时滞神经网络渐近稳定性和鲁棒稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经网络是一种复杂的大规模动力系统,具有十分丰富的动力学属性。在过去近二十年里,由于其在联想记忆、模式识别和优化等问题中的广泛应用,神经网络的动力学问题得到了深入的研究。为了易于分析和应用,许多神经网络模型忽略了神经元之间信息传输所带来的时间延迟。但是,理论和实践证实,时滞是客观存在的。同时时滞对神经网络的稳定性带来影响,产生振荡行为或其它不稳定现象甚至出现混沌现象。于是,近年来,时滞神经网络的研究吸引了大批的研究人员,并取得了大量较深刻的结果。
     本论文主要致力于几类时滞系统的渐近稳定性、指数稳定性和鲁棒稳定性的分析,取得了一些较深刻的结果。其主要内容和创新之处可概述如下:
     1.具有时变时滞的递归神经网络的渐近稳定性分析
     研究带时变时滞的递归神经网络的全局渐近稳定性。首先将要研究的模型转化为描述系统模型,然后利用Lyapunov-Krasovskii稳定性定理,线性矩阵不等式(LMI)技术,S过程和代数不等式方法,得到了确保时变时滞递归神经网络渐近稳定性的新的充分条件,并将它应用于常时滞神经网络和时滞细胞神经网络模型,分别得到了相应的全局渐近稳定性条件。
     2.时变时滞递归神经网络时滞区间相关稳定性分析
     通过构建适当的Lyapunov-Krasovskii泛函,研究一类时变时滞广义递归神经网络平衡点的时滞区间相关的稳定性,得到了区间时变时滞神经网络平衡点的全局渐近稳定性的两个充分条件。
     3.线性时变系统的时滞相关鲁棒稳定性及其在时滞神经网络中的应用
     对于多时滞的不确定线性时变系统,我们通过参数化一阶模型变换,以及从区间不确定性到范数有界的不确定性的变换,得到一些时滞相关的鲁棒渐近稳定性的判定准则,给出了与时滞参数相关的稳定域的量化表示。基于这些结果,我们研究一类时滞神经网络系统的稳定性问题,它能够转化为线性时变系统,并得到了几个新的全局渐近稳定性判定准则。
     4.脉冲对时滞双向联想记忆神经网络的镇定影响
     研究带有脉冲和时滞的双向联想记忆神经网络平衡点的渐近稳定性,得到了几个判断网络全局指数稳定的充分条件,这些条件刻画了脉冲强度和无脉冲的连续子网络(双向联想记忆神经网络的连续部分)的指数收敛速度对整个网络的全局指数稳定性的混和影响。
     5.带脉冲和时滞的广义双向联想记忆神经网络的稳定性分析
     利用Lyapunov函数和二维Halanay类型不等式,研究带有脉冲和时滞的广义双向联想记忆神经网络平衡点的全局指数稳定性,得到了几个判断网络全局指数稳定的充分条件。结果表明即使脉冲对网络状态有放大的影响,脉冲时滞双向联想记忆神经网络也可能保持连续子网络的全局指数稳定的性质。
     6.混杂脉冲开关神经网络
     利用开关Lyapunov函数和广义Halanay不等式,考虑脉冲效应和开关效应的混杂影响,研究一类混杂脉冲开关神经网络模型,得到了一些这类神经网络的渐近稳定性和指数稳定性的判断准则。
The neural network, as a large-scale complex system, exhibits the rich and colorful dynamical behaviors. In the recent twenty years, duo to its important and potential applications in associative memory, pattern recognition, optimizing problems and so on, the dynamical issues of delayed neural networks have been investigated intensively. In order to analyze and apply easily, the transmission delays are ignored in modeling for most of system. But it is demonstrated by theories and practices that time delay is unavoidable. At the same time, time delays may affect the stability of the system, even lead to instability, oscillation or chaos phenomena. Recently, delayed neural networks have attracted a large number of researchers, and a series of significative results have been established.
     This dissertation focuses on the exponential and asymptotical and robust stability for several delayed system. The main achievements and originality contained in this dissertation are as follows:
     1. Asymptotical stability analysis for recurrent neural networks with time-varying delays
     The problem of the globally asymptotical stability of recurrent neural networks with time varying delay is investigated. By transforming the delayed neural model to describer model and then employing Lapunov Krasovskii stability theorem, linear matrix inequality (LMI) technique, S procedure and some algebraic inequality method, a new sufficient condition, which is determined by the coefficients of the model and includes more tuning parameters, for determining the global asymptotical stability of recurrent neural networks with time-varying delay is derived. The proposed result is further applied to two special cases: cellular neural network model with time delay and recurrent neural networks with constant delays. It is shown by theoretical analysis and computer simulations that the presented results provide several new sufficient conditions for the asymptotical stability of the investigated delayed neural network model.
     2. Delay-interval dependent stability of recurrent neural networks with time-varying delay
     The delay-interval-dependent stability of the equilibrium point of a general class of recurrent neural networks with time-varying delays that may exclude zero has been studied. By constructing the appropriate Lyapunov-Krasovskii functional, two sufficient conditions ensuring the global asymptotic stability of the equilibrium point of such networks with interval time-varying delays are established.
     3. Delay-dependent robust stability analysis for interval linear time-variant systems with delays and application to delayed neural networks
     Some delay-dependent robust asymptotical stability criteria for uncertain linear time-variant systems with multiple delays are established by means of parameterized first-order model transformation and the transformation of the interval uncertainty into the norm-bounded uncertainty. The stable regions with respect to the delay parameters are also formulated. Based on these results, we investigate the stability issue of a class of delayed neural networks that can be transformed into linear time-variant systems, and then several new global asymptotical stability criteria are exploited. 4. Stabilizing effects of impulses in delayed BAM neural networks
     The stabilizing effects of impulses in delayed bidirectional associative memory (DBAM) neural networks when its continuous component does not converge
     asymptotically to the equilibrium point have been studied. A general criterion, which characterizes the aggregated effects of the impulse and the deviation of its continuous component from the equilibrium point on the exponential stability of the considered DBAM, is established by using Lyapunov-Razumikhin technique.
     5. Stability analysis of BAM neural networks with impulse and delays
     We further studies the global exponential stability of the equilibrium point of the delayed bidirectional associative memory (DBAM) neural networks with impulse effects. Several results characterizing the aggregated effects of impulse and dynamical property of the impulse-free DBAM on the exponential stability of the considered DBAM have been established. It is shown that the impulsive DBAM will preserve the global exponential stability of the impulse-free DBAM even if the impulses have enlarging effects on the states of neurons.
     6. On hybrid impulsive and switching neural networks
     We also formulate and study a model of hybrid impulsive and switching Hopfield neural networks. Using switching Lyapunov functions and a generalized Halanay inequality, some general criteria, which characterize the impulse effect and switching effect in aggregated form, for asymptotic and exponential stability of such neural networks with arbitrary and conditioned impulsive switching are established.
引文
[1] Kosko B. Adaptive Bi-directional associative memories[J]. Applied Optics,1987,26: 4947-4960.
    [2] Kosko B. Bi-directional associative memory[J]. IEEE transaction on Systems, Man and Cybernetics,1988,SMC-18: 49-60.
    [3] Kosko B. Unsupervised learning in noise[J]. IEEE transaction on neural networks, 1990, NN-1: 44-57.
    [4] Kosko B. Structural stability of unsupervised learning in feedback neural networks[J]. IEEE transaction on automatic Control 1991, AC-36: 785-790.
    [5] Kosko B. Neural Networks and Fuzzy Systems-A Dynamical System Approach to Machine Intelligence[M].Prentice-Hall: Englewood Cliffs, NJ, 1992.
    [6] Mathai C., Upadhyaya B. C.. Performance analysis and application of the Bi-directional associative memory to industrial spectral signatures[C]. Proceeding of IJCNN, 1989, vol.1: 33-37.
    [7] Elsen I., Kraiaiss K.F. and Krumbiegel D.. Pixel based 3D object recognition with Bi-directional associative memory[J]. International Conference on neural networks, 1997, vol. 3: 1679-1684.
    [8] Maundy B.,EI-Masry. A switched capacitor Bi-directional associative memory[J]. IEEE transaction on Circuits and systems 1990, 37(12):1568-1572.
    [9] Hasan SMR, Siong NK. A VLSI BAM neural network chip for pattern recognition application[C]. Proceedings of IEEE international Conference on neural networks, 1995, vol. 1: 164-168.
    [10] Youshen Xia, Jun Wang. Global exponential stability of recurrent neural networks for solving optimization and related problems[J]. IEEE Trans. Neural networks, 2000, 11(4): 1017-1022.
    [11] Dingguo Chen, R.R. Mohler. Neural-network-based load modeling and its use in voltage stability analysis[J]. IEEE Transactions on Control Systems Technology, 2003, 11(4): 460-470.
    [12] Liao Xiaofeng, Yu Juebang. Qualitative Analysis of Bi-directional Associative Memory with Time Delay[J]. International Journal of Circuits Theory and Applications, 1998, 26(4):219-229.
    [13] Liao Xiaofeng, Yu Juebang. Robust Stability of Interval Hopfield Neural Network with Time Delay[J]. IEEE Transactions on Neural Networks, 1998, 9(5):1042~1045.
    [14] Liao Xiaofeng, Kwok-wo Wong, Wu Zhongfu. Novel Stability Conditions for Cellular Neural Networks with Time Delay[J]. International Journal of Bifurcation and Chaos, 2001,11(7):1853-1864.
    [15] Liao Xiaofeng, Kwok-wo Wong, Wu Zhongfu, Chen Guanrong. Novel Robust Stability Criteria for Interval Delayed Hopfield Neural Networks[J]. IEEE Transactions on CAS-I, 2001, 48(11):1355-1359.
    [16] Liao Xiaofeng, Wu Zhongfu, Yu Juebang. Stability Analyses of Cellular Neural Networks with Continuous Time Delay[J]. Journal of Computational and Applied Mathematics, 2002, 143 (4):29-47.
    [17] Liao Xiaofeng, Yu Juebang, Chen Guanrong. Novel Stability Criteria for Bi-directional Associative Memory Neural Networks with Time Delays[J]. International Journal of Circuits Theory and Applications, 2002, 30(5):519-546.
    [18] Liao Xiaofeng, Chen Guanrong, Edgar N. Sanchez. Delay-dependent Exponential Stability Analysis of Delayed Neural Networks: A LMI Approach[J]. Neural Networks, 2002, 15 (2):855-866.
    [19] Liao Xiaofeng, Chen Guanrong, Edgar N. Sanchez. LMI-based Approach for Asymptotically Stability Analysis of Delayed Neural Networks[J]. IEEE Transactions on CAS-I, 2002, 49 (7):1033-1039.
    [20] Liao Xiaofeng, Kwok-wo Wong, Wu Zhongfu. Asymptotic Stability Criteria for a Two-Neuron Network with Different Time Delays[J]. IEEE Transactions on Neural Networks, 2003, 14 (1):222-227.
    [21] Liao Xiaofeng, Kwok-wo Wong. Global Exponential Stability of Hybrid Bidirectional Associative Memory Neural Networks with Discrete Delays[J]. Physical Review E, 2003, 67, 042901.
    [22] Liao Xiaofeng, Wang Jun, Cao Jinde. Global and Robust Stability of Interval Hopfield Neural Networks with Time-varying Delays[J]. International Journal of Neural Systems, 2003, 13 (3):171~182.
    [23] Li Chuandong, Liao Xiaofeng, Zhang Rong. New Algebraic Conditions for Global Exponential Stability of Delayed Recurrent Neural Networks[J]. Neurocomputing, 64C, 319-333, 2005.
    [24] Liao Xiaofeng, Kwok-wo Wong, Yang Shizhong. Convergence dynamics of hybrid bi-directional associtative memory neural networks with distributed delays[J]. Physics Letters A, 2003, 316 (12):55~64 .
    [25] Cao Jinde, Wang Jun, Liao Xiaofeng. Novel stability criteria for delayed cellualr neural networks[J]. International Journal of Neural Systems, 2003, 13 (5):367~375.
    [26] Liao Xiaofeng, Kwok-wo Wong. Robust Stability of interval bi-directional associative memory neural networks with time delays[J]. IEEE Transactions on SMC-B, 2004, 34 (2):1141~1154.
    [27] Liao Xiaofeng, Kwok-wo Wong. Global exponential stability for a class of retarded functionaldifferential equations with applications in neural networks[J]. Journal of Mathematical Analysis and Applications, 2004, 293 (1):125~148.
    [28] Liao Xiaofeng, Kwok-wo Wong, Li Chuanguang. Global exponential stability for a class of generalized neural networks with distributed delays[J]. Nonlinear Analysis: Real World Applications, 2004, 5(3):527~547.
    [29] Liao Xiaofeng, Kwok-wo Wong, Leung C. Hopf bifurcation and chaos in a single delayed neuron equation with nonmonotonic activation function[J]. Chaos, Solitons & Fractals, 2001, 12(4):1535-1547.
    [30] Li Chuandong, Liao Xiaofeng. Global robust asymptotical stability of multi-delayed interval neural networks: An LMI Approach[J]. Physics Letters A, 2004,328(3):452-462.
    [31] Li Chuandong, Liao Xiaofeng. Global robust stability criteria for interval delayed neural networks via an LMI approach[J]. IEEE Transactions on CAS-II, 2006, 53(9):901-905
    [32] Cao Jinde, Wang Jun. Global Asymptotic Stability of a General Class of Recurrent Neural Networks With Time-Varying Delays[J]. IEEE Trans. CAS-I, 2003, 50(1):34~44.
    [33] Teh-Lu Liao, Fong-Chin Wang. Global stability condition for cellular neural networks with time delay[J]. Electron. Lett.,1999, 35(16):1347~1349.
    [34] Teh-Lu Liao, Fong-Chin Wang. Global stability for cellular neural networks with time delay[J]. IEEE Trans. on Neural Networks, 2000, 11(6):1481~1484.
    [35] Liao Xiaofeng, Kwok-Wo Wong, Yang Shizhong. Stability analysis for delayed cellular neural networks based on linear matrix inequality approach[J]. Int. J. Bifurcation and Chaos, 2004, 14(9):3377-3384.
    [36] Cao Jinde. Global stability conditions for delayed CNNs[J]. IEEE Trans. on CAS-I,2001, 48(11): 1330~1333.
    [37] Arik S., Tavsanoglu V.. On the global asymptotic stability of delayed cellular neural networks[J]. IEEE Trans. on CAS-I, 2000, 47 (4):571~574.
    [38] Arik S.. An Analysis of Global Asymptotic Stability of Delayed Cellular Neural Networks[J]. IEEE Trans. on Neural Networks, 2002, 13(5):1239~1242.
    [39] Arik S. An Improved Global Stability Result for Delayed Cellular Neural Networks[J]. IEEE Trans. on CAS-I, 2002, 49 (8): 1211~1214.
    [40] Hale J. K., Lunel S. M. V.. Introduction to the theory of functional differential Equations[J]. Applied mathematical sciences, Vol. 99, New York: Springer, 1999.
    [41] Liao X, Mu W, Yu J. Stability analysis of bi-directional association memory with axonal signal transmission delay[J]. Proceedings of the third International Conference on Signal Processing, 1996, 2: 1457-1460.
    [42] Liao X, Liu G, YU J. Qualitative analysis of BAM networks[J]. Journal of circuits and systems 1996, 1:13-18.
    [43] Michel, A. N., Farrell, J. A., & Porod, W. Qualitative analysis of neural networks[J]. IEEE Transactions on Circuits Systems I 1989, 36: 229–243.
    [44] Gopalsamy K, He X. Delay-dependent stability in bi-directional associative memory networks[J]. IEEE transaction on neural networks 1994; 5:998-1002.
    [45] Arik S. Stability analysis of delayed neural networks[J]. IEEE Transaction on circuits and systems 2000, 47(7): 1089-1092.
    [46] Cao, J. Periodic oscillation and exponential stability of delayed CNN[J]. Physics Letters A 2000, 270: 157–163.
    [47] Gopalsamy, K., & He, X. Z. Stability in asymmetric Hopfield networks with transmission delays[J]. Physica D 1994, 76: 344–358.
    [48] Chuandong Li, Xiaofeng Liao, Yong Chen. On the robust stability of bidirectional associative memory neural networks with constant delays[J]. LECTURE NOTES IN COMPUTER SCIENCE 3173: 102-107, 2004.
    [49] Joy M. On the global convergence of a class of functional differential equations with application in neural network theory[J]. Journal of Mathematical Analysis and Applications1999, 232: 61–81.
    [50] Joy M. Results concerning the absolute stability of delayed neural networks[J]. Neural Networks 2000, 13: 613–616.
    [51] Zhang Y. Global exponential stability and periodic results of delay Hopfield neural networks[J]. International Journal of System Sciences 1996, 27:227-231.
    [52] Sanchez, E. N., & Perez, J. P. Input-to-state stability analysis for dynamic NN[J]. IEEE Transactions on Circuits Systems 1999, 46:1395–1398.
    [53] Nesterov, Y., & Nemirovsky, A. Interior point polynomial methods in convex Programming[J]. SIAM: Philadephia PA 1994.
    [54] Li Chuandong, Liao Xiaofeng, Zhang Rong. Delay-dependent exponential stability Analysis of BAM NNs: an LMI approach[J]. Chaos, Solitons & Fractals, 24(4) 1119-1134, 2005.
    [55] Xiao-xin Liao, Jun Wang. Algebraic criteria for global exponential stability of cellular neural networks with multiple time delays[J]. IEEE Trans. CAS-I, 2003, 50(2): 268-274.
    [56] S. Arik. Global robust stability of delayed neural networks[J]. IEEE Trans. CAS-I, 2003, 50 (1): 156-160.
    [57] Hui Ye, N. Micheal, K. Wang. Robust stability of nonlinear time-delay systems with applications to neural networks[J]. IEEE Trans. CAS-I, 1996, 43(7): 532-543.
    [58] J.A.K. Suykens, B. de Moor, J. Vandewalle. Robust local stability of multilayer recurrent neural networks[J]. IEEE Trans. Neural networks, 2000, 11(1): 222-229.
    [59] Tianping Chen, Libin Rong. Robust global exponential stability of Cohen-Grossberg neural networks with time delays[J]. IEEE Trans. Neural networks, 2004, 15(1): 203-206.
    [60] E. Domany, J.L. van Hemmen, K. Schulten. Models of neural networks[M]. spring Berlin, 1991.
    [61] P, van den Driessche, X. zou. Global attracting in delayed Hopfield neural network model[J]. SIAM J. Appl. Mach. 58(1998) 1879-1890.
    [62] K. Gopalsamy, X. Z. He. Delay-independent stability in bidirectional association memory networks[J]. IEEE Trans. Neural Networks 5 (1994) 998-1002.
    [63] X. Liao, Yu J. Qualitative analysis of bi-directional associative memory networks with time delays[J]. Int J Circ Theor Appl. 1998; 26:219–29.
    [64] Chuandong Li, Xiaofeng Liao. Delay-dependent exponential stability analysis of bi-directional associative memory neural networks: an LMI approach[J]. Chaos, Solitons & Fractals, 24(4) 1119-1134, 2005.
    [65] A.Chen, Cao J.D., Huang L. Exponential stability of BAM neural networks with transmission delays[J]. Neurocomputing 2004,57:435–54.
    [66] H. Y. Zhao. Global stability of bidirectional associative memory neural networks with distributed delays[J]. Phys Lett A 2002;297:182–90.
    [67] J. Cao. Global asymptotic stability of delayed bi-directional associative memory neural networks[J]. Appl Math Comput 2003;142:333–9.
    [68] J. D. Cao and L. Wang. Exponential stability and periodic oscillatory solution in BAM neural networks with delays[J]. IEEE Transactions on Neural Networks, vol.13, no. 2:457-463, Mar. 2002.
    [69] Z. H. Guan, James L, Chen G. On impulsive autoassociative neural networks[J]. Neural Networks 2000, 13:63–9.
    [70] Z. H. Guan, Guanrong Chen. On delayed impulsive Hopfield neural networks[J]. Neural Networks 12 (1999) 273–280.
    [71] Y. K. Li. Global exponential stability of BAM neural networks with delays and impulses[J]. Chaos, Solitons and Fractals 2005; 24: 279-285.
    [72] Yonghui Xia, Zhenkun Huang, Maoan Han. Existence and globally exponential stability of equilibrium for BAM neural networks with impulses[J]. Chaos, Solitons & Fractals, Volume 37, Issue 2, July 2008, Pages 588-597.
    [73] Zhenkun Huang, Yonghui Xia. Global exponential stability of BAM neural networks withtransmission delays and nonlinear impulses[J]. Chaos, Solitons and Fractals (2007), doi: 10. 1016/j.chaos.2006.11.032.
    [74] Jun Chen, Baotong Cui. Impulsive effects on global asymptotic stability of delay BAM neural networks[J]. Chaos, Solitons & Fractals (2007), doi:10.1016/j.chaos.2007.01.042.
    [75] Fengjian Yang, Chaolong Zhang, Dongqing Wu, Xiaojian Hu. Uniformly Stability of Impulsive BAM Neural Networks with Delays[C]. Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications (ISDA'06).
    [76] Xuyang Lou and Bao Tong Cui. Global asymptotic stability of delay BAM neural networks with impulses[J]. Chaos, Solitons & Fractals, Volume 29, Issue 4, August 2006, Pages 1023-1031.
    [77] Xuyang Lou, Baotong Cui. Global asymptotic stability of delay BAM neural networks with impulses based on matrix theory[J]. Applied Mathematical Modelling. Volume 32, Issue 2, February 2008, Pages 232-239.
    [78] Zhen Wen and Jitao Sun. Global asymptotic stability of delay BAM neural networks with impulses via nonsmooth analysis[J]. Neurocomputing, Volume 71, Issues 7-9, March 2008, Pages 1543-1549.
    [79] Yao-tang Li, Chang-bo Yang. Global exponential stability analysis on impulsive BAM neural networks with distributed delays[J]. J. Math. Anal. Appl. 324 (2006) 1125–1139.
    [80] Zai-Tang Huang, Xiao-Shu Luo, Qi-Gui Yang. Global asymptotic stability analysis of bidirectional associative memory neural networks with distributed delays and impulse[J]. Chaos, Solitons and Fractals 34 (2007) 878–885.
    [81] Qinghua Zhou. Global exponential stability of BAM neural networks with distributed delays and impulses[J]. Nonlinear Analysis: Real World Applications, Volume 10, Issue 1, February 2009, Pages 144-153.
    [82] Guirong Jiang, Qishao Lu, Linning Qian. Chaos and its control in an impulsive differential system[J] . Chaos, Solitons and Fractals 34 (2007) 1135–1147.
    [83] Chuandong Li and Xiaofeng Liao. Impulsive stabilization of delayed neural networks via linear matrix inequality[J]. International Journal of Robust and Nonlinear Science. 2007; 17:1489–1502.
    [84] Chuandong Li, Xiaofeng Liao, Xiaofan Yang and Tingwen Huang. Impulsive stabilization and synchronization of delayed chaotic systems[J]. Chaos, 15, 043103, 2005.
    [85] J. Cao, Q. Song. Stability in Cohen-Grossberg type BAM neural networks with time-varying delays[J]. Nonlinearity, vol. 19, no. 7:1601-1617, 2006.
    [86] Yu Zhang, Jitao Sun. Stability of impulsive neural networks with time delays[J]. Physics LettersA, vol. 348, no. 1-2:44-50, 2005.
    [87] Daniel W. C. Ho, Jinling Liang, James Lam. Global exponential stability of impulsive high-order BAM neural networks with time-varying delays[J]. Neural Networks, vol. 19, no. 10:1581-1590, 2006.
    [88] Jinde Cao. Global stability analysis in delayed cellular neural networks[J]. Physical Review E, 1999,59(5):5940-5944.
    [89] Li Chuandong, Liao Xiaofeng. A global exponential robust stability criterion for interval delayed neural networks with variable delays[J] . Neurocomputing, 2006, 69:803-809.
    [90] Li Chuandong, Liao Xiaofeng. A new criterion for global robust stability of interval neural networks with discrete time delays[J]. Chaos, Solitons and Fractals, 2007, 31( 3):561-570.
    [91] Yakubovich V.A.. Linear Matrix Inequalities in system and Control Theory[M]. SIAM Review,1995,37(3):479.
    [92]徐炳吉,廖晓昕,刘新芝.二阶神经网络的全局指数稳定性分析[J].计算机研究与发展, 2002 ,39(9):1071-1075.
    [93]张晶,张权,王欣.一种新的基于统计向量和神经网络的边缘检测方法[J].计算机研究与发展, 2006,43 (5):920-926.
    [94]雷景生,马军,靳婷.基于分级神经网络的Web文档模糊聚类技术[J].计算机研究与发展,2006 ,43(10):1695~1699.
    [95] S. Arik. Global asymptotic stability of a class of dynamical neural networks[J]. IEEE Transactions on Circuits and Systems I, vol. 47, no. 4:568-571, Apr. 2000.
    [96] Shengyuan Xu, James Lam, Daniel W. C. Ho. A new LMI condition for delayed dependent asymptotic stability of delayed Hopfield neural networks[J]. IEEE Transactions on Circuits and Systems II, vol. 53, no.3:230-234, 2006.
    [97] Wu-Hua Chen, Xiaomei Lu, Zhi-Hong Guan, Wed Xing Zheng. Delay-dependent exponential stability of neural networks with variable delay: An LMI approach[J]. IEEE Transactions on Circuits and Systems II, vol. 53, no. 9:837-842, 2006.
    [98] Yong He, Guoping Liu, D. Rees. Delay-dependent stability criteria for neural networks with time-varying delay[J]. IEEE Transactions on Circuits and Systems II, vol. 53, no. 7:553-557, 2006.
    [99] Y. He, G. P. Liu, and D. Rees. New delay-dependent stability criteria for neural networks with time-varying delay[J]. IEEE Trans. Neural Networks, vol. 18, no. 1: 310-314, Jan. 2007.
    [100] X. F. Liao, G,. Chen, and E. N. Sanchez. Delay-dependent stability analysis of delayed neural networks: An LMI approach[J]. Neural Networks, vol. 15:855-866, 2002.
    [101] Zhigang Zeng and Jun Wang. Improved conditions for global exponential stability of recurrentneural networks with time-varying delays[J]. IEEE Transactions on Neural Networks, vol. 17, no. 3:623-635, May 2006.
    [102] A.M. Annaswamy, M. Fleifil, J. P. Hathout, and A. F. Ghoniem. Impact of linear coupling on the design of active controllers for thermo-acoustic instability[J]. Combust. Sci. Technol., vol. 128:131-160, 1997.
    [103] J. Tlusty. Machine dynamics. In Handbook of High Speed Machining Technology[C]. R. I. King, Ed. New York: Chapman and Hall, 1985:48-153.
    [104] V. B. Kolmanovskii, S. -I. Niculescu, K. Gu. Delay effects on stability: A survey[C]. In 38th IEEE CDC’99 (Conference on Decision and Control), Phoenix, AZ, December 1999:1993-1998.
    [105] J.–P. Richard. Time-delay systems: an overview of some recent advances and open problems[J]. Automatica 39, 1667-1694, 2003.
    [106] S. -I. Niculescu. Delay effects on stability: A robust control approach[C]. New York: Springer-Verlag, 2001.
    [107] C. R. Knospe and M. Roozbehani. Stability of linear systems with interval time delay excluding zero[J]. IEEE Transactions on Automatic Control, vol. 51, no. 8:1271-1288, August 2006.
    [108] Y.-J. Juang and W.–J. Shyu. Stability of time-delay systems[J]. Control Theory and Advanced Technology, 10(4), 2029-2107, 1995.
    [109] C. R. Knospe and M. Roozbehani. Stability of linear systems with interval time delay[J]. in Proc. American Control Conference, 2003.
    [110] Knospe, C.R. , Roozbehani, M.. Analysis of multiple interval delay systems via sufficient and asymptotically necessary comparison system[C]. Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii USA, December 2003:5041-5047.
    [111] Yong He, Qing-Guo Wang, Chong Lin, Min Wu. Delay-range-dependent stability of systems with time-varying delay[J]. Automatica 43, 371-376, 2007.
    [112] S. Boyd, L. Ghaoui, E. EI Feron, and V. Balakrishnan. Linear matrix inequalities in system and control theory[M]. Philadephia: SIAM, 1994.
    [113] Tao Li, Lei Guo, Chong Lin, Changyin Sun. New results on global asymptotic stability analysis for neural networks with time-varying delays[J]. Nonlinear Analysis: Real World Applications. DOI: 10.1016/j.nonrwa.2007.08.025.
    [114] S. Xu, J. Lam, D.W.C. Ho, Y. Zou. Novel global asymptotic stability criteria for delayed cellular neural networks[J]. IEEE Trans. Circuits Syst. II, Exp. Briefs 52 (2005) 349-353.
    [115] C. C. Hua, C. N. Long, X.P. Guan. New results on stability analysis of neural networks withtime-varying delays[J]. Phys. Lett. A 352 (2006) 335-340.
    [116] H. J. Cho, J. H. Park. Novel delay-dependent robust stability criterion of delayed cellular neural networks[J]. Chaos, Solitons and Fractals. 32 (2007) 1194-1200.
    [117] Tao Li, Lei Guo, Changyin Sun. Further result on asymptotic stability criterion of neural networks with time-varying delays[J]. Neurocomputing 71 (2007) 439-447.
    [118] Y. He, G. P. Liu, D. Rees, and Min Wu. Stability Analysis for Neural Networks With Time-Varying Interval Delay[J]. IEEE Trans. ON Neural Networks, Volume:18, Pages: 1850-1854, Published: 2007.
    [119] Y. He, Q. G.Wang, and M.Wu. LMI-based stability criteria for neural networks with multiple time-varying delays[J]. Physica D, vol. 212:126-136, 2005.
    [120] Y. He, M. Wu, and J. H. She. Delay-dependent exponential stability for delayed neural networks with time-varying delay[J]. IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 7:230-234, Jul. 2006.
    [121] A.Chen, J. Cao, L. Huang. An estimation of upper bound of delays for global asymptotical stability of delayed Hopfield neural networks[J]. IEEE Trans. Circuits and Syst. I 49, 1028-1032, 2002.
    [122] Q. Zhang, Xiaopeng Wei and Jin Xu. Delay-dependent global stability condition for delayed Hopfield neural networks[J]. Nonlinear Analysis: Real World Applications, vol. 8:997-1002, 2007.
    [123] Kuang Y. Delay differential equations with applications in population dynamics[M]. Academic Press, Boston, 1993.
    [124] Macdoonald N. Biological delay systems: linear stability theory[M]. Cambridge University Press, Cambridge, 1989.
    [125] Niculescu S. I. Delay effects on stability: A robust Control approach[C]. Springer, Berlin, 2001.
    [126] Hale J. K, Verduyn Lunel S. M. Introduction to functional differential equations[J]. Applied Mathematical Sciences, 99, Springer-Verlag, New York, 1993.
    [127] Li C. D., Liao X. F. A global exponential robust stability criterion for NN with variable delays[J]. Neurocomputing 69 (2006) 803-809.
    [128] Richard J. P. Some trends and tools for the study of time delay systems[C]. CESA’98 IMACS-IEEE Multi-conference, Hammamet, Tunisia (1998) 27-43.
    [129] Hu S. Q, Wang J. On stability of a new class of linear time-invariant interval systems via constant state feedback control[J]. IEEE Trans. on Automatic Control, 2000, vol. 45, no. 11:2106-2111.
    [130] Liao X. F, Li C. D. An LMI approach to asymptotical stability of multi-delayed neural networks[J]. Physica D 2005, 1-2(200) 139-155.
    [131] Chuandong Li, Xiaofeng Liao. Global robust exponential stability analysis for internal neural networks with time-varying delays[J]. Chaos, Solitons & Fractals, 25 (3) 751-757, 2005.
    [132] Cao J. D., Chen Tianping. Globally exponentially robust stability and periodicity of delayed neural networks[J]. Chaos, Solitons and Fractals, 22 (2004) 957-963.
    [133] Wang S. S., Chen B. S., Lin T. P. Robust stability of uncertain time-delay systems[J]. Int. J. Control, 46(1987) 963-976.
    [134] Niculescu S.–I, Trofino Neto A., Dion J. M., Dugard L.. Delay dependent stability of linear systems with delayed state: An LMI approach[C]. Proc. 34th IEEE Conf. Decision and Control, New Orleans, LA, December 1995.
    [135] Li X., Carlos E. De Souza. Criteria for robust stability and stabilization of uncertain linear systems with satte delay[J]. Automatica, 1997, 9(33) 1657-1662.
    [136] Chen J. On computing the maximal delay intervals for stability of linear delay systems[J]. IEEE Trans. on Automatic control 1995, 6(40) 1087-1093.
    [137] Gu G., Lee E. B. Stability testing of time delay systems[J]. Automatica 1989, 5(35) 777-780.
    [138] Hertz D., E. J. Jury. Zeheb E. Stability independent and dependent of delay for delay differential systems[J]. J. Franklin Inst. 1984, 4(318) 143-150.
    [139] ----. Simplified analytic stability test for systems with commensurate time delays[J]. Proc. IEEE, Pt. D 1984, 1(131) 52-56.
    [140] Chen A., Cao J. D, Huang L. An estimation of upperbound of delays for global asymptotic stability of delayed Hopfield neural networks[J]. IEEE Trans. Circuits and Systems I 2002, 7(49) 1028-1032.
    [141] Zhang Q., Wei X., Xu J. On global exponential stability of nonautonomous delayed neural networks[J]. Chaos, Solitons and Fractals, 26 (2005) 965-970.
    [142] J. Cao, H.-X. Li, L. Han. Novel results concerning global robust stability of delayed neural networks[J]. Nonlinear Analysis, Series B, 7:3(2006),458-469.
    [143] J. Cao, J. Wang. Global asymptotic and robust stability of recurrent neural networks with time delays[J]. IEEE Trans. Circuits Syst.-I, 52:2(2005), 417-426.
    [144] J. Cao, D.-S. Huang, Y. Qu. Global robust stability of delayed recurrent neural networks[J]. Chaos, Solitons & Fractals, 23:1(2005), 221-229.
    [145] Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities[J]. Proc. Natl. Acad. Sci., 79, 2554-2558, 1982.
    [146] Hopfield, J. J. Neurons with graded response have collective computational properties likethose of two-state neurons[J]. Proc. Natl. Acad. Sci., 81, 3088-3092, 1984.
    [147] Cohen, M. A. and Grossberg, S. Absolute stability of global pattern formation and parallel memory storage by competitive neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13, 815-826, 1983.
    [148] Kosko, B. Constructing an associative memory[J]. BYTE Magazine 12, 137-144, 1987.
    [149] Chua, L. O. and Yang, L. Cellular neural networks: Theory. IEEE Transactions on Circuits and Systems[J] . Vol.35, no.10:1257-1272, 1988.
    [150] Chua, L. O. and Yang, L. Cellular neural networks: Applications[J]. IEEE Transactions on Circuits and Systems. Vol.35, no.10:1273-1290, 1988.
    [151] Baldi, P. and Atiya, A. F. How delays affect neural dynamics and learning[J]. IEEE Transactions on Neural Networks. vol. 5, 612-621, 1994.
    [152] Gopalsamy, K. and He, X.–Z. Stability in asymmetric Hopfield nets with transmission delays[J]. Physica D, 76, 344-358, 1994.
    [153] Gopalsamy, K. and He, X.–Z. Delay-independent stability in bidirectional associative memory networks. IEEE Transactions on Neural Networks[J]. vol. 5, 998-1002, 1994.
    [154] Roska T., Wu C. W., Balsi M., and Chua L. O.. Stability of delay-type cellular neural networks[C]. Memo UCB/ERL, Univ. California at Berkeley, Nov. 1991.
    [155] Ye H., Michel A. N., and Wang K. Qualitative analysis of Cohen-Grossberg neural networks with multiple delays[J]. Phys. Rev. E, vol. 51:2611-2618, 1995.
    [156] Guan Zhi-Hong, Lam James, Chen Guanrong. On impulsive auto-associative neural networks. Neural Networks[J]. 13, 63-69, 2000.
    [157] Boshan Chen and Jun Wang, Global asymptotic stability and global exponential stability of delayed cellular neural networks[J]. IEEE Transactions on Neural Networks, Vol. 16:1440-1448, 2005.
    [158] Jinde Cao and M. Dong. Exponential stability of delayed bi-directional associative memory neural networks[J]. Applied Mathematics and Computation, vol.135:105-112, 2003.
    [159] Kun Yuan, Jinde Cao, Han-Xiong Li. Robust Stablity of Switched Cohen-Grossberg neural Networks with Mixed Time-Varying Delays[J]. IEEE Transactions on Systems, man and Cybernetics, Part B, Vol. 36:1356-1363, 2006.
    [160] He Huang, Yuzhong Qu, and Han-Xiong Li. Robust stability analysis of switched Hopfield neural networks with time-varying delay under uncertainty[J]. Physics Letters A, 345, 345-354, 2005.
    [161] Kun Yuan, Jinde Cao, Han-Xiong Li. Robust stability of switched Cohen-Grossberg neural networks with mixed time-varying delays[J]. IEEE Transactions on Systems, man andCybernetics, Part B, Vol. 36, pp. 1356-1363, 2006.
    [162] Zhendong Sun and Shuzhi Ge. Switched linear systems-control and assign[M]. London: Springer, 2005.
    [163] M. S. Branicky, V. S. Borkar, and S. K. Mitter. A unified framework for hybrid control: Model and optimal control theory[J]. IEEE Transactions on Automatic Control, vol. 43, no. 1, 31-45, 1998.
    [164] Xhengguo Li, Yengchai Soh, and Changyun Wen. Switched and impulsive systems: analysis, design and applications[M]. Berlin: Springer, 2005.
    [165] Zhi-Hong Guan, David J. Hill, and Xuemin Shen. On hybrid impulsive and switching systems and application to nonlinear control[J]. IEEE Transactions on Automatic Control, vol. 50, no.7:1058-1062, 2005.
    [166] S.–H. Lee and J.-T. Lim. Stability analysis of switched systems with impulse effects[C]. Proceedings of the 1999 IEEE:79-83, International Symposium on Intelligent Control/Intelligent Systems and Semiotics, Cambridge, MA., September 15-17, 1999.
    [167] Honglei Xu, Xinzhi Liu, Kok Lay Teo. A LMI approach to stability analysis and synthesis of impulsive switched systems with time delays[J]. Nonlinear Analysis: Hybrid Systems, 2, 38-50, 2008.
    [168] Chuandong Li, Xiaofeng Liao, Tingwen Huang. Exponential stabilization of a class of chaotic systems with delay by periodically intermittent control[J]. Chaos 17, 013103, 2007.
    [169] M . Wicks, P. Peleties and R. Decarlo. Switched synthesis for the quadratic stabilization of a pair of unstable linear systems[J]. European Journal of Control, vol. 4:140-147, 1998.
    [170] D. Liberzon and A. S. Morse. Basic problems in stability and design of switched systems[J]. IEEE Control Systems Magazine, vol.19, no. 5:59-70, 1999.
    [171] H. Xu, X. Liu, K. L. Teo. Robust H∞stabilization with definite attendance of uncertain impulsive switched systems[J]. Journal of ANZIAM, 46, 471-484, 2005.
    [172] H. Xu, X. Liu, K. L. Teo. Delay independent stability criteria of impulsive switched systems with time-invariant delays[J]. Mathematical and Computer Modelling, 47, 372-379, 2008.
    [173] C. Ho, B. Ling, Y. Liu, P. Tam and K. L. Teo. Optimal PWM control of switched-capacitor DC/DC power converters via model transformation and enhancing control techniques[J]. to appear in TEEE Trans. on Circuits and Systems I, Digital Object Identifier 10.1109/TCSI.2008.916442.
    [174] D.H.Ackley, D.E.Hinton, T.J.Sejnowski. A Learning Algorithm for Boltzmann Machines[C]. Cognitive Science,Vol.9,1985:147~169.
    [175] D.E.Rumelhart, J.L.McClelland. Parallel Distribuited Processing[C]. Explorations inMacrostrcture of Cognition, vol.1,Cambridge,MA:MIT Press 1986.
    [176]廖晓昕.细胞神经网络的数学理论(Ⅰ) [J].中国科学(A辑).1994, 24(9):902-910.
    [177]廖晓昕.细胞神经网络的数学理论(Ⅱ) [J] .中国科学(A辑).1994, 24(10): 1037-1046.
    [178] Paul J. Werbos. Chaotic solitons and the foundations of physics: a potential revolution.Applied Mathematics and Computation, Volume 56, Issues 2-3, July 1993, Pages 289-339.
    [179] Paul J. Werbos. Chaotic solitons in conservative systems: Can they exist? [J]. Chaos, Solitons & Fractals, Volume 3, Issue 3, May-June 1993, Pages 321-326.
    [180] S Amari.Information geometry of the EM and EM algorithm for neural network[J]. Neural Networks,1995,8(9):1379 -1408.
    [181] S.Grosberg, Nonlinear neural networks: principles, mechanisms, and architectures[J]. Neural Networks, 1988,1: 17-61.
    [182] K.Gopalsamy and B.G.Zhang. On delay differential equations with impulses[J]. J. Math. Anal. Appl., 1989, 139:110-122.
    [183] Lakshmikantham V,Bainov D D,Simeonov P S. Theory of impulsive differential equations[M]. World Scientific. Singpore, 1989.
    [184] A.M. Samoilenko and N.A.Peretyuk. Impulsive differential equations[M]. World Scientific, Singapore, 1995.
    [185] Shen Jianhua, Wang Zhicheng. Oscillation and asymptotic behavior of solution of delay differential equations with impulse[J]. Ann. Of Diff.Eqs., 1994, 10(1):61-69.
    [186] Dishiev. A. B. and Bainov D.D.. Conditions for the absence,of the phenomenon‘beating’for systems of impulse differential equations[J]. Bull. Inst. Math. Acad. Sin, 1985, 13(2): 237-256.
    [187] Z.J. Gui, W.G. Ge. Existence and uniqueness of periodic solutions of nonautonomous cellular neural networks with impulses[J]. Physics Letters A, 2006, 354: 84–94.
    [188] Cao J.D. On exponential stability and periodic solutions of CNNs with delays[J]. Phys. Lett. A, 2000, 267: 312-318.
    [189] B. Zhang , Y. Liu. Global attractivity for certain impulsive delay differential equations[J]. Nonlinear Analysis, 2003, 52 : 725-736.
    [190] Li ZG, Wen CY, Soh YC. Analysis and design of impulsive control systems[J]. IEEE Trans Automat Contr, 2001, 46 (6): 894-903.
    [191] S. Tang, L. Chen. Global attractivity in a“food-limited”population model with impulsive effects[J]. J. Math. Anal. Appl., 2004, 292: 211-221.
    [192] X. Liu. Impulsive stabilization and control of chaotic system[J]. Nonlinear Analysis, 2001, 47: 1081-1092.
    [193] C. Li, X. Liao. Complete and lag synchronization of chaotic systems via small pulses[J].Chaos, Solitons and Fractals, 2004, 22: 857-867.
    [194] C. Li, X. Liao, X. Zhang. Impulsive synchronization of chaotic systems[J]. Chaos, 2005, 15 , 023104.
    [195] Q. Zhang, X. Wei, J. Xu. Delay-dependent exponential stability of cellular neural networks with time-varying delays[J]. Chaos, Solitons and Fractals, 2005, 23: 1363–1369.
    [196] L. O. Chua, L. Yang. Cellular Neural Networks: Theory[J]. IEEE Trans. Circuits Systems, 1988, 35(10): 1257-1272.
    [197] Xue-Bin Liang, J. Wang. Absolute exponential stability of neural networks with a general class of activation functions[J]. IEEE Trans. CAS-I, 2000, 47(8): 1258-1263.
    [198] S. Mohamad, K. Gopalsamy. Exponential stability of continuous-time and discrete-time cellular neural networks with delays[J]. Appl.Math. Comput. 2003, 135: 17–38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700