]. IEEE Circuits and SystemsMagazine,2010,10(3):64-82.
    69. Porfri M and di Bernardo M. Criteria for global pinning-controllability of complex networks[J]. Automatica,2008,44(12):3100-3106.
    70. Xiang L Y, Liu Z X, Chen Z Q, Chen F, Yuan Z Z. Pinning control of scale-free dynamicalnetworks [J]. Physica A,2007,379(1):298-306.
    71. Arenas A, D′az-Guilera A, Kurths J, Moreno Y, Zhou C S. Synchronization in complexnetworks [J]. Physics Reports,2008,469(3):93-153.
    72. Li Z K, Duan Z S, Huang L. Global synchronization of complex Lur’e networks [C]. Pro-ceedings of the26th Chinese Control Conference, Zhangjiajie, Hunan, China,2007,304-308.
    73. Li Z K, Duan Z S, Chen G R. Global synchronised regions of linearly coupled Lur’e systems[J]. International Journal of Control,2011,84(2):216-227.
    74. Li T, Song A G, Fei S M, Wang T. Global synchronization in arrays of coupled Lurie systemswith both time-delay and hybrid coupling [J]. Communications in Nonlinear Science andNumerical Simulation,2011,16(1):10-20.
    75. Wang T, Li T, Yang X, Fei S M. Cluster synchronization for delayed Lur’e dynamicalnetworks based on pinning control [J]. Neurocomputing,2012,83:72-82.
    76. Ren W, Beard R W. Consensus seeking in multi-agent systems under dynamically changinginteraction topologies [J]. IEEE Transactions on Automatic Control,2005,50(5):655-661.
    77. Ren W, Beard R W, Atkins E M. Information consensus in multi-vehicle cooperative control[J]. IEEE Control Systems Magazine,2007,27(2):71-82.
    78. Olfati-Saber R, Murray R M. Consensus problem in networks of agents with switchingtopology and time-delays [J]. IEEE Transactions on Automatic Control,2004,49(9):1520-1533.
    79. Vicsek T, Czirok A, Ben-Jaco E, Cohen I, Shochet O. Novel type of phase transition in asystem of self-driven particles [J]. Physical Review Letter,1995,75(6):1226-1229.
    80. Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents usingnearest neighbor rules [J]. IEEE Transactions on Automatic Control,2003,48(6):988-1001.
    81. Xiao F, Wang L, Chen J, Gao Y P. Finite-time formation control for multi-agent systems[J]. Automatica,2009,45(11):2605-2611.
    82. Meng Z Y, Ren W, Cao Y C, You Z. Leaderless and leader-following consensus with com-munication and input delays under a directed network topology [J]. IEEE Transactions onSystems, Man, and Cybernetics, Part B,2011,41(1):75-88.
    83. Ren W, Beard R W, Kingston D B. Multi-agent Kalman consensus with relative uncertainty[C]. Proceeding of the American Control Conference, Portland, USA,2005,1865-1870.
    84. Guan Z H, Meng C, Liao R Q, Zhang D X. Consensus of second-order multi-agent dynamicsystems with quantized data [J]. Physics Letters A,2012,376(4):387-393.
    85. Fan Y, Feng G, Wang Y, Song C. Distributed event-triggered control of multi-agent systemswith combinational measurements [J]. Automatica,2013,49(2):671-675.
    86. Yu W W, Zheng W X, Chen G R, Ren W, Cao J D. Second-order consensus in multi-agentdynamical systems with sampled position data [J]. Automatica,2011,47(7):1496-1503.
    87. Kim J, Kim K D, Natarajan V. PdE-based model reference adaptive control of uncertainheterogeneous multiagent networks [J]. Nonlinear Analysis: Hybrid Systems,2008,2(4):1152-1167.
    88. Wang X F, Li X, Lu J H. Control and focking of networked systems via pinning [J] IEEECircuits and Systems Magazine,2010,10(3):83-91.
    89. Jiang H B, Yu J J, Zhou C Q. Consensus of multi-agent linear dynamic systems via impulsivecontrol protocols [J]. International Journal of Systems Science,2011,42(6):967-976.
    90. Cao Y C, Stuart D, Ren W, Meng Z Y. Distributed containment control for multiple au-tonomous vehicles with double-integrator dynamics: algorithms and experiments [J]. IEEETransactions on Control Systems Technology,2011,19(4):929-938.
    91. Yu W W, Chen G R. Consensus in directed networks of agents with nonlinear dynamics [J].IEEE Transactions on Automatic Control,2011,56(6):1436-1441.
    92. Su H S, Chen Z Q M, Wang X F, Lam J. Semi-global observer-based leader-followingconsensus with input saturation [J]. IEEE Transactions on Industrial Electronics,2014,61(6):2842-2850.
    93. Dimarogonas D V, Kyriakopoulos K J. On the rendezvous problem for multiple nonholo-nomic agents [J]. IEEE Transactions on Automatic Control,2007,52(5):916-922.
    94. Meng Z Y, Lin Z L, Ren W. Leader-follower swarm tracking for networked Lagrange systems[J]. Systems&Control Letters,2012,61(1):117-126.
    95. Yu W W, Chen G R, Ren W, Kurths, J, Zheng W X. Distributed higher order consensusprotocols in multiagent dynamical systems [J]. IEEE Transactions on Circuits and SystemsI: Regular Papers,2011,58(8):1924-1932.
    96. Wahrburg A, Adamy J. Observer-based synchronization of heterogeneous multi-agent sys-tems by homogenization [C]. Proceeding of Australian Control Conference (AUCC), Mel-bourne, Australia,2011,386-391.
    97. Wang J H, Cheng D Z, Hu X M. Consensus of multi-agent linear dynamic systems [J]. AsianJournal of Control,2008,10(2):144-155.
    98. Ni W, Cheng D Z. Leader-following consensus of multi-agent systems under fxed and switch-ing topologies [J]. Systems&Control Letters,2010,59(3-4):209-217.
    99. Zhao Y, Wen G H, Duan Z S, Xu X. A new observer-type consensus protocol for linearmulti-agent dynamical systems [C]. Proceedings of the30th Chinese Control Conference,Yantai, China,2011,5975-5980.
    100. Li Z K, Liu X D, Lin P, Ren W. Consensus of linear multi-agent systems with reduced-orderobserver-based protocols [J]. Systems&Control Letters,2011,60(7):510-516.
    101. Xi J X, Shi Z Y, Zhong Y S. Output consensus analysis and design for high-order linearswarm systems: Partial stability method [J]. Automatica,2012,48(9):2335-2343.
    102. Wen G H, Li Z K, Duan Z S, Chen G R. Distributed consensus control for linear multi-agent systems with discontinuous observations [J]. International Journal of Control,2013,861:95-106.
    103. Li Z K, Duan Z S, Chen G R, Huang L. Consensus of multi-agent systems and synchro-nization of complex networks: A unifed viewpoint [J]. IEEE Transactions on Circuits andSystems I,2010,57(1):213-224.
    104. Liu S, Xie L H, Lewis F L. Synchronization of multi-agent systems with delayed controlinput information from neighbors [J]. Automatica,2011,47(10):2152-2164.
    105. Zhang H W, Lewis F L, Das A. Optimal design for synchronization of cooperative systems:state feedback, observer and output feedback [J]. IEEE Transactions on Automatic Control,2011,56(8):1948-1952.
    106. Li Z K, Ren W, Liu X D, Fu M G. Consensus of multi-agent systems with general linear andLipschitz nonlinear dynamics using distributed adaptive protocols [J]. IEEE Transactionson Automatic Control,2013,58(7):1786-1791.
    107. Li Z K, Liu X D, Ren W, Xie L H. Distributed consensus of linear multi-agent systemswith adaptive dynamics protocols [J]. Automatica,2013,49(7):1986-1995.
    108. Scardovi L, Sepulchre R. Synchronization in networks of identical linear systems [J]. Au-tomatica,2009,45(11):2557-2562.
    109. Xu B J, Wang Q. LMI approach for absolute stability of general neutral type Lurie indirectcontrol systems [J]. Journal of Control Theory and Applications,2005,3(4):387-392.
    110. Han Q L. A delay decomposition approach to stability of linear neutral systems [C]. Pro-ceedings of the17th World Congress on the International Federation of Automatic Control,Seoul, Korea,2008,2607-2612.
    111. Tian J K, Zhong S M, Xiong L L. Delay-dependent absolute stability of Lurie controlsystems with multiple time-delays [J]. Applied Mathematics and Computation,2007,188(1):379-384.
    112. Gao J F, Su H Y, Ji X F, Chu J. Stability analysis for a class of neutral systems with mixeddelays and sector-bounded nonlinearity [J]. Nonlinear Analysis: Real World Applications,2008,9(5):2350-2360.
    113. Gao J F, Su H Y, Ji X F, Chu J. Robust absolute stability for general neutral type Lurieindirect control systems [J]. Asian Journal of Control,2008,10(6):698-707.
    114. Gao J F, Su H Y, Ji X F, Chu J. New delay-dependent absolute stability criteria for Luriecontrol systems [J]. Acta Automatic Sinica,2008,34(10):1275-1280.
    115. Han Q L, Yue D. Absolute stability of Lur’e systems with time-varying delay [J]. IETControl Theory and Applications,2007,1(3):854-859.
    116. Gao J F, Pan H P, Ke L T, Wang L L. Robust absolutely stability for uncertain Lurieindirect type control systems [C]. Proceedings of the IEEE International Conference onAutomation and Logistics, Qingdao, China,2008,1780-1784.
    117.杨斌,王金城.中立型一般Lurie系统绝对稳定的时滞相关准则[J].自动化学报,2004,30(2):261-264.
    118. Park J H. Novel robust stability criterion for a class of neutral systems with mixed delaysand nonlinear perturbations [J]. Applied Mathmatics and Computation,2005,161(2):413-421.
    119. Gu K Q, Kharitonov V L, Chen J. Stability of time-delay systems [M]. Boston: Springer-Verlag,2003.
    120. Zhang X M, Wu M, She J H, He Y. Delay-dependent stabilization of linear systems withtime-varying state and input delays [J]. Automatica,2005,41(8):1405-1412.
    121. Petersen I R. A stabilization algorithm for a class of uncertain linear systems [J]. Systems&Control Letters,1987,8(4):351-357.
    122. Lin P, Jia Y M. Average consensus in networks of multi-agents with both switching topologyand coupling time-delay [J]. Physica A,2008,387(1):303-313.
    123. Khalil H K. Nonlinear systems [M]. Upper Saddle River, NJ: Prentice Hall,1996.
    124. Hale J K. Theory of functional diferential equations [M]. Springer-Verlag, New York,1977.
    125. Kar I N. Contraction theory: A tool for design and analysis of nonlinear systems [R].http://home.iitk.ac.in/~lbehera/indous2/Talks fles/Day%201/Indra%20Narayan%20Kar.pdf.
    126. Zhang Y P, Sun J T. Chaotic synchronization and anti-synchronization based on suitableseparation [J]. Physics Letters A,2004,330(6):442-447.
    127. Li C B, He Y, Wu A G. Consensus control for a class of high order system via sliding modecontrol [M]. Advances in Automation and Robotics, Vol.1. Springer Berlin Heidelberg,2012:207-213.
    128. Hmamed A. Further results on the robust stability of uncertain time-delay systems [J].International Journal of Systems Science,1991,22(3):605-614.
    129. Coppel W A. Stability and asymptotic behavior of diferential equations[M]. Boston: Heath,1965.
    130. Desoer C A, Vidyasagar M. Feedback systems: input-output properties [M]. New York:Academic Press,1975.
    131. Matsumoto T. A chaotic attractor from Chua’s circuit [J]. IEEE Transactions on Circuitsand Systems,1984,31(12):1055-1058.
    132. Cao M, Yu C B, Anderson B. Formation control using range-only measurements [J]. Au-tomatica,2011,47(4),776-781.
    133. Olfati-Saber R. Flocking for multi-agent dynamic systems: Algorithms and theory [J].IEEE Transactions on Automatic Control,2006,51(3):401-420.
    134. Lin P, Jia Y M. Consensus of a class of second-order multi-agent systems with time-delayand jointly-connected topologies [J]. IEEE Transactions on Automatic Control,2010,55(3):778-784.
    135. Yu W W, Chen G R, Cao M. Some necessary and sufcient conditions for second-orderconsensus in multi-agent dynamical systems [J]. Automatica,2010,46(6):1089-1095.
    136. Hu J P, Hong Y G. Leader-following coordination of multi-agent systems with couplingtime delays [J]. Physica A,2007,374(2):853-863.
    137. Zh W, Cheng D Z. Leader-following consensus of second-order agents with multiple time-varying delays [J]. Automatica,2010,46(12):1994-1999.
    138. Song Q, Cao J D, Yu W W. Second-order leader-following consensus of nonlinear multi-agent systems via pinning control [J]. Systems&Control Letters,2010,59(9):553-562.
    139. Xiao F, Wang L. Asynchronous consensus in continuous-time multi-agent systems withswitching topology and time-varying delays [J]. IEEE Transactions on Automatic Control,2008,53(8):1804-1816.
    140. Cao Y C, Y W W, Ren W, Chen G R. An overview of recent progress in the studyof distributed multi-agent coordination [J]. IEEE Transactions on Industrial Informatics,2013,9(1):427-438.
    141. Ren W, Cao Y C. Distributed coordination of multi-agent networks [M]. Springer LondonDordrecht Heidelberg New York,2011.
    142. Ren W, Randal W. Beard. Consensus seeking in multiagent systems under dynamicallychanging interaction topologies [J]. IEEE Transactions on Automatic Control,2005,50(5):655-661.
    143. Yu W W, Chen G R, Cao M. Consensus in directed networks of agents with nonlineardynamics [J]. IEEE Transactions on Automatic Control,2011,56(6):1436-1441.
    144. Lin P, Jia Y M. Multi-agent consensus with diverse time-delays and jointly-connectedtopologies [J]. Automatica,2011,47(4):848-856.
    145. Lin P, Qin K Y, Zhao H M, Sun M. A new approach to average consensus problems withmultiple time-delays and jointly-connected topologies [J]. Journal of the Franklin Institute,2012,349(1):293-304.
    146. Ma C Q, Zhang J F. Necessary and sufcient conditions for consensusability of linearmulti-agent systems [J]. IEEE Transactions on Automatic Control,2010,55(5):1263-1268.
    147. Zhang X J, Cui B T. A delay-decomposition approach to robust absolute stability ofneutral Lurie control system [J]. Arabian Journal for Science and Engineering,2013,38(10):2921-2928.
    148. Ren W, Atkins E. Distributed multi-vehicle coordinated control via local information ex-change [J]. International Journal of Robust and Nonlinear Control,2007,17(10-11):1002-1033.
    149. Tan F X, Guan X P, Liu D R. Consensus protocol for multi-agent continuous systems [J].Chinese Physcis B,2008,17(10):3531-3535.
    150. Sun Y Z, Li W, Ruan J. Average consensus of multi-agent systems with communicationtime delays and noisy links [J]. Chinese Physics B,2013,22(2):030510.
    151. Gao L X, Yan H J, Jin D. Consensus problems in multi-agent systems with double integratormodel [J]. Chinese Physcis B,2010,19(5):050520.
    152. Wen G H, Duan Z S, Yu W W, Chen G R. Consensus in multi-agent systems with commu-nication constraints [J]. International Journal of Robust and nonlinear control,2012,22(2):170-182.
    153. Li Z X, Cheng Z Q. Design Leader-following consensus protocol via feedback control [C].Proceedings of the30th Chinese Control Conference, Yantai, China,2011,5964-5968.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700